def main(): args = parse_args() state_dict = torch.load(args.model_checkpoint_path, map_location=torch.device("cpu")) layers = [state_dict["mlp.0.weight"].size()[1]] layer_keys = sorted([ k for k in state_dict.keys() if (k.startswith("mlp") and k.endswith("bias")) ]) layers.extend([state_dict[k].size()[0] for k in layer_keys]) n_items = state_dict["mf_item_embed.weight"].size()[0] n_users = state_dict["mf_user_embed.weight"].size()[0] model = NeuMF( nb_users=n_users, nb_items=n_items, mf_dim=state_dict["mf_item_embed.weight"].size()[1], mlp_layer_sizes=layers, dropout=0.5, ) model.load_state_dict(state_dict) model.eval() users = torch.LongTensor(np.full(n_items, n_users - 1)) items = torch.LongTensor(np.arange(n_items, dtype=np.int64)) predictions = model(users, items, sigmoid=True) predictions = predictions.detach().numpy().squeeze() if args.output_dir != "./": try: os.makedirs(args.output_dir, exist_ok=True) except OSError as err: print("Failed to create output directory: {}".format(err)) sys.exit(-1) names = [] with open(args.movie_db_file) as fh: for line in fh: mid, _, name = line.partition(",") name, _, tail = name.rpartition(",") name = name.strip('"') names.append(name) predictions_file = os.path.join(args.output_dir, "predictions.csv") with open(predictions_file, "wt") as fh: fh.write("Movie, Predicted Rating\n") argsorts = np.argsort(predictions)[::-1] for idx in argsorts: fh.write("{}, {:0.2f}\n".format(names[idx], predictions[idx] * 5)) print("Predictions saved to {}".format(predictions_file)) return
def main(): log_hardware() args = parse_args() log_args(args) model = NeuMF(nb_users=args.n_users, nb_items=args.n_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) model = model.cuda() if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) model.load_state_dict(state_dict) if args.opt_level == "O2": model = amp.initialize(model, opt_level=args.opt_level, keep_batchnorm_fp32=False, loss_scale='dynamic') users = torch.cuda.LongTensor(args.batch_size).random_(0, args.n_users) items = torch.cuda.LongTensor(args.batch_size).random_(0, args.n_items) latencies = [] for _ in range(args.num_batches): torch.cuda.synchronize() start = time.time() predictions = model(users, items, sigmoid=True) torch.cuda.synchronize() latencies.append(time.time() - start) LOGGER.log(key='batch_size', value=args.batch_size) LOGGER.log(key='best_inference_throughput', value=args.batch_size / min(latencies)) LOGGER.log(key='best_inference_latency', value=min(latencies)) LOGGER.log(key='inference_latencies', value=latencies) return
def main(): args = parse_args() dllogger.init(backends=[ dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE) ]) dllogger.log(data=vars(args), step='PARAMETER') model = NeuMF(nb_users=args.n_users, nb_items=args.n_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) model = model.cuda() if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) model.load_state_dict(state_dict) if args.opt_level == "O2": model = amp.initialize(model, opt_level=args.opt_level, keep_batchnorm_fp32=False, loss_scale='dynamic') model.eval() users = torch.cuda.LongTensor(args.batch_size).random_(0, args.n_users) items = torch.cuda.LongTensor(args.batch_size).random_(0, args.n_items) latencies = [] for _ in range(args.num_batches): torch.cuda.synchronize() start = time.time() predictions = model(users, items, sigmoid=True) torch.cuda.synchronize() latencies.append(time.time() - start) dllogger.log(data={ 'batch_size': args.batch_size, 'best_inference_throughput': args.batch_size / min(latencies), 'best_inference_latency': min(latencies), 'mean_inference_throughput': args.batch_size / np.mean(latencies), 'mean_inference_latency': np.mean(latencies), 'inference_latencies': latencies }, step=tuple()) dllogger.flush() return
def main(): args = parse_args() dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)]) dllogger.log(data=vars(args), step='PARAMETER') model = NeuMF(nb_users=args.n_users, nb_items=args.n_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) model = model.cuda() if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) model.load_state_dict(state_dict) if args.fp16: model.half() model.eval() batch_sizes = args.batch_sizes.split(',') batch_sizes = [int(s) for s in batch_sizes] result_data = {} for batch_size in batch_sizes: print('benchmarking batch size: ', batch_size) users = torch.cuda.LongTensor(batch_size).random_(0, args.n_users) items = torch.cuda.LongTensor(batch_size).random_(0, args.n_items) latencies = [] for _ in range(args.num_batches): torch.cuda.synchronize() start = time.time() _ = model(users, items, sigmoid=True) torch.cuda.synchronize() latencies.append(time.time() - start) result_data[f'batch_{batch_size}_mean_throughput'] = batch_size / np.mean(latencies) result_data[f'batch_{batch_size}_mean_latency'] = np.mean(latencies) result_data[f'batch_{batch_size}_p90_latency'] = np.percentile(latencies, 0.90) result_data[f'batch_{batch_size}_p95_latency'] = np.percentile(latencies, 0.95) result_data[f'batch_{batch_size}_p99_latency'] = np.percentile(latencies, 0.99) dllogger.log(data=result_data, step=tuple()) dllogger.flush() return
def main(): log_hardware() args = parse_args() args.distributed, args.world_size = init_distributed(args.local_rank) log_args(args) if args.seed is not None: torch.manual_seed(args.seed) print("Saving results to {}".format(args.checkpoint_dir)) if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir != '': os.makedirs(args.checkpoint_dir, exist_ok=True) # The default of np.random.choice is replace=True, so does pytorch random_() LOGGER.log(key=tags.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True) LOGGER.log(key=tags.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True) LOGGER.log(key=tags.INPUT_STEP_EVAL_NEG_GEN) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = time.time() LOGGER.log(key=tags.RUN_START) train_ratings = torch.load(args.data + '/train_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) test_ratings = torch.load(args.data + '/test_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) test_negs = torch.load(args.data + '/test_negatives.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) valid_negative = test_negs.shape[1] LOGGER.log(key=tags.PREPROC_HP_NUM_EVAL, value=valid_negative) nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 LOGGER.log(key=tags.INPUT_SIZE, value=len(train_ratings)) all_test_users = test_ratings.shape[0] test_users, test_items, dup_mask, real_indices = dataloading.create_test_data( test_ratings, test_negs, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() LOGGER.log(key=tags.INPUT_BATCH_SIZE, value=args.batch_size) LOGGER.log(key=tags.INPUT_ORDER) # we shuffled later with randperm # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss( reduction='none' ) # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() if args.opt_level == "O2": model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level, keep_batchnorm_fp32=False, loss_scale='dynamic') if args.distributed: model = DDP(model) local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) print(model) print("{} parameters".format(admm_utils.count_parameters(model))) LOGGER.log(key=tags.OPT_LR, value=args.learning_rate) LOGGER.log(key=tags.OPT_NAME, value="Adam") LOGGER.log(key=tags.OPT_HP_ADAM_BETA1, value=args.beta1) LOGGER.log(key=tags.OPT_HP_ADAM_BETA2, value=args.beta2) LOGGER.log(key=tags.OPT_HP_ADAM_EPSILON, value=args.eps) LOGGER.log(key=tags.MODEL_HP_LOSS_FN, value=tags.VALUE_BCE) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = { k.replace('module.', ''): v for k, v in state_dict.items() } model.load_state_dict(state_dict) if args.mode == 'test': LOGGER.log(key=tags.EVAL_START, value=0) start = time.time() hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, distributed=args.distributed) print('HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}'.format( K=args.topk, hit_rate=hr, ndcg=ndcg)) val_time = time.time() - start eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": 0, "value": hr}) LOGGER.log(key=tags.EVAL_STOP, value=0) LOGGER.log(key='best_eval_throughput', value=eval_throughput) return success = False max_hr = 0 train_throughputs, eval_throughputs = [], [] LOGGER.log(key=tags.TRAIN_LOOP) for epoch in range(args.epochs): LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch) LOGGER.log(key=tags.INPUT_HP_NUM_NEG, value=args.negative_samples) LOGGER.log(key=tags.INPUT_STEP_TRAIN_NEG_GEN) begin = time.time() epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data( train_ratings, nb_items, args) num_batches = len(epoch_users) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users[batch_idx] item = epoch_items[batch_idx] label = epoch_label[batch_idx].view(-1, 1) outputs = model(user, item) loss = traced_criterion(outputs, label).float() loss = torch.mean(loss.view(-1), 0) if args.opt_level == "O2": with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() for p in model.parameters(): p.grad = None del epoch_users, epoch_items, epoch_label train_time = time.time() - begin begin = time.time() epoch_samples = len(train_ratings) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) LOGGER.log(key='train_throughput', value=train_throughput) LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch) LOGGER.log(key=tags.EVAL_START, value=epoch) hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin print( 'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},' ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format( epoch=epoch, K=args.topk, hit_rate=hr, ndcg=ndcg, train_time=train_time, val_time=val_time)) LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": epoch, "value": hr}) LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold) LOGGER.log(key=tags.EVAL_STOP, value=epoch) eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) LOGGER.log(key='eval_throughput', value=eval_throughput) if hr > max_hr and args.local_rank == 0: max_hr = hr save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("New best hr! Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) success = True break if args.local_rank == 0: LOGGER.log(key='best_train_throughput', value=max(train_throughputs)) LOGGER.log(key='best_eval_throughput', value=max(eval_throughputs)) LOGGER.log(key='best_accuracy', value=max_hr) LOGGER.log(key='time_to_target', value=time.time() - main_start_time) LOGGER.log(key='time_to_best_model', value=best_model_timestamp - main_start_time) LOGGER.log(key=tags.RUN_STOP, value={"success": success}) LOGGER.log(key=tags.RUN_FINAL)
args = parse_args() print('Loading data') train_dataset = CFTrainDataset(os.path.join('ml-20m', TRAIN_RATINGS_FILENAME), 4) train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=2048, shuffle=True, num_workers=0, pin_memory=True) test_ratings = load_test_ratings(os.path.join( 'ml-20m', TEST_RATINGS_FILENAME)) # noqa: E501 test_negs = load_test_negs(os.path.join('ml-20m', TEST_NEG_FILENAME)) nb_users, nb_items = train_dataset.nb_users, train_dataset.nb_items # Create model layers = [256, 256, 128, 64] model = NeuMF(nb_users, nb_items, mf_dim=64, mf_reg=0., mlp_layer_sizes=layers, mlp_layer_regs=[0. for i in layers]) model.load_state_dict(torch.load(args.path)) model = model.cuda print(model) # Your code here
def main(): args = parse_args() if args.seed is not None: print("Using seed = {}".format(args.seed)) torch.manual_seed(args.seed) np.random.seed(seed=args.seed) # Check that GPUs are actually available use_cuda = not args.no_cuda and torch.cuda.is_available() # Create model model = NeuMF(2197225, 855776, mf_dim=64, mf_reg=0., mlp_layer_sizes=[256, 256, 128, 64], mlp_layer_regs=[0. for i in [256, 256, 128, 64]]) print(model) if use_cuda: # Move model and loss to GPU model = model.cuda() if args.load_ckp: ckp = torch.load(args.load_ckp) model.load_state_dict(ckp) if args.quantize: all_embeding = [ n for n, m in model.named_modules() if isinstance(m, nn.Embedding) ] all_linear = [ n for n, m in model.named_modules() if isinstance(m, nn.Linear) ] all_relu = [ n for n, m in model.named_modules() if isinstance(m, nn.ReLU) ] all_relu6 = [ n for n, m in model.named_modules() if isinstance(m, nn.ReLU6) ] # layers = all_relu + all_relu6 + all_linear layers = all_embeding replacement_factory = { nn.ReLU: ActivationModuleWrapperPost, nn.ReLU6: ActivationModuleWrapperPost, nn.Linear: ParameterModuleWrapperPost, nn.Embedding: ActivationModuleWrapperPost } mq = ModelQuantizer(model, args, layers, replacement_factory) # mq.log_quantizer_state(ml_logger, -1) test_users, test_items, dup_mask, real_indices, K, samples_per_user, num_user = data_loader( args.data) data = NcfData(test_users, test_items, dup_mask, real_indices, K, samples_per_user, num_user) hr, ndcg = val(model, data) print('') print('') print('HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}'.format(K=K, hit_rate=hr, ndcg=ndcg))
def main(): args = parse_args() print("init distributed") init_distributed(args) if args.rank == 0: wandb.init() dllogger.init(backends=[ dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE) ]) else: dllogger.init(backends=[]) dllogger.log(data=vars(args), step='PARAMETER') torch.manual_seed(1) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = time.time() train_ratings = torch.load(args.data + '/train_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) test_ratings = torch.load(args.data + '/test_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) test_negs = torch.load(args.data + '/test_negatives.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) valid_negative = test_negs.shape[1] nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 all_test_users = test_ratings.shape[0] test_users, test_items, dup_mask, real_indices = dataloading.create_test_data( test_ratings, test_negs, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout).cuda() optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss(reduction='none').cuda( ) # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU if args.distributed: model = DDP(model, device_ids=[args.local_rank]) local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) print(model) print("{} parameters".format(utils.count_parameters(model))) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = { k.replace('module.', ''): v for k, v in state_dict.items() } model.load_state_dict(state_dict) if args.mode == 'test': start = time.time() hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, distributed=args.distributed) val_time = time.time() - start eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time dllogger.log(step=tuple(), data={ 'best_eval_throughput': eval_throughput, 'hr@10': hr }) return max_hr = 0 best_epoch = 0 train_throughputs, eval_throughputs = [], [] for epoch in range(args.epochs): begin = time.time() epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data( train_ratings, nb_items, args) num_batches = len(epoch_users) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users[batch_idx] item = epoch_items[batch_idx] label = epoch_label[batch_idx].view(-1, 1) outputs = model(user, item) loss = traced_criterion(outputs, label).float() loss = torch.mean(loss.view(-1), 0) loss.backward() optimizer.step() if args.rank == 0: wandb.log({"Test loss": loss}) for p in model.parameters(): p.grad = None del epoch_users, epoch_items, epoch_label train_time = time.time() - begin begin = time.time() epoch_samples = len(train_ratings) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) dllogger.log(step=(epoch, ), data={ 'train_throughput': train_throughput, 'hr@10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput }) if args.rank == 0: wandb.log({"Test hit rate": hr}) wandb.log({"Test train epoch time": train_time}) wandb.log({"Test train throughput": train_throughput}) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch # save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("New best hr!") # torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.local_rank == 0: dllogger.log(data={ 'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time }, step=tuple())
def main(): args = parse_args() init_distributed(args) print(args.desc) mlflow.start_run(run_name=args.desc) mlflow.log_param('batch_size', args.batch_size) mlflow.log_param('num_threads', args.threads) mlflow.log_param('num_of_epochs', args.epochs) torch.set_num_threads(args.threads) print(f"{vars(args)} step='PARAMETER'") if args.seed is not None: torch.manual_seed(args.seed) if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir: print("Saving results to {}".format(args.checkpoint_dir)) os.makedirs(args.checkpoint_dir, exist_ok=True) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) #torch.cuda.synchronize() main_start_time = time.time() train_ratings = torch.load(args.data + '/train_ratings.pt', map_location=torch.device('cpu')) test_ratings = torch.load(args.data + '/test_ratings.pt', map_location=torch.device('cpu')) test_negs = torch.load(args.data + '/test_negatives.pt', map_location=torch.device('cpu')) valid_negative = test_negs.shape[1] nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 all_test_users = test_ratings.shape[0] test_users, test_items, dup_mask, real_indices = dataloading.create_test_data( test_ratings, test_negs, args) # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = Adam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss( reduction='none' ) # use torch.mean() with dim later to avoid copy to host if args.amp: model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale='dynamic') local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) print(model) print("{} parameters".format(utils.count_parameters(model))) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = { k.replace('module.', ''): v for k, v in state_dict.items() } model.load_state_dict(state_dict) if args.mode == 'test': start = time.time() hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, distributed=args.distributed) val_time = time.time() - start eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time log_data = data = { 'best_eval_throughput': eval_throughput, 'test_hr_at_10': hr } print(log_data) return max_hr = 0 best_epoch = 0 train_throughputs, eval_throughputs = [], [] for epoch in range(args.epochs): begin = time.time() epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data( train_ratings, nb_items, args) num_batches = len(epoch_users) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users[batch_idx] item = epoch_items[batch_idx] label = epoch_label[batch_idx].view(-1, 1) outputs = model(user, item) loss = traced_criterion(outputs, label).float() loss = torch.mean(loss.view(-1), 0) if args.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() for p in model.parameters(): p.grad = None del epoch_users, epoch_items, epoch_label train_time = time.time() - begin begin = time.time() epoch_samples = len(train_ratings) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) log_data = { 'train_throughput': train_throughput, 'hr_at_10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput } print(log_data) mlflow.log_metrics(log_data, epoch) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch print("New best hr!") if args.checkpoint_dir: save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.local_rank == 0: log_data = { 'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time } print(log_data) mlflow.log_metrics(log_data) mlflow.end_run()
def main(): log_hardware() args = parse_args() args.distributed, args.world_size = init_distributed(args.local_rank) log_args(args) main_start_time = time.time() if args.seed is not None: torch.manual_seed(args.seed) # Save configuration to file timestamp = "{:.0f}".format(datetime.utcnow().timestamp()) run_dir = "./run/neumf/{}.{}".format(timestamp, args.local_rank) print("Saving results to {}".format(run_dir)) if not os.path.exists(run_dir) and run_dir != '': os.makedirs(run_dir) # more like load trigger timer now LOGGER.log(key=tags.PREPROC_HP_NUM_EVAL, value=args.valid_negative) # The default of np.random.choice is replace=True, so does pytorch random_() LOGGER.log(key=tags.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True) LOGGER.log(key=tags.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True) LOGGER.log(key=tags.INPUT_STEP_EVAL_NEG_GEN) # sync worker before timing. if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() LOGGER.log(key=tags.RUN_START) run_start_time = time.time() # load not converted data, just seperate one for test train_ratings = torch.load(args.data + '/train_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) test_ratings = torch.load(args.data + '/test_ratings.pt', map_location=torch.device('cuda:{}'.format( args.local_rank))) # get input data # get dims nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 train_users = train_ratings[:, 0] train_items = train_ratings[:, 1] del nb_maxs, train_ratings LOGGER.log(key=tags.INPUT_SIZE, value=len(train_users)) # produce things not change between epoch # mask for filtering duplicates with real sample # note: test data is removed before create mask, same as reference mat = torch.cuda.ByteTensor(nb_users, nb_items).fill_(1) mat[train_users, train_items] = 0 # create label train_label = torch.ones_like(train_users, dtype=torch.float32) neg_label = torch.zeros_like(train_label, dtype=torch.float32) neg_label = neg_label.repeat(args.negative_samples) train_label = torch.cat((train_label, neg_label)) del neg_label if args.fp16: train_label = train_label.half() # produce validation negative sample on GPU all_test_users = test_ratings.shape[0] test_users = test_ratings[:, 0] test_pos = test_ratings[:, 1].reshape(-1, 1) test_negs = generate_neg(test_users, mat, nb_items, args.valid_negative, True)[1] # create items with real sample at last position test_users = test_users.reshape(-1, 1).repeat(1, 1 + args.valid_negative) test_items = torch.cat( (test_negs.reshape(-1, args.valid_negative), test_pos), dim=1) del test_ratings, test_negs # generate dup mask and real indice for exact same behavior on duplication compare to reference # here we need a sort that is stable(keep order of duplicates) # this is a version works on integer sorted_items, indices = torch.sort(test_items) # [1,1,1,2], [3,1,0,2] sum_item_indices = sorted_items.float() + indices.float() / len( indices[0]) #[1.75,1.25,1.0,2.5] indices_order = torch.sort(sum_item_indices)[1] #[2,1,0,3] stable_indices = torch.gather(indices, 1, indices_order) #[0,1,3,2] # produce -1 mask dup_mask = (sorted_items[:, 0:-1] == sorted_items[:, 1:]) dup_mask = torch.cat( (torch.zeros_like(test_pos, dtype=torch.uint8), dup_mask), dim=1) dup_mask = torch.gather(dup_mask, 1, stable_indices.sort()[1]) # produce real sample indices to later check in topk sorted_items, indices = (test_items != test_pos).sort() sum_item_indices = sorted_items.float() + indices.float() / len(indices[0]) indices_order = torch.sort(sum_item_indices)[1] stable_indices = torch.gather(indices, 1, indices_order) real_indices = stable_indices[:, 0] del sorted_items, indices, sum_item_indices, indices_order, stable_indices, test_pos if args.distributed: test_users = torch.chunk(test_users, args.world_size)[args.local_rank] test_items = torch.chunk(test_items, args.world_size)[args.local_rank] dup_mask = torch.chunk(dup_mask, args.world_size)[args.local_rank] real_indices = torch.chunk(real_indices, args.world_size)[args.local_rank] # make pytorch memory behavior more consistent later torch.cuda.empty_cache() LOGGER.log(key=tags.INPUT_BATCH_SIZE, value=args.batch_size) LOGGER.log(key=tags.INPUT_ORDER) # we shuffled later with randperm print('Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d' % (time.time() - run_start_time, nb_users, nb_items, len(train_users), nb_users)) # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mf_reg=0., mlp_layer_sizes=args.layers, mlp_layer_regs=[0. for i in args.layers], dropout=args.dropout) if args.fp16: model = model.half() print(model) print("{} parameters".format(utils.count_parameters(model))) # Save model text description with open(os.path.join(run_dir, 'model.txt'), 'w') as file: file.write(str(model)) # Add optimizer and loss to graph if args.fp16: fp_optimizer = Fp16Optimizer(model, args.loss_scale) params = fp_optimizer.fp32_params else: params = model.parameters() optimizer = FusedAdam(params, lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps, eps_inside_sqrt=False) criterion = nn.BCEWithLogitsLoss( reduction='none' ) # use torch.mean() with dim later to avoid copy to host LOGGER.log(key=tags.OPT_LR, value=args.learning_rate) LOGGER.log(key=tags.OPT_NAME, value="Adam") LOGGER.log(key=tags.OPT_HP_ADAM_BETA1, value=args.beta1) LOGGER.log(key=tags.OPT_HP_ADAM_BETA2, value=args.beta2) LOGGER.log(key=tags.OPT_HP_ADAM_EPSILON, value=args.eps) LOGGER.log(key=tags.MODEL_HP_LOSS_FN, value=tags.VALUE_BCE) # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() if args.distributed: model = DDP(model) local_batch = args.batch_size // int(os.environ['WORLD_SIZE']) else: local_batch = args.batch_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) train_users_per_worker = len(train_label) / int(os.environ['WORLD_SIZE']) train_users_begin = int(train_users_per_worker * args.local_rank) train_users_end = int(train_users_per_worker * (args.local_rank + 1)) # Create files for tracking training valid_results_file = os.path.join(run_dir, 'valid_results.csv') # Calculate initial Hit Ratio and NDCG test_x = test_users.view(-1).split(args.valid_batch_size) test_y = test_items.view(-1).split(args.valid_batch_size) if args.mode == 'test': state_dict = torch.load(args.checkpoint_path) model.load_state_dict(state_dict) begin = time.time() LOGGER.log(key=tags.EVAL_START, value=-1) hr, ndcg = val_epoch(model, test_x, test_y, dup_mask, real_indices, args.topk, samples_per_user=test_items.size(1), num_user=all_test_users, distributed=args.distributed) val_time = time.time() - begin print( 'Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, valid_time: {val_time:.4f}' .format(K=args.topk, hit_rate=hr, ndcg=ndcg, val_time=val_time)) LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": -1, "value": hr}) LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold) LOGGER.log(key=tags.EVAL_STOP, value=-1) if args.mode == 'test': return success = False max_hr = 0 LOGGER.log(key=tags.TRAIN_LOOP) train_throughputs = [] eval_throughputs = [] for epoch in range(args.epochs): LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch) LOGGER.log(key=tags.INPUT_HP_NUM_NEG, value=args.negative_samples) LOGGER.log(key=tags.INPUT_STEP_TRAIN_NEG_GEN) begin = time.time() # prepare data for epoch neg_users, neg_items = generate_neg(train_users, mat, nb_items, args.negative_samples) epoch_users = torch.cat((train_users, neg_users)) epoch_items = torch.cat((train_items, neg_items)) del neg_users, neg_items # shuffle prepared data and split into batches epoch_indices = torch.randperm(train_users_end - train_users_begin, device='cuda:{}'.format( args.local_rank)) epoch_indices += train_users_begin epoch_users = epoch_users[epoch_indices] epoch_items = epoch_items[epoch_indices] epoch_label = train_label[epoch_indices] epoch_users_list = epoch_users.split(local_batch) epoch_items_list = epoch_items.split(local_batch) epoch_label_list = epoch_label.split(local_batch) # only print progress bar on rank 0 num_batches = len(epoch_users_list) # handle extremely rare case where last batch size < number of worker if len(epoch_users) % args.batch_size < args.world_size: print("epoch_size % batch_size < number of worker!") exit(1) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users_list[batch_idx] item = epoch_items_list[batch_idx] label = epoch_label_list[batch_idx].view(-1, 1) outputs = model(user, item) loss = traced_criterion(outputs, label).float() loss = torch.mean(loss.view(-1), 0) if args.fp16: fp_optimizer.backward(loss) else: loss.backward() if args.fp16: fp_optimizer.step(optimizer) else: optimizer.step() for p in model.parameters(): p.grad = None del epoch_users, epoch_items, epoch_label, epoch_users_list, epoch_items_list, epoch_label_list, user, item, label train_time = time.time() - begin begin = time.time() epoch_samples = len(train_users) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) LOGGER.log(key='train_throughput', value=train_throughput) LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch) LOGGER.log(key=tags.EVAL_START, value=epoch) hr, ndcg = val_epoch(model, test_x, test_y, dup_mask, real_indices, args.topk, samples_per_user=test_items.size(1), num_user=all_test_users, output=valid_results_file, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin print( 'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},' ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format( epoch=epoch, K=args.topk, hit_rate=hr, ndcg=ndcg, train_time=train_time, val_time=val_time)) LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": epoch, "value": hr}) LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold) LOGGER.log(key=tags.EVAL_STOP, value=epoch) eval_size = all_test_users * test_items.size(1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) LOGGER.log(key='eval_throughput', value=eval_throughput) if hr > max_hr and args.local_rank == 0: max_hr = hr print("New best hr! Saving the model to: ", args.checkpoint_path) torch.save(model.state_dict(), args.checkpoint_path) if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) success = True break LOGGER.log(key='best_train_throughput', value=max(train_throughputs)) LOGGER.log(key='best_eval_throughput', value=max(eval_throughputs)) LOGGER.log(key='best_accuracy', value=max_hr) LOGGER.log(key='time_to_target', value=time.time() - main_start_time) LOGGER.log(key=tags.RUN_STOP, value={"success": success}) LOGGER.log(key=tags.RUN_FINAL)
def main(): args = parse_args() init_distributed(args) if args.local_rank == 0: dllogger.init(backends=[ dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE) ]) else: dllogger.init(backends=[]) dllogger.metadata('train_throughput', { "name": 'train_throughput', 'format': ":.3e" }) dllogger.metadata('hr@10', {"name": 'hr@10', 'format': ":.5f"}) dllogger.metadata('train_epoch_time', { "name": 'train_epoch_time', 'format': ":.3f" }) dllogger.metadata('validation_epoch_time', { "name": 'validation_epoch_time', 'format': ":.3f" }) dllogger.metadata('eval_throughput', { "name": 'eval_throughput', 'format': ":.3e" }) dllogger.log(data=vars(args), step='PARAMETER') if args.seed is not None: torch.manual_seed(args.seed) if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir: print("Saving results to {}".format(args.checkpoint_dir)) os.makedirs(args.checkpoint_dir, exist_ok=True) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = time.time() feature_spec_path = os.path.join(args.data, args.feature_spec_file) feature_spec = FeatureSpec.from_yaml(feature_spec_path) trainset = dataloading.TorchTensorDataset(feature_spec, mapping_name='train', args=args) testset = dataloading.TorchTensorDataset(feature_spec, mapping_name='test', args=args) train_loader = dataloading.TrainDataloader(trainset, args) test_loader = dataloading.TestDataLoader(testset, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() # Create model user_feature_name = feature_spec.channel_spec[USER_CHANNEL_NAME][0] item_feature_name = feature_spec.channel_spec[ITEM_CHANNEL_NAME][0] label_feature_name = feature_spec.channel_spec[LABEL_CHANNEL_NAME][0] model = NeuMF( nb_users=feature_spec.feature_spec[user_feature_name]['cardinality'], nb_items=feature_spec.feature_spec[item_feature_name]['cardinality'], mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss( reduction='none' ) # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() if args.amp: model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale='dynamic') if args.distributed: model = DDP(model) local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) print(model) print("{} parameters".format(utils.count_parameters(model))) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = { k.replace('module.', ''): v for k, v in state_dict.items() } model.load_state_dict(state_dict) if args.mode == 'test': start = time.time() hr, ndcg = val_epoch(model, test_loader, args.topk, distributed=args.distributed) val_time = time.time() - start eval_size = test_loader.raw_dataset_length eval_throughput = eval_size / val_time dllogger.log(step=tuple(), data={ 'best_eval_throughput': eval_throughput, 'hr@10': hr }) return # this should always be overridden if hr>0. # It is theoretically possible for the hit rate to be zero in the first epoch, which would result in referring # to an uninitialized variable. max_hr = 0 best_epoch = 0 best_model_timestamp = time.time() train_throughputs, eval_throughputs = [], [] for epoch in range(args.epochs): begin = time.time() batch_dict_list = train_loader.get_epoch_data() num_batches = len(batch_dict_list) for i in range(num_batches // args.grads_accumulated): for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j batch_dict = batch_dict_list[batch_idx] user_features = batch_dict[USER_CHANNEL_NAME] item_features = batch_dict[ITEM_CHANNEL_NAME] user_batch = user_features[user_feature_name] item_batch = item_features[item_feature_name] label_features = batch_dict[LABEL_CHANNEL_NAME] label_batch = label_features[label_feature_name] outputs = model(user_batch, item_batch) loss = traced_criterion(outputs, label_batch.view(-1, 1)).float() loss = torch.mean(loss.view(-1), 0) if args.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() for p in model.parameters(): p.grad = None del batch_dict_list train_time = time.time() - begin begin = time.time() epoch_samples = train_loader.length_after_augmentation train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) hr, ndcg = val_epoch(model, test_loader, args.topk, distributed=args.distributed) val_time = time.time() - begin eval_size = test_loader.raw_dataset_length eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) dllogger.log(step=(epoch, ), data={ 'train_throughput': train_throughput, 'hr@10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput }) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch print("New best hr!") if args.checkpoint_dir: save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.local_rank == 0: dllogger.log(data={ 'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time }, step=tuple())
def main(): from grace_dl.dist.helper import timer, volume, tensor_bits args = parse_args() init_distributed(args) if args.weak_scaling: args.batch_size *= args.world_size init_wandb(args) init_grace(args) if args.local_rank == 0: dllogger.init(backends=[ dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE) ]) else: dllogger.init(backends=[]) dllogger.log(data=vars(args), step='PARAMETER') if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir: print("Saving results to {}".format(args.checkpoint_dir)) os.makedirs(args.checkpoint_dir, exist_ok=True) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = time.time() if args.seed is not None: torch.manual_seed(args.seed) train_ratings = torch.load(args.data + '/train_ratings.pt', map_location=torch.device('cuda:0')) test_ratings = torch.load(args.data + '/test_ratings.pt', map_location=torch.device('cuda:0')) test_negs = torch.load(args.data + '/test_negatives.pt', map_location=torch.device('cuda:0')) valid_negative = test_negs.shape[1] nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 all_test_users = test_ratings.shape[0] test_users, test_items, dup_mask, real_indices = dataloading.create_test_data( test_ratings, test_negs, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss( reduction='none' ) # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() if args.amp: model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale='dynamic') # if args.distributed: # model = DDP(model) local_batch = args.batch_size // args.world_size traced_criterion = torch.jit.trace( criterion.forward, (torch.rand(local_batch, 1), torch.rand(local_batch, 1))) if args.local_rank == 0: print(model) print("{} parameters".format(utils.count_parameters(model))) # [print(parameter) for parameter in model.parameters()] if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = { k.replace('module.', ''): v for k, v in state_dict.items() } model.load_state_dict(state_dict) if args.mode == 'test': start = time.time() hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, distributed=args.distributed) val_time = time.time() - start eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time dllogger.log(step=tuple(), data={ 'best_eval_throughput': eval_throughput, 'hr@10': hr }) return max_hr = 0 best_epoch = 0 train_throughputs, eval_throughputs = [], [] # broadcast model states from rank0 to other nodes !!! This is important! [torch.distributed.broadcast(p.data, src=0) for p in model.parameters()] # if args.local_rank == 0: # save_initial_state_path = os.path.join(args.checkpoint_dir, 'model_init.pth') # print("Saving the model to: ", save_initial_state_path) # torch.save(model.state_dict(), save_initial_state_path) for epoch in range(args.epochs): begin = time.time() train_time = 0 epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data( train_ratings, nb_items, args) num_batches = len(epoch_users) for i in range(num_batches // args.grads_accumulated): batch_start = time.time() for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users[batch_idx] item = epoch_items[batch_idx] label = epoch_label[batch_idx].view(-1, 1) outputs = model(user, item) loss = traced_criterion(outputs, label).float() loss = torch.mean(loss.view(-1), 0) if args.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # check grad sparsity if args.sparsity_check: total_nonzero = 0 total_numel = 0 for index, (name, p) in enumerate(model.named_parameters()): sparsity = 1.0 - torch.sum( p.grad.data.abs() > 0).float() / p.grad.data.numel() total_nonzero += torch.sum(p.grad.data.abs() > 0).float() total_numel += p.grad.data.numel() if args.local_rank == 0: wandb.log( { f"{name}(sparsity)(numel={p.grad.data.numel()})": sparsity, }, commit=False) if args.local_rank == 0: wandb.log( { f"total_sparsity(numel={total_numel})": 1 - total_nonzero / total_numel, }, commit=True) # add grace just before optimizer.step() torch.cuda.synchronize() comm_start = time.time() for index, (name, p) in enumerate(model.named_parameters()): new_grad = args.grc.step(p.grad.data, name) p.grad.data = new_grad torch.cuda.synchronize() timer['comm'] = time.time() - comm_start # [torch.distributed.all_reduce(p.grad.data) for p in model.parameters()] # for param in model.parameters(): # dist.all_reduce(param.grad.data) # param.grad.data /= float(args.world_size) optimizer.step() for p in model.parameters(): p.grad = None if args.throughput: torch.cuda.synchronize() if args.log_time and args.local_rank == 0: timer['batch_time'] = time.time() - batch_start timer['computation'] = timer['batch_time'] - timer['comm'] print("Timer:", timer, '\n') timer['en/decoding'] = 0 timer['batch_time'] = 0 timer['computation'] = 0 timer['comm'] = 0 if args.log_volume and args.local_rank == 0: ratio = volume['compress'] / volume['nocompress'] volume['ratio_acc'].append(ratio) avg_ratio = sum(volume['ratio_acc']) / len(volume['ratio_acc']) print( f"Data volume:: compress {volume['compress']} no_compress {volume['nocompress']} ratio {ratio:.4f} avg_ratio {avg_ratio:.4f}" ) volume['compress'] = 0 volume['nocompress'] = 0 batch_throughput = args.batch_size / (time.time() - batch_start ) # global throughput train_time += time.time() - batch_start if (args.throughput or args.eval_at_every_batch) and args.local_rank == 0: print( f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t " f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}" ) if args.throughput and i == 3: break if args.local_rank == 0: print( f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t " f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}" ) if args.eval_at_every_batch: hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) if args.local_rank == 0: wandb.log({ "eval/hr@10": hr, }) del epoch_users, epoch_items, epoch_label # train_time = time.time() - begin begin = time.time() epoch_samples = len(train_ratings) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time if args.throughput: train_throughput = batch_throughput train_throughputs.append(train_throughput) hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) dllogger.log(step=(epoch, ), data={ 'train_throughput': train_throughput, 'hr@10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput }) if args.local_rank == 0: wandb.log( { "train_epoch_time": train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput, 'train_throughput': train_throughput, }, commit=False) if not args.eval_at_every_batch: wandb.log({ "eval/hr@10": hr, }, commit=False) wandb.log({"epoch": epoch}) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch print("New best hr!") if args.checkpoint_dir: save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.throughput: break if args.local_rank == 0: dllogger.log(data={ 'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time }, step=tuple()) wandb.log({ 'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time })
def main(args, ml_logger): # Fix the seed random.seed(args.seed) if not args.dont_fix_np_seed: np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Check that GPUs are actually available use_cuda = not args.no_cuda and torch.cuda.is_available() # Create model model = NeuMF(2197225, 855776, mf_dim=64, mf_reg=0., mlp_layer_sizes=[256, 256, 128, 64], mlp_layer_regs=[0. for i in [256, 256, 128, 64]]) print(model) if use_cuda: # Move model and loss to GPU model = model.cuda() model.device = torch.device('cuda:{}'.format(0)) if args.load_ckp: ckp = torch.load(args.load_ckp) model.load_state_dict(ckp) all_embeding = [ n for n, m in model.named_modules() if isinstance(m, nn.Embedding) ] all_linear = [ n for n, m in model.named_modules() if isinstance(m, nn.Linear) ] all_relu = [n for n, m in model.named_modules() if isinstance(m, nn.ReLU)] all_relu6 = [ n for n, m in model.named_modules() if isinstance(m, nn.ReLU6) ] layers = all_relu + all_relu6 + all_linear + all_embeding replacement_factory = { nn.ReLU: ActivationModuleWrapperPost, nn.ReLU6: ActivationModuleWrapperPost, nn.Linear: ParameterModuleWrapperPost, nn.Embedding: ActivationModuleWrapperPost } mq = ModelQuantizer(model, args, layers, replacement_factory) # mq.log_quantizer_state(ml_logger, -1) test_users, test_items, dup_mask, real_indices, K, samples_per_user, num_user = data_loader( args.data) data = NcfData(test_users, test_items, dup_mask, real_indices, K, samples_per_user, num_user) cal_data = CalibrationSet('ml-20mx16x32/cal_set').cuda() cal_data.split(batch_size=10000) criterion = nn.BCEWithLogitsLoss(reduction='mean') criterion = criterion.cuda() print("init_method: {}, qtype {}".format(args.init_method, args.qtype)) # evaluate to initialize dynamic clipping loss = evaluate_calibration(model, cal_data, criterion) print("Initial loss: {:.4f}".format(loss)) # get clipping values init = get_clipping(mq) # evaluate hr, ndcg = validate(model, data) ml_logger.log_metric('HR init', hr, step='auto') # run optimizer min_options = {} if args.maxiter is not None: min_options['maxiter'] = args.maxiter if args.maxfev is not None: min_options['maxfev'] = args.maxfev _iter = count(0) def local_search_callback(x): it = next(_iter) loss = run_inference_on_calibration(x, model, mq, cal_data, criterion) print("\n[{}]: Local search callback".format(it)) print("loss: {:.4f}\n".format(loss)) res = opt.minimize(lambda scales: run_inference_on_calibration( scales, model, mq, cal_data, criterion), np.array(init), method=args.min_method, options=min_options, callback=local_search_callback) print(res) scales = res.x set_clipping(mq, scales, model.device) # evaluate hr, ndcg = validate(model, data) ml_logger.log_metric('HR Powell', hr, step='auto')
def main(): args = parse_args() init_distributed(args) if args.local_rank == 0: dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)]) else: dllogger.init(backends=[]) dllogger.log(data=vars(args), step='PARAMETER') if args.seed is not None: torch.manual_seed(args.seed) print("Saving results to {}".format(args.checkpoint_dir)) if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir != '': os.makedirs(args.checkpoint_dir, exist_ok=True) # sync workers before timing if args.distributed: torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0) torch.cuda.synchronize() main_start_time = time.time() train_ratings = torch.load(args.data+'/train_ratings.pt', map_location=torch.device('cuda:{}'.format(args.local_rank))) test_ratings = torch.load(args.data+'/test_ratings.pt', map_location=torch.device('cuda:{}'.format(args.local_rank))) test_negs = torch.load(args.data+'/test_negatives.pt', map_location=torch.device('cuda:{}'.format(args.local_rank))) valid_negative = test_negs.shape[1] nb_maxs = torch.max(train_ratings, 0)[0] nb_users = nb_maxs[0].item() + 1 nb_items = nb_maxs[1].item() + 1 all_test_users = test_ratings.shape[0] test_users, test_items, dup_mask, real_indices = dataloading.create_test_data(test_ratings, test_negs, args) # make pytorch memory behavior more consistent later torch.cuda.empty_cache() # Create model model = NeuMF(nb_users, nb_items, mf_dim=args.factors, mlp_layer_sizes=args.layers, dropout=args.dropout) optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.beta1, args.beta2), eps=args.eps) criterion = nn.BCEWithLogitsLoss(reduction='none') # use torch.mean() with dim later to avoid copy to host # Move model and loss to GPU model = model.cuda() criterion = criterion.cuda() local_batch = args.batch_size // args.world_size #traced_criterion = torch.jit.trace(criterion.forward, # (torch.rand(local_batch,1),torch.rand(local_batch,1))) traced_criterion = criterion pyprof.init() #import importlib #pyprof.wrap(importlib.import_module(__name__), "traced_criterion") #pyprof.wrap(traced_criterion, "__call__") if args.opt_level == "O2": model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level, keep_batchnorm_fp32=False, loss_scale='dynamic') if args.distributed: model = DDP(model) print(model) print("{} parameters".format(utils.count_parameters(model))) if args.load_checkpoint_path: state_dict = torch.load(args.load_checkpoint_path) state_dict = {k.replace('module.', '') : v for k,v in state_dict.items()} model.load_state_dict(state_dict) if args.mode == 'test': start = time.time() hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, distributed=args.distributed) val_time = time.time() - start eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time dllogger.log(step=tuple(), data={'best_eval_throughput' : eval_throughput, 'hr@10' : hr}) return max_hr = 0 best_epoch = 0 train_throughputs, eval_throughputs = [], [] with torch.autograd.profiler.emit_nvtx(): for epoch in range(args.epochs): begin = time.time() epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data(train_ratings, nb_items, args) num_batches = len(epoch_users) for i in range(num_batches // args.grads_accumulated): if i == 10: profiler.start() for j in range(args.grads_accumulated): batch_idx = (args.grads_accumulated * i) + j user = epoch_users[batch_idx] item = epoch_items[batch_idx] label = epoch_label[batch_idx].view(-1,1) outputs = model(user, item) nvtx.range_push("layer:Loss") loss = traced_criterion(outputs, label).float() nvtx.range_pop() nvtx.range_push("layer:Mean") loss = torch.mean(loss.view(-1), 0) nvtx.range_pop() if args.opt_level == "O2": with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() nvtx.range_push("layer:Adam") optimizer.step() nvtx.range_pop() if i == 10: profiler.stop() for p in model.parameters(): p.grad = None del epoch_users, epoch_items, epoch_label train_time = time.time() - begin begin = time.time() epoch_samples = len(train_ratings) * (args.negative_samples + 1) train_throughput = epoch_samples / train_time train_throughputs.append(train_throughput) hr, ndcg = val_epoch(model, test_users, test_items, dup_mask, real_indices, args.topk, samples_per_user=valid_negative + 1, num_user=all_test_users, epoch=epoch, distributed=args.distributed) val_time = time.time() - begin eval_size = all_test_users * (valid_negative + 1) eval_throughput = eval_size / val_time eval_throughputs.append(eval_throughput) dllogger.log(step=(epoch,), data = {'train_throughput': train_throughput, 'hr@10': hr, 'train_epoch_time': train_time, 'validation_epoch_time': val_time, 'eval_throughput': eval_throughput}) if hr > max_hr and args.local_rank == 0: max_hr = hr best_epoch = epoch save_checkpoint_path = os.path.join(args.checkpoint_dir, 'model.pth') print("New best hr! Saving the model to: ", save_checkpoint_path) torch.save(model.state_dict(), save_checkpoint_path) best_model_timestamp = time.time() if args.threshold is not None: if hr >= args.threshold: print("Hit threshold of {}".format(args.threshold)) break if args.local_rank == 0: dllogger.log(data={'best_train_throughput': max(train_throughputs), 'best_eval_throughput': max(eval_throughputs), 'mean_train_throughput': np.mean(train_throughputs), 'mean_eval_throughput': np.mean(eval_throughputs), 'best_accuracy': max_hr, 'best_epoch': best_epoch, 'time_to_target': time.time() - main_start_time, 'time_to_best_model': best_model_timestamp - main_start_time}, step=tuple())