Esempio n. 1
0
def main():
    log_hardware()
    args = parse_args()
    args.distributed, args.world_size = init_distributed(args.local_rank)
    log_args(args)

    if args.seed is not None:
        torch.manual_seed(args.seed)

    print("Saving results to {}".format(args.checkpoint_dir))
    if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir != '':
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    # The default of np.random.choice is replace=True, so does pytorch random_()
    LOGGER.log(key=tags.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_STEP_EVAL_NEG_GEN)

    # sync workers before timing
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    main_start_time = time.time()
    LOGGER.log(key=tags.RUN_START)

    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:{}'.format(
                                   args.local_rank)))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:{}'.format(
                                  args.local_rank)))
    test_negs = torch.load(args.data + '/test_negatives.pt',
                           map_location=torch.device('cuda:{}'.format(
                               args.local_rank)))

    valid_negative = test_negs.shape[1]
    LOGGER.log(key=tags.PREPROC_HP_NUM_EVAL, value=valid_negative)

    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1
    LOGGER.log(key=tags.INPUT_SIZE, value=len(train_ratings))

    all_test_users = test_ratings.shape[0]

    test_users, test_items, dup_mask, real_indices = dataloading.create_test_data(
        test_ratings, test_negs, args)

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    LOGGER.log(key=tags.INPUT_BATCH_SIZE, value=args.batch_size)
    LOGGER.log(key=tags.INPUT_ORDER)  # we shuffled later with randperm

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mlp_layer_sizes=args.layers,
                  dropout=args.dropout)

    optimizer = FusedAdam(model.parameters(),
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps)

    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.opt_level == "O2":
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.opt_level,
                                          keep_batchnorm_fp32=False,
                                          loss_scale='dynamic')

    if args.distributed:
        model = DDP(model)

    local_batch = args.batch_size // args.world_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    print(model)
    print("{} parameters".format(admm_utils.count_parameters(model)))
    LOGGER.log(key=tags.OPT_LR, value=args.learning_rate)
    LOGGER.log(key=tags.OPT_NAME, value="Adam")
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA1, value=args.beta1)
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA2, value=args.beta2)
    LOGGER.log(key=tags.OPT_HP_ADAM_EPSILON, value=args.eps)
    LOGGER.log(key=tags.MODEL_HP_LOSS_FN, value=tags.VALUE_BCE)

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        state_dict = {
            k.replace('module.', ''): v
            for k, v in state_dict.items()
        }
        model.load_state_dict(state_dict)

    if args.mode == 'test':
        LOGGER.log(key=tags.EVAL_START, value=0)
        start = time.time()
        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             distributed=args.distributed)
        print('HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}'.format(
            K=args.topk, hit_rate=hr, ndcg=ndcg))
        val_time = time.time() - start
        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time

        LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": 0, "value": hr})
        LOGGER.log(key=tags.EVAL_STOP, value=0)
        LOGGER.log(key='best_eval_throughput', value=eval_throughput)
        return

    success = False
    max_hr = 0
    train_throughputs, eval_throughputs = [], []

    LOGGER.log(key=tags.TRAIN_LOOP)
    for epoch in range(args.epochs):

        LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch)
        LOGGER.log(key=tags.INPUT_HP_NUM_NEG, value=args.negative_samples)
        LOGGER.log(key=tags.INPUT_STEP_TRAIN_NEG_GEN)

        begin = time.time()

        epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data(
            train_ratings, nb_items, args)
        num_batches = len(epoch_users)
        for i in range(num_batches // args.grads_accumulated):
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users[batch_idx]
                item = epoch_items[batch_idx]
                label = epoch_label[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)

                if args.opt_level == "O2":
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
            optimizer.step()

            for p in model.parameters():
                p.grad = None

        del epoch_users, epoch_items, epoch_label
        train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_ratings) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        train_throughputs.append(train_throughput)
        LOGGER.log(key='train_throughput', value=train_throughput)
        LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch)
        LOGGER.log(key=tags.EVAL_START, value=epoch)

        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin
        print(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},'
            ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=hr,
                ndcg=ndcg,
                train_time=train_time,
                val_time=val_time))

        LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": epoch, "value": hr})
        LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold)
        LOGGER.log(key=tags.EVAL_STOP, value=epoch)

        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)
        LOGGER.log(key='eval_throughput', value=eval_throughput)

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            save_checkpoint_path = os.path.join(args.checkpoint_dir,
                                                'model.pth')
            print("New best hr! Saving the model to: ", save_checkpoint_path)
            torch.save(model.state_dict(), save_checkpoint_path)
            best_model_timestamp = time.time()

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                success = True
                break

    if args.local_rank == 0:
        LOGGER.log(key='best_train_throughput', value=max(train_throughputs))
        LOGGER.log(key='best_eval_throughput', value=max(eval_throughputs))
        LOGGER.log(key='best_accuracy', value=max_hr)
        LOGGER.log(key='time_to_target', value=time.time() - main_start_time)
        LOGGER.log(key='time_to_best_model',
                   value=best_model_timestamp - main_start_time)

        LOGGER.log(key=tags.RUN_STOP, value={"success": success})
        LOGGER.log(key=tags.RUN_FINAL)
Esempio n. 2
0
def main():
    args = parse_args()
    if args.seed is not None:
        print("Using seed = {}".format(args.seed))
        torch.manual_seed(args.seed)
        np.random.seed(seed=args.seed)

    PROFILE = args.profile
    if PROFILE == True:
        print('nvprof profiling enabled')

    # Save configuration to file
    config = {k: v for k, v in args.__dict__.items()}
    config['timestamp'] = "{:.0f}".format(datetime.utcnow().timestamp())
    config['local_timestamp'] = str(datetime.now())
    run_dir = "./results/{}".format(config['timestamp'])
    print("Saving config and results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)
    utils.save_config(config, run_dir)

    # Check that GPUs are actually available
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    t1 = time.time()
    # Load Data
    print('Loading data')
    train_dataset = CFTrainDataset(
        os.path.join(args.data, TRAIN_RATINGS_FILENAME), args.negative_samples)
    train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   num_workers=args.workers,
                                                   pin_memory=True)

    test_ratings = load_test_ratings(
        os.path.join(args.data, TEST_RATINGS_FILENAME))  # noqa: E501
    test_negs = load_test_negs(os.path.join(args.data, TEST_NEG_FILENAME))
    nb_users, nb_items = train_dataset.nb_users, train_dataset.nb_items
    print('Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d' %
          (time.time() - t1, nb_users, nb_items, train_dataset.mat.nnz,
           len(test_ratings)))

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers])
    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    # Add optimizer and loss to graph
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
    criterion = nn.BCEWithLogitsLoss()

    if use_cuda:
        # Move model and loss to GPU
        model = model.cuda()
        criterion = criterion.cuda()

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')

    # Calculate initial Hit Ratio and NDCG
    hits, ndcgs = val_epoch(model,
                            test_ratings,
                            test_negs,
                            args.topk,
                            use_cuda=use_cuda,
                            processes=args.processes)
    print('Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}'.format(
        K=args.topk, hit_rate=np.mean(hits), ndcg=np.mean(ndcgs)))

    for epoch in range(args.epochs):

        model.train()
        losses = utils.AverageMeter()

        begin = time.time()
        loader = tqdm.tqdm(train_dataloader)
        length = len(loader)
        if length < 101 and PROFILE:
            print(
                'Exiting, cannot profile the required 100 iterations. Please re-run with a larger batch size.'
            )
            cuda.profile_stop()
            exit()
        for batch_index, (user, item, label) in enumerate(loader):
            if batch_index == length // 2 and epoch == 0 and PROFILE:
                print('Starting profiling for 100 iterations.')
                cuda.profile_start()

            if batch_index == length // 2 + 100 and epoch == 0 and PROFILE:
                print('Profiling completed, stopping profiling and exiting.')
                cuda.profile_stop()
                exit()

            user = torch.autograd.Variable(user, requires_grad=False)
            item = torch.autograd.Variable(item, requires_grad=False)
            label = torch.autograd.Variable(label, requires_grad=False)
            if use_cuda:
                user = user.cuda(async=True)
                item = item.cuda(async=True)
                label = label.cuda(async=True)

            outputs = model(user, item)
            loss = criterion(outputs, label)
            losses.update(loss.data.item(), user.size(0))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Save stats to file
            description = (
                'Epoch {} Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
                    epoch, loss=losses))
            loader.set_description(description)

        train_time = time.time() - begin
        begin = time.time()
        hits, ndcgs = val_epoch(model,
                                test_ratings,
                                test_negs,
                                args.topk,
                                use_cuda=use_cuda,
                                output=valid_results_file,
                                epoch=epoch,
                                processes=args.processes)
        val_time = time.time() - begin
        print(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},'
            ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=np.mean(hits),
                ndcg=np.mean(ndcgs),
                train_time=train_time,
                val_time=val_time))

        if args.threshold is not None:
            if np.mean(hits) >= args.threshold:
                print(
                    "Hit threshold of {} and saving to ./model/pretrained_ncf_model"
                    .format(args.threshold))
                torch.save(model.state_dict(), './model/pretrained_ncf_model')
                return 0
Esempio n. 3
0
def main():
    args = parse_args()
    init_distributed(args)

    if args.local_rank == 0:
        dllogger.init(backends=[
            dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                       filename=args.log_path),
            dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)
        ])
    else:
        dllogger.init(backends=[])

    dllogger.log(data=vars(args), step='PARAMETER')

    if args.seed is not None:
        torch.manual_seed(args.seed)

    if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir:
        print("Saving results to {}".format(args.checkpoint_dir))
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    # sync workers before timing
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    main_start_time = time.time()

    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:{}'.format(
                                   args.local_rank)))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:{}'.format(
                                  args.local_rank)))
    test_negs = torch.load(args.data + '/test_negatives.pt',
                           map_location=torch.device('cuda:{}'.format(
                               args.local_rank)))

    valid_negative = test_negs.shape[1]

    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1

    all_test_users = test_ratings.shape[0]

    test_users, test_items, dup_mask, real_indices = dataloading.create_test_data(
        test_ratings, test_negs, args)

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mlp_layer_sizes=args.layers,
                  dropout=args.dropout)

    optimizer = FusedAdam(model.parameters(),
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps)

    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.amp:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O2",
                                          keep_batchnorm_fp32=False,
                                          loss_scale='dynamic')

    if args.distributed:
        model = DDP(model)

    local_batch = args.batch_size // args.world_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        state_dict = {
            k.replace('module.', ''): v
            for k, v in state_dict.items()
        }
        model.load_state_dict(state_dict)

    if args.mode == 'test':
        start = time.time()
        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             distributed=args.distributed)
        val_time = time.time() - start
        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time

        dllogger.log(step=tuple(),
                     data={
                         'best_eval_throughput': eval_throughput,
                         'hr@10': hr
                     })
        return

    max_hr = 0
    best_epoch = 0
    train_throughputs, eval_throughputs = [], []

    for epoch in range(args.epochs):

        begin = time.time()

        epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data(
            train_ratings, nb_items, args)
        num_batches = len(epoch_users)
        for i in range(num_batches // args.grads_accumulated):
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users[batch_idx]
                item = epoch_items[batch_idx]
                label = epoch_label[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)

                if args.amp:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
            optimizer.step()

            for p in model.parameters():
                p.grad = None

        del epoch_users, epoch_items, epoch_label
        train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_ratings) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        train_throughputs.append(train_throughput)

        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin

        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)

        dllogger.log(step=(epoch, ),
                     data={
                         'train_throughput': train_throughput,
                         'hr@10': hr,
                         'train_epoch_time': train_time,
                         'validation_epoch_time': val_time,
                         'eval_throughput': eval_throughput
                     })

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            best_epoch = epoch
            print("New best hr!")
            if args.checkpoint_dir:
                save_checkpoint_path = os.path.join(args.checkpoint_dir,
                                                    'model.pth')
                print("Saving the model to: ", save_checkpoint_path)
                torch.save(model.state_dict(), save_checkpoint_path)
            best_model_timestamp = time.time()

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                break

    if args.local_rank == 0:
        dllogger.log(data={
            'best_train_throughput':
            max(train_throughputs),
            'best_eval_throughput':
            max(eval_throughputs),
            'mean_train_throughput':
            np.mean(train_throughputs),
            'mean_eval_throughput':
            np.mean(eval_throughputs),
            'best_accuracy':
            max_hr,
            'best_epoch':
            best_epoch,
            'time_to_target':
            time.time() - main_start_time,
            'time_to_best_model':
            best_model_timestamp - main_start_time
        },
                     step=tuple())
Esempio n. 4
0
def main():
    log_hardware()

    args = parse_args()
    args.distributed, args.world_size = init_distributed(args.local_rank)
    log_args(args)

    main_start_time = time.time()

    if args.seed is not None:
        torch.manual_seed(args.seed)

    # Save configuration to file
    timestamp = "{:.0f}".format(datetime.utcnow().timestamp())
    run_dir = "./run/neumf/{}.{}".format(timestamp, args.local_rank)
    print("Saving results to {}".format(run_dir))
    if not os.path.exists(run_dir) and run_dir != '':
        os.makedirs(run_dir)

    # more like load trigger timer now
    LOGGER.log(key=tags.PREPROC_HP_NUM_EVAL, value=args.valid_negative)
    # The default of np.random.choice is replace=True, so does pytorch random_()
    LOGGER.log(key=tags.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True)
    LOGGER.log(key=tags.INPUT_STEP_EVAL_NEG_GEN)

    # sync worker before timing.
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    LOGGER.log(key=tags.RUN_START)
    run_start_time = time.time()

    # load not converted data, just seperate one for test
    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:{}'.format(
                                   args.local_rank)))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:{}'.format(
                                  args.local_rank)))

    # get input data
    # get dims
    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1
    train_users = train_ratings[:, 0]
    train_items = train_ratings[:, 1]
    del nb_maxs, train_ratings
    LOGGER.log(key=tags.INPUT_SIZE, value=len(train_users))
    # produce things not change between epoch
    # mask for filtering duplicates with real sample
    # note: test data is removed before create mask, same as reference
    mat = torch.cuda.ByteTensor(nb_users, nb_items).fill_(1)
    mat[train_users, train_items] = 0
    # create label
    train_label = torch.ones_like(train_users, dtype=torch.float32)
    neg_label = torch.zeros_like(train_label, dtype=torch.float32)
    neg_label = neg_label.repeat(args.negative_samples)
    train_label = torch.cat((train_label, neg_label))
    del neg_label
    if args.fp16:
        train_label = train_label.half()

    # produce validation negative sample on GPU
    all_test_users = test_ratings.shape[0]

    test_users = test_ratings[:, 0]
    test_pos = test_ratings[:, 1].reshape(-1, 1)
    test_negs = generate_neg(test_users, mat, nb_items, args.valid_negative,
                             True)[1]

    # create items with real sample at last position
    test_users = test_users.reshape(-1, 1).repeat(1, 1 + args.valid_negative)
    test_items = torch.cat(
        (test_negs.reshape(-1, args.valid_negative), test_pos), dim=1)
    del test_ratings, test_negs

    # generate dup mask and real indice for exact same behavior on duplication compare to reference
    # here we need a sort that is stable(keep order of duplicates)
    # this is a version works on integer
    sorted_items, indices = torch.sort(test_items)  # [1,1,1,2], [3,1,0,2]
    sum_item_indices = sorted_items.float() + indices.float() / len(
        indices[0])  #[1.75,1.25,1.0,2.5]
    indices_order = torch.sort(sum_item_indices)[1]  #[2,1,0,3]
    stable_indices = torch.gather(indices, 1, indices_order)  #[0,1,3,2]
    # produce -1 mask
    dup_mask = (sorted_items[:, 0:-1] == sorted_items[:, 1:])
    dup_mask = torch.cat(
        (torch.zeros_like(test_pos, dtype=torch.uint8), dup_mask), dim=1)
    dup_mask = torch.gather(dup_mask, 1, stable_indices.sort()[1])
    # produce real sample indices to later check in topk
    sorted_items, indices = (test_items != test_pos).sort()
    sum_item_indices = sorted_items.float() + indices.float() / len(indices[0])
    indices_order = torch.sort(sum_item_indices)[1]
    stable_indices = torch.gather(indices, 1, indices_order)
    real_indices = stable_indices[:, 0]
    del sorted_items, indices, sum_item_indices, indices_order, stable_indices, test_pos

    if args.distributed:
        test_users = torch.chunk(test_users, args.world_size)[args.local_rank]
        test_items = torch.chunk(test_items, args.world_size)[args.local_rank]
        dup_mask = torch.chunk(dup_mask, args.world_size)[args.local_rank]
        real_indices = torch.chunk(real_indices,
                                   args.world_size)[args.local_rank]

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    LOGGER.log(key=tags.INPUT_BATCH_SIZE, value=args.batch_size)
    LOGGER.log(key=tags.INPUT_ORDER)  # we shuffled later with randperm

    print('Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d' %
          (time.time() - run_start_time, nb_users, nb_items, len(train_users),
           nb_users))

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mf_reg=0.,
                  mlp_layer_sizes=args.layers,
                  mlp_layer_regs=[0. for i in args.layers],
                  dropout=args.dropout)

    if args.fp16:
        model = model.half()

    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    # Save model text description
    with open(os.path.join(run_dir, 'model.txt'), 'w') as file:
        file.write(str(model))

    # Add optimizer and loss to graph
    if args.fp16:
        fp_optimizer = Fp16Optimizer(model, args.loss_scale)
        params = fp_optimizer.fp32_params
    else:
        params = model.parameters()

    optimizer = FusedAdam(params,
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps,
                          eps_inside_sqrt=False)
    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    LOGGER.log(key=tags.OPT_LR, value=args.learning_rate)
    LOGGER.log(key=tags.OPT_NAME, value="Adam")
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA1, value=args.beta1)
    LOGGER.log(key=tags.OPT_HP_ADAM_BETA2, value=args.beta2)
    LOGGER.log(key=tags.OPT_HP_ADAM_EPSILON, value=args.eps)
    LOGGER.log(key=tags.MODEL_HP_LOSS_FN, value=tags.VALUE_BCE)

    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.distributed:
        model = DDP(model)
        local_batch = args.batch_size // int(os.environ['WORLD_SIZE'])
    else:
        local_batch = args.batch_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    train_users_per_worker = len(train_label) / int(os.environ['WORLD_SIZE'])
    train_users_begin = int(train_users_per_worker * args.local_rank)
    train_users_end = int(train_users_per_worker * (args.local_rank + 1))

    # Create files for tracking training
    valid_results_file = os.path.join(run_dir, 'valid_results.csv')
    # Calculate initial Hit Ratio and NDCG
    test_x = test_users.view(-1).split(args.valid_batch_size)
    test_y = test_items.view(-1).split(args.valid_batch_size)

    if args.mode == 'test':
        state_dict = torch.load(args.checkpoint_path)
        model.load_state_dict(state_dict)

    begin = time.time()
    LOGGER.log(key=tags.EVAL_START, value=-1)

    hr, ndcg = val_epoch(model,
                         test_x,
                         test_y,
                         dup_mask,
                         real_indices,
                         args.topk,
                         samples_per_user=test_items.size(1),
                         num_user=all_test_users,
                         distributed=args.distributed)
    val_time = time.time() - begin
    print(
        'Initial HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f}, valid_time: {val_time:.4f}'
        .format(K=args.topk, hit_rate=hr, ndcg=ndcg, val_time=val_time))

    LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": -1, "value": hr})
    LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold)
    LOGGER.log(key=tags.EVAL_STOP, value=-1)

    if args.mode == 'test':
        return

    success = False
    max_hr = 0
    LOGGER.log(key=tags.TRAIN_LOOP)
    train_throughputs = []
    eval_throughputs = []

    for epoch in range(args.epochs):

        LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch)
        LOGGER.log(key=tags.INPUT_HP_NUM_NEG, value=args.negative_samples)
        LOGGER.log(key=tags.INPUT_STEP_TRAIN_NEG_GEN)

        begin = time.time()

        # prepare data for epoch
        neg_users, neg_items = generate_neg(train_users, mat, nb_items,
                                            args.negative_samples)
        epoch_users = torch.cat((train_users, neg_users))
        epoch_items = torch.cat((train_items, neg_items))

        del neg_users, neg_items

        # shuffle prepared data and split into batches
        epoch_indices = torch.randperm(train_users_end - train_users_begin,
                                       device='cuda:{}'.format(
                                           args.local_rank))
        epoch_indices += train_users_begin

        epoch_users = epoch_users[epoch_indices]
        epoch_items = epoch_items[epoch_indices]
        epoch_label = train_label[epoch_indices]

        epoch_users_list = epoch_users.split(local_batch)
        epoch_items_list = epoch_items.split(local_batch)
        epoch_label_list = epoch_label.split(local_batch)

        # only print progress bar on rank 0
        num_batches = len(epoch_users_list)
        # handle extremely rare case where last batch size < number of worker
        if len(epoch_users) % args.batch_size < args.world_size:
            print("epoch_size % batch_size < number of worker!")
            exit(1)

        for i in range(num_batches // args.grads_accumulated):
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users_list[batch_idx]
                item = epoch_items_list[batch_idx]
                label = epoch_label_list[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)
                if args.fp16:
                    fp_optimizer.backward(loss)
                else:
                    loss.backward()

            if args.fp16:
                fp_optimizer.step(optimizer)
            else:
                optimizer.step()

            for p in model.parameters():
                p.grad = None

        del epoch_users, epoch_items, epoch_label, epoch_users_list, epoch_items_list, epoch_label_list, user, item, label
        train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_users) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        train_throughputs.append(train_throughput)
        LOGGER.log(key='train_throughput', value=train_throughput)
        LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch)
        LOGGER.log(key=tags.EVAL_START, value=epoch)

        hr, ndcg = val_epoch(model,
                             test_x,
                             test_y,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=test_items.size(1),
                             num_user=all_test_users,
                             output=valid_results_file,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin
        print(
            'Epoch {epoch}: HR@{K} = {hit_rate:.4f}, NDCG@{K} = {ndcg:.4f},'
            ' train_time = {train_time:.2f}, val_time = {val_time:.2f}'.format(
                epoch=epoch,
                K=args.topk,
                hit_rate=hr,
                ndcg=ndcg,
                train_time=train_time,
                val_time=val_time))

        LOGGER.log(key=tags.EVAL_ACCURACY, value={"epoch": epoch, "value": hr})
        LOGGER.log(key=tags.EVAL_TARGET, value=args.threshold)
        LOGGER.log(key=tags.EVAL_STOP, value=epoch)

        eval_size = all_test_users * test_items.size(1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)
        LOGGER.log(key='eval_throughput', value=eval_throughput)

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            print("New best hr! Saving the model to: ", args.checkpoint_path)
            torch.save(model.state_dict(), args.checkpoint_path)

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                success = True
                break

    LOGGER.log(key='best_train_throughput', value=max(train_throughputs))
    LOGGER.log(key='best_eval_throughput', value=max(eval_throughputs))
    LOGGER.log(key='best_accuracy', value=max_hr)
    LOGGER.log(key='time_to_target', value=time.time() - main_start_time)

    LOGGER.log(key=tags.RUN_STOP, value={"success": success})
    LOGGER.log(key=tags.RUN_FINAL)
Esempio n. 5
0
def main():
    args = parse_args()
    init_distributed(args)

    if args.local_rank == 0:
        dllogger.init(backends=[
            dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                       filename=args.log_path),
            dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)
        ])
    else:
        dllogger.init(backends=[])

    dllogger.metadata('train_throughput', {
        "name": 'train_throughput',
        'format': ":.3e"
    })
    dllogger.metadata('hr@10', {"name": 'hr@10', 'format': ":.5f"})
    dllogger.metadata('train_epoch_time', {
        "name": 'train_epoch_time',
        'format': ":.3f"
    })
    dllogger.metadata('validation_epoch_time', {
        "name": 'validation_epoch_time',
        'format': ":.3f"
    })
    dllogger.metadata('eval_throughput', {
        "name": 'eval_throughput',
        'format': ":.3e"
    })

    dllogger.log(data=vars(args), step='PARAMETER')

    if args.seed is not None:
        torch.manual_seed(args.seed)

    if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir:
        print("Saving results to {}".format(args.checkpoint_dir))
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    # sync workers before timing
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    main_start_time = time.time()

    feature_spec_path = os.path.join(args.data, args.feature_spec_file)
    feature_spec = FeatureSpec.from_yaml(feature_spec_path)
    trainset = dataloading.TorchTensorDataset(feature_spec,
                                              mapping_name='train',
                                              args=args)
    testset = dataloading.TorchTensorDataset(feature_spec,
                                             mapping_name='test',
                                             args=args)
    train_loader = dataloading.TrainDataloader(trainset, args)
    test_loader = dataloading.TestDataLoader(testset, args)

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    # Create model
    user_feature_name = feature_spec.channel_spec[USER_CHANNEL_NAME][0]
    item_feature_name = feature_spec.channel_spec[ITEM_CHANNEL_NAME][0]
    label_feature_name = feature_spec.channel_spec[LABEL_CHANNEL_NAME][0]
    model = NeuMF(
        nb_users=feature_spec.feature_spec[user_feature_name]['cardinality'],
        nb_items=feature_spec.feature_spec[item_feature_name]['cardinality'],
        mf_dim=args.factors,
        mlp_layer_sizes=args.layers,
        dropout=args.dropout)

    optimizer = FusedAdam(model.parameters(),
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps)

    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.amp:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O2",
                                          keep_batchnorm_fp32=False,
                                          loss_scale='dynamic')

    if args.distributed:
        model = DDP(model)

    local_batch = args.batch_size // args.world_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    print(model)
    print("{} parameters".format(utils.count_parameters(model)))

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        state_dict = {
            k.replace('module.', ''): v
            for k, v in state_dict.items()
        }
        model.load_state_dict(state_dict)

    if args.mode == 'test':
        start = time.time()
        hr, ndcg = val_epoch(model,
                             test_loader,
                             args.topk,
                             distributed=args.distributed)
        val_time = time.time() - start
        eval_size = test_loader.raw_dataset_length
        eval_throughput = eval_size / val_time

        dllogger.log(step=tuple(),
                     data={
                         'best_eval_throughput': eval_throughput,
                         'hr@10': hr
                     })
        return

    # this should always be overridden if hr>0.
    # It is theoretically possible for the hit rate to be zero in the first epoch, which would result in referring
    # to an uninitialized variable.
    max_hr = 0
    best_epoch = 0
    best_model_timestamp = time.time()
    train_throughputs, eval_throughputs = [], []

    for epoch in range(args.epochs):

        begin = time.time()
        batch_dict_list = train_loader.get_epoch_data()
        num_batches = len(batch_dict_list)
        for i in range(num_batches // args.grads_accumulated):
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                batch_dict = batch_dict_list[batch_idx]

                user_features = batch_dict[USER_CHANNEL_NAME]
                item_features = batch_dict[ITEM_CHANNEL_NAME]

                user_batch = user_features[user_feature_name]
                item_batch = item_features[item_feature_name]

                label_features = batch_dict[LABEL_CHANNEL_NAME]
                label_batch = label_features[label_feature_name]

                outputs = model(user_batch, item_batch)
                loss = traced_criterion(outputs, label_batch.view(-1,
                                                                  1)).float()
                loss = torch.mean(loss.view(-1), 0)

                if args.amp:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
            optimizer.step()

            for p in model.parameters():
                p.grad = None

        del batch_dict_list
        train_time = time.time() - begin
        begin = time.time()

        epoch_samples = train_loader.length_after_augmentation
        train_throughput = epoch_samples / train_time
        train_throughputs.append(train_throughput)

        hr, ndcg = val_epoch(model,
                             test_loader,
                             args.topk,
                             distributed=args.distributed)

        val_time = time.time() - begin
        eval_size = test_loader.raw_dataset_length
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)

        dllogger.log(step=(epoch, ),
                     data={
                         'train_throughput': train_throughput,
                         'hr@10': hr,
                         'train_epoch_time': train_time,
                         'validation_epoch_time': val_time,
                         'eval_throughput': eval_throughput
                     })

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            best_epoch = epoch
            print("New best hr!")
            if args.checkpoint_dir:
                save_checkpoint_path = os.path.join(args.checkpoint_dir,
                                                    'model.pth')
                print("Saving the model to: ", save_checkpoint_path)
                torch.save(model.state_dict(), save_checkpoint_path)
            best_model_timestamp = time.time()

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                break

    if args.local_rank == 0:
        dllogger.log(data={
            'best_train_throughput':
            max(train_throughputs),
            'best_eval_throughput':
            max(eval_throughputs),
            'mean_train_throughput':
            np.mean(train_throughputs),
            'mean_eval_throughput':
            np.mean(eval_throughputs),
            'best_accuracy':
            max_hr,
            'best_epoch':
            best_epoch,
            'time_to_target':
            time.time() - main_start_time,
            'time_to_best_model':
            best_model_timestamp - main_start_time
        },
                     step=tuple())
Esempio n. 6
0
def main():
    from grace_dl.dist.helper import timer, volume, tensor_bits

    args = parse_args()
    init_distributed(args)
    if args.weak_scaling:
        args.batch_size *= args.world_size
    init_wandb(args)
    init_grace(args)

    if args.local_rank == 0:
        dllogger.init(backends=[
            dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                       filename=args.log_path),
            dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE)
        ])
    else:
        dllogger.init(backends=[])

    dllogger.log(data=vars(args), step='PARAMETER')

    if not os.path.exists(args.checkpoint_dir) and args.checkpoint_dir:
        print("Saving results to {}".format(args.checkpoint_dir))
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    # sync workers before timing
    if args.distributed:
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
    torch.cuda.synchronize()

    main_start_time = time.time()

    if args.seed is not None:
        torch.manual_seed(args.seed)

    train_ratings = torch.load(args.data + '/train_ratings.pt',
                               map_location=torch.device('cuda:0'))
    test_ratings = torch.load(args.data + '/test_ratings.pt',
                              map_location=torch.device('cuda:0'))
    test_negs = torch.load(args.data + '/test_negatives.pt',
                           map_location=torch.device('cuda:0'))

    valid_negative = test_negs.shape[1]

    nb_maxs = torch.max(train_ratings, 0)[0]
    nb_users = nb_maxs[0].item() + 1
    nb_items = nb_maxs[1].item() + 1

    all_test_users = test_ratings.shape[0]

    test_users, test_items, dup_mask, real_indices = dataloading.create_test_data(
        test_ratings, test_negs, args)

    # make pytorch memory behavior more consistent later
    torch.cuda.empty_cache()

    # Create model
    model = NeuMF(nb_users,
                  nb_items,
                  mf_dim=args.factors,
                  mlp_layer_sizes=args.layers,
                  dropout=args.dropout)

    optimizer = FusedAdam(model.parameters(),
                          lr=args.learning_rate,
                          betas=(args.beta1, args.beta2),
                          eps=args.eps)

    criterion = nn.BCEWithLogitsLoss(
        reduction='none'
    )  # use torch.mean() with dim later to avoid copy to host
    # Move model and loss to GPU
    model = model.cuda()
    criterion = criterion.cuda()

    if args.amp:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O2",
                                          keep_batchnorm_fp32=False,
                                          loss_scale='dynamic')

    # if args.distributed:
    #     model = DDP(model)

    local_batch = args.batch_size // args.world_size
    traced_criterion = torch.jit.trace(
        criterion.forward,
        (torch.rand(local_batch, 1), torch.rand(local_batch, 1)))

    if args.local_rank == 0:
        print(model)
        print("{} parameters".format(utils.count_parameters(model)))
        # [print(parameter) for parameter in model.parameters()]

    if args.load_checkpoint_path:
        state_dict = torch.load(args.load_checkpoint_path)
        state_dict = {
            k.replace('module.', ''): v
            for k, v in state_dict.items()
        }
        model.load_state_dict(state_dict)

    if args.mode == 'test':
        start = time.time()
        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             distributed=args.distributed)
        val_time = time.time() - start
        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time

        dllogger.log(step=tuple(),
                     data={
                         'best_eval_throughput': eval_throughput,
                         'hr@10': hr
                     })
        return

    max_hr = 0
    best_epoch = 0
    train_throughputs, eval_throughputs = [], []

    # broadcast model states from rank0 to other nodes !!! This is important!
    [torch.distributed.broadcast(p.data, src=0) for p in model.parameters()]
    # if args.local_rank == 0:
    #     save_initial_state_path = os.path.join(args.checkpoint_dir, 'model_init.pth')
    #     print("Saving the model to: ", save_initial_state_path)
    #     torch.save(model.state_dict(), save_initial_state_path)

    for epoch in range(args.epochs):

        begin = time.time()
        train_time = 0

        epoch_users, epoch_items, epoch_label = dataloading.prepare_epoch_train_data(
            train_ratings, nb_items, args)
        num_batches = len(epoch_users)
        for i in range(num_batches // args.grads_accumulated):
            batch_start = time.time()
            for j in range(args.grads_accumulated):
                batch_idx = (args.grads_accumulated * i) + j
                user = epoch_users[batch_idx]
                item = epoch_items[batch_idx]
                label = epoch_label[batch_idx].view(-1, 1)

                outputs = model(user, item)
                loss = traced_criterion(outputs, label).float()
                loss = torch.mean(loss.view(-1), 0)

                if args.amp:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

            # check grad sparsity
            if args.sparsity_check:
                total_nonzero = 0
                total_numel = 0
                for index, (name, p) in enumerate(model.named_parameters()):
                    sparsity = 1.0 - torch.sum(
                        p.grad.data.abs() > 0).float() / p.grad.data.numel()
                    total_nonzero += torch.sum(p.grad.data.abs() > 0).float()
                    total_numel += p.grad.data.numel()
                    if args.local_rank == 0:
                        wandb.log(
                            {
                                f"{name}(sparsity)(numel={p.grad.data.numel()})":
                                sparsity,
                            },
                            commit=False)
                if args.local_rank == 0:
                    wandb.log(
                        {
                            f"total_sparsity(numel={total_numel})":
                            1 - total_nonzero / total_numel,
                        },
                        commit=True)

            # add grace just before optimizer.step()
            torch.cuda.synchronize()
            comm_start = time.time()
            for index, (name, p) in enumerate(model.named_parameters()):
                new_grad = args.grc.step(p.grad.data, name)
                p.grad.data = new_grad
            torch.cuda.synchronize()
            timer['comm'] = time.time() - comm_start

            # [torch.distributed.all_reduce(p.grad.data) for p in model.parameters()]
            # for param in model.parameters():
            #     dist.all_reduce(param.grad.data)
            #     param.grad.data /= float(args.world_size)

            optimizer.step()
            for p in model.parameters():
                p.grad = None
            if args.throughput:
                torch.cuda.synchronize()

            if args.log_time and args.local_rank == 0:
                timer['batch_time'] = time.time() - batch_start
                timer['computation'] = timer['batch_time'] - timer['comm']
                print("Timer:", timer, '\n')

                timer['en/decoding'] = 0
                timer['batch_time'] = 0
                timer['computation'] = 0
                timer['comm'] = 0

            if args.log_volume and args.local_rank == 0:
                ratio = volume['compress'] / volume['nocompress']
                volume['ratio_acc'].append(ratio)
                avg_ratio = sum(volume['ratio_acc']) / len(volume['ratio_acc'])
                print(
                    f"Data volume:: compress {volume['compress']} no_compress {volume['nocompress']} ratio {ratio:.4f} avg_ratio {avg_ratio:.4f}"
                )
                volume['compress'] = 0
                volume['nocompress'] = 0

            batch_throughput = args.batch_size / (time.time() - batch_start
                                                  )  # global throughput
            train_time += time.time() - batch_start
            if (args.throughput
                    or args.eval_at_every_batch) and args.local_rank == 0:
                print(
                    f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t "
                    f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}"
                )

            if args.throughput and i == 3:
                break
            if args.local_rank == 0:
                print(
                    f"Train :: Epoch [{epoch}/{args.epochs}] \t Batch [{i}/{num_batches}] \t "
                    f"Time {time.time()-batch_start:.5f} \t Throughput {batch_throughput:.2f}"
                )
            if args.eval_at_every_batch:
                hr, ndcg = val_epoch(model,
                                     test_users,
                                     test_items,
                                     dup_mask,
                                     real_indices,
                                     args.topk,
                                     samples_per_user=valid_negative + 1,
                                     num_user=all_test_users,
                                     epoch=epoch,
                                     distributed=args.distributed)
                if args.local_rank == 0:
                    wandb.log({
                        "eval/hr@10": hr,
                    })

        del epoch_users, epoch_items, epoch_label
        # train_time = time.time() - begin
        begin = time.time()

        epoch_samples = len(train_ratings) * (args.negative_samples + 1)
        train_throughput = epoch_samples / train_time
        if args.throughput:
            train_throughput = batch_throughput
        train_throughputs.append(train_throughput)

        hr, ndcg = val_epoch(model,
                             test_users,
                             test_items,
                             dup_mask,
                             real_indices,
                             args.topk,
                             samples_per_user=valid_negative + 1,
                             num_user=all_test_users,
                             epoch=epoch,
                             distributed=args.distributed)

        val_time = time.time() - begin

        eval_size = all_test_users * (valid_negative + 1)
        eval_throughput = eval_size / val_time
        eval_throughputs.append(eval_throughput)

        dllogger.log(step=(epoch, ),
                     data={
                         'train_throughput': train_throughput,
                         'hr@10': hr,
                         'train_epoch_time': train_time,
                         'validation_epoch_time': val_time,
                         'eval_throughput': eval_throughput
                     })

        if args.local_rank == 0:
            wandb.log(
                {
                    "train_epoch_time": train_time,
                    'validation_epoch_time': val_time,
                    'eval_throughput': eval_throughput,
                    'train_throughput': train_throughput,
                },
                commit=False)
            if not args.eval_at_every_batch:
                wandb.log({
                    "eval/hr@10": hr,
                }, commit=False)
            wandb.log({"epoch": epoch})

        if hr > max_hr and args.local_rank == 0:
            max_hr = hr
            best_epoch = epoch
            print("New best hr!")
            if args.checkpoint_dir:
                save_checkpoint_path = os.path.join(args.checkpoint_dir,
                                                    'model.pth')
                print("Saving the model to: ", save_checkpoint_path)
                torch.save(model.state_dict(), save_checkpoint_path)
            best_model_timestamp = time.time()

        if args.threshold is not None:
            if hr >= args.threshold:
                print("Hit threshold of {}".format(args.threshold))
                break

        if args.throughput:
            break

    if args.local_rank == 0:
        dllogger.log(data={
            'best_train_throughput':
            max(train_throughputs),
            'best_eval_throughput':
            max(eval_throughputs),
            'mean_train_throughput':
            np.mean(train_throughputs),
            'mean_eval_throughput':
            np.mean(eval_throughputs),
            'best_accuracy':
            max_hr,
            'best_epoch':
            best_epoch,
            'time_to_target':
            time.time() - main_start_time,
            'time_to_best_model':
            best_model_timestamp - main_start_time
        },
                     step=tuple())

        wandb.log({
            'best_train_throughput': max(train_throughputs),
            'best_eval_throughput': max(eval_throughputs),
            'mean_train_throughput': np.mean(train_throughputs),
            'mean_eval_throughput': np.mean(eval_throughputs),
            'best_accuracy': max_hr,
            'best_epoch': best_epoch,
            'time_to_target': time.time() - main_start_time,
            'time_to_best_model': best_model_timestamp - main_start_time
        })