Esempio n. 1
0
def test_predict_should_transform_with_initial_is_train_mode_after_predict():
    tape_fit = TapeCallbackFunction()
    tape_transform = TapeCallbackFunction()
    p = Pipeline([
        TestOnlyWrapper(
            CallbackWrapper(MultiplyByN(2), tape_transform, tape_fit)),
        TrainOnlyWrapper(
            CallbackWrapper(MultiplyByN(4), tape_transform, tape_fit))
    ])

    p.predict(np.array([1, 1]))
    outputs = p.transform(np.array([1, 1]))

    assert np.array_equal(outputs, np.array([4, 4]))
def main():
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.25,
                                                        shuffle=False)

    p = Pipeline([
        NumpyShapePrinter(),
        AddFeatures([
            PCA(n_components=2),
            FastICA(n_components=2),
        ]),
        NumpyShapePrinter(),
        RidgeModelStacking([
            GradientBoostingRegressor(),
            GradientBoostingRegressor(n_estimators=500),
            GradientBoostingRegressor(max_depth=5),
            KMeans(),
        ]),
        NumpyShapePrinter(),
    ])

    print("Fitting on train:")
    p = p.fit(X_train, y_train)
    print("")
    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)
    print("")
    print("Evaluating transformed train:")
    score_train = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_train)
    print("")
    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)

    assert y_train_predicted.shape == (379, )
    assert y_test_predicted.shape == (127, )
    assert isinstance(score_train, float)
    assert isinstance(score_test, float)

    return y_train_predicted, y_test_predicted, score_train, score_test
Esempio n. 3
0
def test_predict_should_predict_in_test_mode():
    tape_fit = TapeCallbackFunction()
    tape_transform = TapeCallbackFunction()
    p = Pipeline([
        TestOnlyWrapper(
            CallbackWrapper(MultiplyByN(2), tape_transform, tape_fit)),
        TrainOnlyWrapper(
            CallbackWrapper(MultiplyByN(4), tape_transform, tape_fit))
    ])

    outputs = p.predict(np.array([1, 1]))

    assert np.array_equal(outputs, np.array([2, 2]))
Esempio n. 4
0
def main():
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.25,
                                                        shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
        ]),
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])
    print("Meta-fitting on train:")
    p = p.meta_fit(X_train,
                   y_train,
                   metastep=RandomSearch(
                       n_iter=10,
                       higher_score_is_better=True,
                       validation_technique=KFoldCrossValidationWrapper(
                           scoring_function=r2_score, k_fold=10)))
    # Here is an alternative way to do it, more "pipeliney":
    # p = RandomSearch(
    #     p,
    #     n_iter=15,
    #     higher_score_is_better=True,
    #     validation_technique=KFoldCrossValidation(scoring_function=r2_score, k_fold=3)
    # ).fit(X_train, y_train)

    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)
Esempio n. 5
0
# %%
# Spline features make it possible for the linear model to successfully
# leverage the periodic time-related features and reduce the error from ~14% to
# ~10% of the maximum demand, which is similar to what we observed with the
# one-hot encoded features.
#
# Qualitative analysis of the impact of features on linear model predictions
# --------------------------------------------------------------------------
#
# Here, we want to visualize the impact of the feature engineering choices on
# the time related shape of the predictions.
#
# To do so we consider an arbitrary time-based split to compare the predictions
# on a range of held out data points.
naive_linear_pipeline.fit(X.iloc[train_0], y.iloc[train_0])
naive_linear_predictions = naive_linear_pipeline.predict(X.iloc[test_0])

one_hot_linear_pipeline.fit(X.iloc[train_0], y.iloc[train_0])
one_hot_linear_predictions = one_hot_linear_pipeline.predict(X.iloc[test_0])

cyclic_cossin_linear_pipeline.fit(X.iloc[train_0], y.iloc[train_0])
cyclic_cossin_linear_predictions = cyclic_cossin_linear_pipeline.predict(
    X.iloc[test_0])

cyclic_spline_linear_pipeline.fit(X.iloc[train_0], y.iloc[train_0])
cyclic_spline_linear_predictions = cyclic_spline_linear_pipeline.predict(
    X.iloc[test_0])

# %%
# We visualize those predictions by zooming on the last 96 hours (4 days) of
# the test set to get some qualitative insights:
Esempio n. 6
0
def main(tmpdir):
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 300), "max_depth": RandInt(1, 4),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
        ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({"alpha": LogUniform(0.7, 1.4), "fit_intercept": Boolean()})
            ),
        )
    ])

    print("Meta-fitting on train:")
    auto_ml = AutoML(
        p,
        validation_splitter=ValidationSplitter(0.20),
        refit_trial=True,
        n_trials=10,
        epochs=1,  # 1 epoc here due to using sklearn models that just fit once.
        cache_folder_when_no_handle=str(tmpdir),
        scoring_callback=ScoringCallback(mean_squared_error, higher_score_is_better=False),
        callbacks=[MetricCallback('mse', metric_function=mean_squared_error, higher_score_is_better=False)],
        hyperparams_repository=InMemoryHyperparamsRepository(cache_folder=str(tmpdir))
    )

    random_search = auto_ml.fit(X_train, y_train)
    p = random_search.get_best_model()
    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)