Esempio n. 1
0
def test_load_full_dump_from_path(tmpdir):
    # Given
    tape_fit_callback_function = TapeCallbackFunction()
    tape_transform_callback_function = TapeCallbackFunction()
    pipeline = Pipeline(
        [('step_a', Identity()),
         ('step_b',
          OutputTransformerWrapper(
              FitTransformCallbackStep(tape_fit_callback_function,
                                       tape_transform_callback_function)))],
        cache_folder=tmpdir).set_name(PIPELINE_NAME)

    # When
    pipeline, outputs = pipeline.fit_transform(DATA_INPUTS, EXPECTED_OUTPUTS)
    pipeline.save(ExecutionContext(tmpdir), full_dump=True)

    # Then
    loaded_pipeline = ExecutionContext(tmpdir).load(
        os.path.join(PIPELINE_NAME, 'step_b'))

    assert isinstance(loaded_pipeline, OutputTransformerWrapper)
    loaded_step_b_wrapped_step = loaded_pipeline.wrapped
    assert np.array_equal(
        loaded_step_b_wrapped_step.transform_callback_function.data[0],
        EXPECTED_OUTPUTS)
    assert np.array_equal(
        loaded_step_b_wrapped_step.fit_callback_function.data[0][0],
        EXPECTED_OUTPUTS)
    assert np.array_equal(
        loaded_step_b_wrapped_step.fit_callback_function.data[0][1],
        [None] * len(EXPECTED_OUTPUTS))
def test_step_with_context_should_only_save_wrapped_step(tmpdir):
    context = ExecutionContext(root=tmpdir)
    service = SomeService()
    context.set_service_locator({BaseService: service})
    p = Pipeline([SomeStep().assert_has_services(BaseService)
                  ]).with_context(context=context)

    p.save(context, full_dump=True)

    p: Pipeline = ExecutionContext(root=tmpdir).load(
        os.path.join('StepWithContext', 'Pipeline'))
    assert isinstance(p, Pipeline)
def test_tensorflowv2_saver(tmpdir):
    dataset = toy_dataset()
    model = Pipeline([create_model_step(tmpdir)])
    loss_first_fit = evaluate_model_on_dataset(model, dataset)

    model.save(ExecutionContext(root=tmpdir))

    loaded = Pipeline([create_model_step(tmpdir)
                       ]).load(ExecutionContext(root=tmpdir))
    loss_second_fit = evaluate_model_on_dataset(loaded, dataset)

    assert loss_second_fit < (loss_first_fit / 2)
Esempio n. 4
0
def test_step_with_context_saver(tmpdir):
    context = ExecutionContext(root=tmpdir)
    service = SomeService()
    pipeline_name = 'testname'
    context.set_service_locator({SomeBaseService: service})
    p = Pipeline([
        SomeStep().assert_has_services(SomeBaseService)
    ]).with_context(context=context)
    p.set_name(pipeline_name)
    p.save(context, full_dump=True)

    p: StepWithContext = ExecutionContext(root=tmpdir).load(pipeline_name)
    assert isinstance(p, StepWithContext)

    p: Pipeline = ExecutionContext(root=tmpdir).load(os.path.join(pipeline_name, 'Pipeline'))
    assert isinstance(p, Pipeline)
def test_tensorflowv1_saver(tmpdir):
    data_inputs = np.array([
        3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042,
        10.791, 5.313, 7.997, 5.654, 9.27, 3.1
    ])
    expected_ouptuts = np.array([
        1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827,
        3.465, 1.65, 2.904, 2.42, 2.94, 1.3
    ])
    model = Pipeline([create_model_step()])

    for i in range(50):
        model, outputs = model.fit_transform(data_inputs, expected_ouptuts)

    model.save(ExecutionContext(root=tmpdir))

    model = Pipeline([create_model_step()]).load(ExecutionContext(root=tmpdir))
    model, outputs = model.fit_transform(data_inputs, expected_ouptuts)
    assert ((outputs - expected_ouptuts)**2).mean() < 0.25