Esempio n. 1
0
    def run(self):
        """Run function to initiate the calculation of the sediment concentration based on dynamic erodibility. Hereby,
        we solve the following three equations:

        S_t = - [Flux_x + Flux * (B_x/B)]                    (1)

        Flux = T*f + F*f_x                                   (2)

        f = f(Stilde)                                        (3)

        with:

        S      = sediment stock, which is the total amount of sediment in the water column and the erodible bottom
        Flux   = sediment transport
        f      = relative sediment erodibility
        B      = estuary width
        T      = transport function
        F      = diffusion function
        Stilde = S / Chat, with Chat is the subtidal carrying capacity

         Returns:
             Dictionary with results. At least contains the variables listed as output in the registry
         """
        self.logger.info('Running module DynamicAvailability')

        ## Initiate variables
        # general variables
        self.RHOS = self.input.v('RHOS')
        self.DS = self.input.v('DS')
        self.WS = self.input.v('ws0')
        self.GPRIME = self.input.v('G') * (
            self.RHOS - self.input.v('RHO0')) / self.input.v('RHO0')
        self.Mhat = self.input.v('Mhat')
        self.CSEA = self.input.v('csea')
        self.FCAP = self.input.v('fcap')
        self.P = self.input.v('p')
        self.TOL = self.input.v('tol')
        self.ASTAR = self.input.v('astar')
        self.Kh = self.input.v('Kh')
        self.L = self.input.v('L')
        self.x = self.input.v('grid', 'axis', 'x') * self.L
        self.dx = (self.x[1:] - self.x[:-1]).reshape(len(self.x) - 1, 1)
        jmax = self.input.v('grid', 'maxIndex', 'x')
        kmax = self.input.v('grid', 'maxIndex', 'z')
        fmax = self.input.v('grid', 'maxIndex', 'f')
        self.z = self.input.v('grid', 'axis', 'z', 0, range(0, kmax + 1))
        self.zarr = ny.dimensionalAxis(self.input.slice('grid'), 'z')[:, :, 0]
        self.H = (self.input.v('H', range(0, jmax + 1)).reshape(jmax + 1, 1) +
                  self.input.v('R', range(0, jmax + 1)).reshape(jmax + 1, 1))
        self.Hx = (self.input.d('H', range(0, jmax + 1), dim='x').reshape(
            jmax + 1, 1) + self.input.d('R', range(0, jmax + 1),
                                        dim='x').reshape(jmax + 1, 1))
        self.B = self.input.v('B', range(0, jmax + 1)).reshape(jmax + 1, 1)
        self.Bx = self.input.d('B', range(0, jmax + 1),
                               dim='x').reshape(jmax + 1, 1)
        self.sf = self.input.v('Roughness', range(0, jmax + 1), 0,
                               0).reshape(jmax + 1, 1)
        self.Av0 = self.input.v('Av', range(0, jmax + 1), 0,
                                0).reshape(jmax + 1, 1)

        # velocity
        self.u1river = np.real(
            self.input.v('u1', 'river', range(0, jmax + 1), range(0, kmax + 1),
                         0))
        self.Q_fromhydro = -np.trapz(self.u1river[-1, :],
                                     x=-self.zarr[-1, :]) * self.B[-1]

        # c hat
        self.c00 = np.real(
            self.input.v('hatc0', range(0, jmax + 1), range(0, kmax + 1), 0))
        self.c04 = self.input.v('hatc0', range(0, jmax + 1),
                                range(0, kmax + 1), 2)

        ## Compute transport (in superclass)
        d = self.compute_transport()
        dc = DataContainer(d)
        self.Fc = (dc.v('F', range(0, jmax + 1)) -
                   dc.v('F', 'diffusion_river', range(0, jmax + 1))).reshape(
                       jmax + 1, 1)
        self.Tc = (dc.v('T') -
                   (dc.v('T', 'river', range(0, jmax + 1)) +
                    dc.v('T', 'river_river', range(0, jmax + 1)) +
                    dc.v('T', 'diffusion_river', range(0, jmax + 1)))).reshape(
                        len(self.x), 1)
        self.TQ = dc.v('T', 'river', range(0, jmax + 1)).reshape(
            jmax + 1, 1) / self.Q_fromhydro

        ## User input
        #TODO: make a consistent and effective script that handles user input of the discharge time series or any other time-dependent variable
        #load time serie Q
        self.dt = self.interpretValues(self.input.v('dt'))
        if self.input.v('t') is not None:
            self.t = self.interpretValues(self.input.v('t'))
        self.Q = self.interpretValues(self.input.v('Q'))

        ## Run
        self.logger.info('Running time-integrator')
        vars = self.implicit()

        ## Collect output
        d = {}
        for key, value in vars.iteritems():
            d[key] = value
        return d
Esempio n. 2
0
    def lineplot(self, axis1, axis2, *args, **kwargs):
        """
        Makes a lineplot of a variable over a certain axes

        Parameters:
            axis1: string
                axis plotted on the horizontal axis
            axis2: string
                variable plotted on the vertical axis

        args:

        kwargs:
            x, z, f: integer or range of integers
                plots the given range of the associated dimension
            subplots: string
                generates subplots of the physical variable over the given string: 'sublevel' or 'f'. If 'sublevel',
                all sublevels that are associated with the physical variable appear in a subplot. If 'f', subplots will
                be generated over the frequency domain
            sublevel: boolean
                show sub-level data or not
            plotno: integer
                plot number
            operation: python function
                makes an operation on the physical variable using the python function. This function could be for
                instance a numpy function (e.g. np.abs, np.angle, np.imag or np.real) or a nifty function (e.g.
                ny.scalemax)
        """

        # determine which axis displays data and which grid information
        axis = [axis1, axis2]       # list of both axis
        del axis1, axis2
        gridAxisNo = [i for i, grid in enumerate(axis) if grid in self.dims][0]   # number of grid axis
        dataAxisNo = np.mod(gridAxisNo+1, 2)                                # number of data axis
        # TODO: error if no valid axis provided
        # TODO: handle time axis

        # get all keys/subkeys to data
        keyList = [axis[dataAxisNo]]+[i for i in args if isinstance(i, basestring)]     # key + subkeys to data

        # display a sub-level yes/no
        subplots = kwargs.get('subplots') or None           # which (if any) var to display in subplots
        sublevel = kwargs.get('sublevel') or False          # show sub-level data: True/False
        plotno = kwargs.get('plotno') or 1                  # set plot number (default 1)
        looplist = [dim for dim in kwargs if dim in self.dims and dim != axis[gridAxisNo]]+['sublevel']*sublevel # list of variables to loop over: i.e. grid axis that are not one of the axis + subplots

        # checks: no more than two loop variables not in subplots, maximum one var in subplots
        # TODO

        #######
        # determine values to loop plot over
        loopvalues = [None]*len(looplist)
        for i, loopvar in enumerate(looplist):
            if loopvar=='sublevel':
                loopvalues[i] = ny.toList(self.input.getKeysOf(*keyList))
            else:
                loopvalues[i] = ny.toList(kwargs[loopvar])

        # take all combinations of values
        if len(loopvalues) >= 1:
            permutations = itertools.product(*loopvalues)
        else:
            permutations = [None] # 13-02-2017 YMD

        #########
        # determine number and shape of subplots
        numberOfSubplots = [len(loopvalues[ii]) for ii in range(0, len(looplist)) if looplist[ii] in ny.toList(subplots)] or [1]
        numberOfSubplots = numberOfSubplots[0]
        if numberOfSubplots <= 1:
            subplotShape = (1, 1)
        elif numberOfSubplots == 2:
            subplotShape = (1, 2)
        elif numberOfSubplots <= 8:
            subplotShape = (int(math.ceil(numberOfSubplots/2.)), 2)
        elif numberOfSubplots <= 15:
            subplotShape = (int(math.ceil(numberOfSubplots/3.)), 3)
        else:
            subplotShape = (int(math.ceil(numberOfSubplots/4.)), 4)

        #########
        # plot loop
        plt.figure(plotno, dpi=cf.dpi, figsize=subplotShape)
        # plt.hold(True)

        # loop over all combinations of the data
        for combi in permutations:
            if subplots in looplist:    # make subplot frame if there are subplots
                subplotIndex = looplist.index(subplots)
                subplot_number = loopvalues[subplotIndex].index(combi[subplotIndex])
                plt.subplot(*(subplotShape+(subplot_number+1,)))

            ## load data
            d = {}
            d[axis[gridAxisNo]] = self.input.v('grid', 'axis', axis[gridAxisNo]).reshape(self.input.v('grid', 'maxIndex', axis[gridAxisNo])+1)
            # append keylist with current sublevel
            keyListTemp = copy(keyList)
            try:
                for k in range(0, len(combi)):
                    if looplist[k] == 'sublevel':
                        keyListTemp.append(combi[k])
                    else:
                        d[looplist[k]] = combi[k]
            except:
                pass
            #   set axes
            axisData = [None]*2
            if not kwargs.get('der'):
                axisData[dataAxisNo] = self.input.v(*keyListTemp, **d)
            else:
                d['dim'] = kwargs['der']
                axisData[dataAxisNo] = self.input.d(*keyListTemp, **d)
                d.pop('dim')
            axisData[gridAxisNo] = ny.dimensionalAxis(self.input.slice('grid'), axis[gridAxisNo], **d)
            if kwargs.get('operation'):
                if kwargs.get('operation') is not np.angle:
                    axisData[dataAxisNo] = kwargs['operation'](axisData[dataAxisNo])
                else:
                    axisData[dataAxisNo] = -kwargs['operation'](axisData[dataAxisNo]) * 180 / np.pi

            conv_grid = cf.conversion.get(axis[gridAxisNo]) or 1.   # convert size of axis depending on conversion factor in config
            conv_data = cf.conversion.get(keyListTemp[0]) or 1.
            axisData[dataAxisNo] = axisData[dataAxisNo]*conv_data
            axisData[gridAxisNo] = axisData[gridAxisNo]*conv_grid

            if sublevel and subplots is None:
                lab = combi[-1]
                try:
                    lab = cf.names[lab]
                except:
                    pass
                plt.plot(*axisData, label=lab)
                plt.legend(fontsize=cf.fontsize2)
            else:
                plt.plot(*axisData)

            ## Title and axis labels
            if numberOfSubplots > 1:
                if subplots == 'sublevel':
                    title = combi[subplotIndex]
                else:
                    title = subplots + ' = ' + str(combi[subplotIndex])
                try:
                    title = cf.names[title]
                except:
                    pass
                plt.title(title, fontsize=cf.fontsize)

            # axis labels. Try to get from config file, else take plain name
            try:
                xname = cf.names[axis[0]]
                xunit = cf.units[axis[0]]
            except KeyError:
                xname = axis[0]
                xunit = ''
            try:
                yname = cf.names[axis[1]]
                yunit = cf.units[axis[1]]
            except KeyError:
                yname = axis[1]
                yunit = ''

            plt.xlabel(xname+' ('+xunit+')', fontsize=cf.fontsize)
            plt.ylabel(yname+' ('+yunit+')', fontsize=cf.fontsize)
            plt.xticks(fontsize=cf.fontsize2)
            plt.yticks(fontsize=cf.fontsize2)

            if kwargs.get('operation')==np.abs:
                if dataAxisNo==0:
                    plt.xlabel('|'+xname+'|'+' ('+xunit+')', fontsize=cf.fontsize)
                else:
                    plt.ylabel('|'+yname+'|'+' ('+yunit+')', fontsize=cf.fontsize)
            elif kwargs.get('operation')==np.angle:
                if dataAxisNo==0:
                    plt.xlabel('Phase('+xname+')'+' ('+cf.units['phase']+')', fontsize=cf.fontsize)
                else:
                    plt.ylabel('Phase('+yname+')'+' ('+cf.units['phase']+')', fontsize=cf.fontsize)
            elif kwargs.get('operation')==np.real:
                if dataAxisNo==0:
                    plt.xlabel('Re('+xname+')'+' ('+xunit+')', fontsize=cf.fontsize)
                else:
                    plt.ylabel('Re('+yname+')'+' ('+yunit+')', fontsize=cf.fontsize)
            elif kwargs.get('operation')==np.imag:
                if dataAxisNo==0:
                    plt.xlabel('Im('+xname+')'+' ('+xunit+')', fontsize=cf.fontsize)
                else:
                    plt.ylabel('Im('+yname+')'+' ('+yunit+')', fontsize=cf.fontsize)
            if kwargs.get('operation')==np.abs:
                if dataAxisNo==0:
                    plt.xlabel('|'+xname+'|'+' ('+xunit+')', fontsize=cf.fontsize)
                else:
                    plt.ylabel('|'+yname+'|'+' ('+yunit+')', fontsize=cf.fontsize)

            if axis[0] == 'x':
                plt.xlim(np.min(axisData[gridAxisNo]), np.max(axisData[gridAxisNo]))

        if kwargs.get('suptitle'):
            plt.suptitle(kwargs.get('suptitle'), fontsize=cf.fontsize)
        else:
            try:
                plt.suptitle(cf.names[axis[dataAxisNo]]+' over '+axis[gridAxisNo], fontsize=cf.fontsize)
            except KeyError:
                plt.suptitle(axis[dataAxisNo]+' over '+axis[gridAxisNo], fontsize=cf.fontsize)
        plt.draw()

        return
Esempio n. 3
0
    def transportplot_mechanisms(self, **kwargs):
        """
        Plots the advective transport based on the physical mechanisms that force it.

        kwargs:
            sublevel: string
                displays underlying levels of the associated mechanisms: 'sublevel', 'subsublevel' or False
            plotno: integer
                plot number
            display: integer or list of strings
                displays the underlying mechanisms indicated. An integer plots the largest contributions up to that
                integer and a list of strings plots the mechanisms in that list
            scale: boolean
                scales the transport contributions to the maximum value of all contributions
            concentration: boolean
                plots the depth-mean, sub-tidal concentration in the background
       """
        ################################################################################################################
        # Extract args and/or kwargs
        ################################################################################################################
        sublevel = kwargs.get('sublevel') or kwargs.get('subsublevel') or False  # show sub-level data: True/False
        plotno = kwargs.get('plotno') or 1  # set plot number (default 1)
        display = kwargs.get('display') or 5 # display number of mechanisms (sorted in descending order) or specific mechanisms
        scale = kwargs.get('scale') or False # scale the transport contributions to the maximum: True/False
        concentration = kwargs.get('concentration') or False
        legend = kwargs.get('legend')
        if legend !='in':
            legend = 'out'

        ################################################################################################################
        # Construct list of mechanisms to display and calculate these mechanisms
        ################################################################################################################
        # get keys of the transport mechanisms to display entered by the user or all mechanism
        if isinstance(display, list):
            if set(display).issubset(self.input.getKeysOf('T')):
                keyList = display
            else:
                raise KnownError('Not all transport mechanisms passed with display are available.')
        else:
            keyList = self.input.getKeysOf('T')

        # get availability and its derivative w.r.t. x
        x = self.input.v('grid', 'axis', 'x')
        if self.input.v('f') is not None:
            a = self.input.v('f', x=x).reshape(len(x),)
            a_x = self.input.d('f', x=x, dim='x').reshape(len(x),)
        else:
            a = self.input.v('a').reshape(len(x),)
            a_x = -self.input.v('T') * a / self.input.v('F')
        # construct list with values to plot
        loopvalues = [[]]
        if sublevel:
            tmp_max = []
            for key in keyList:
                if not 'diffusion' in key:
                    T = self.input.v('T', key)
                    if key in self.input.getKeysOf('F'):
                        trans = T * a + self.input.v('F', key) * a_x
                        loopvalues[0].append([trans, np.sqrt(np.mean(np.square(trans))), key])
                    else:
                        trans = T * a
                        loopvalues[0].append([trans, np.sqrt(np.mean(np.square(trans))), key])
                    tmp_max.append(abs(trans).max())
                    if sublevel == 'subsublevel' and len(self.input.slice('T', key).getAllKeys()[0]) > 2:
                        loopvalues.append([])
                        tmpkeys = sorted(self.input.slice('T', key).getAllKeys(), key=itemgetter(2))
                        subkeys = [tmpkeys[i*3:3+i*3] for i in range(len(tmpkeys)/3)]
                        for subkey in subkeys:
                            tmp = np.zeros(a.shape)
                            for subsubkey in subkey:
                                tmp += self.input.v('T', *subsubkey) * a
                            loopvalues[len(loopvalues)-1].append([tmp, np.sqrt(np.mean(np.square(trans))), subsubkey[-1]])
                        loopvalues[len(loopvalues)-1].append([trans, np.sqrt(np.mean(np.square(trans))), key])
            maxT = max(tmp_max)
            # Sort transport mechanisms based on the value of their root-mean-square value
            loopvalues[0] = sorted(loopvalues[0], key=itemgetter(1), reverse=True)
            # Only take the largest transport contributions indicated by the display integer. If the display integer is
            # larger than the length of the keyList, then all contributions are taken into account
            if isinstance(display, int):
                loopvalues[0] = loopvalues[0][:min(display, len(keyList))]
            # Sort alphetically so that mechanisms receive the same line color for plotting
            loopvalues[0] = sorted(loopvalues[0], key=itemgetter(2))
        else:
            Ttotal = ((self.input.v('T') - self.input.v('T', 'diffusion_tide') - self.input.v('T', 'diffusion_river')) *
                      a + (self.input.v('F') - self.input.v('F', 'diffusion_tide') - self.input.v('F', 'diffusion_river')
                           ) * a_x)
            loopvalues[0].append([Ttotal, np.sqrt(np.mean(np.square(Ttotal))), 'total'])
            maxT = abs(Ttotal).max()

        ################################################################################################################
        # determine number and shape of subplots
        ################################################################################################################
        numberOfSubplots = len(loopvalues)
        subplotShape = (numberOfSubplots, 2)

        ################################################################################################################
        # plot
        ################################################################################################################
        ## load grid data
        xdim = ny.dimensionalAxis(self.input.slice('grid'), 'x')[:, 0, 0]
        conv_grid = cf.conversion.get('x') or 1.  # convert size of axis depending on conversion factor in config
        xdim = xdim * conv_grid
        ## plot
        plt.figure(plotno, dpi=cf.dpi, figsize=subplotShape)
        # plt.hold(True)
        if not sublevel:
            sp = plt.subplot()
            plt.axhline(0, color='k', linewidth=0.5)
            if scale:
                loopvalues[0][0][0] = loopvalues[0][0][0] / maxT
            ln = []
            ln += sp.plot(xdim, loopvalues[0][0][0], label='adv. transport')
            if concentration:
                conv = cf.conversion.get('c') or 1.
                c = np.real(np.mean(self.input.v('c0')[:, :, 0] + self.input.v('c1')[:, :, 0] +
                                    self.input.v('c2')[:, :, 0], axis=1))*conv
                if scale:
                    c = c / c.max()
                    ln += sp.plot(xdim, c, '--', color='grey', label=r'$\langle\bar{c}\rangle$')
                    labels = [l.get_label() for l in ln]
                    if legend is 'out':
                        plt.legend(ln, labels, bbox_to_anchor=(1.02, 0), loc=3, borderaxespad=0., fontsize=cf.fontsize2,
                                   labelspacing=0.1, handlelength=0.1, handletextpad=0.4)
                    elif legend is 'in':
                        plt.legend(ln, labels, loc='upper left', borderaxespad=0.2, fontsize=cf.fontsize2,
                                   labelspacing=0.1, handlelength=0.1, handletextpad=0.4, frameon=False)
                    plt.title('Advective Transport')
                else:
                    sp2 = sp.twinx()
                    ln += sp2.plot(xdim, c, '--', color='grey', label=r'$\langle\bar{c}\rangle$')
                    labels = [l.get_label() for l in ln]
                    if legend is 'out':
                        plt.legend(ln, labels, bbox_to_anchor=(1.3, 0), loc=3, borderaxespad=0., fontsize=cf.fontsize2,
                                   labelspacing=0.1, handlelength=0.1, handletextpad=0.4)
                    elif legend is 'in':
                        plt.legend(ln, labels, loc='upper left', borderaxespad=0.2, fontsize=cf.fontsize2,
                                   labelspacing=0.1, handlelength=0.1, handletextpad=0.4, frameon=False)
                    plt.title('Advective Transport', y=1.09)
            else:
                plt.title('Advective Transport')
            ## Axis labels
            try:
                xname = cf.names['x']
                xunit = cf.units['x']
            except KeyError:
                xname = 'x'
                xunit = ''
            plt.xlabel(xname + ' (' + xunit + ')', fontsize = cf.fontsize)
            try:
                yunitT = cf.units['T']
                if concentration:
                    if scale:
                        sp.set_ylabel(r'$\mathcal{T}$ / $\mathcal{T}_{max}$, $c$ / $c_{max}$ (-)', fontsize = cf.fontsize)
                        if legend is 'in':
                            sp.set_ylim([-1.1, 1.1])
                        else:
                            sp.set_ylim([-1.1, 1.1])
                    else:
                        yunitc = cf.units['c']
                        sp.set_ylabel(r'$\mathcal{T}$ (' + yunitT + ')', fontsize = cf.fontsize)
                        sp2.set_ylabel(r'$c$ (' + yunitc + ')', fontsize = cf.fontsize)
                else:
                    if scale:
                        sp.set_ylabel(r'$\mathcal{T}$ / $\mathcal{T}_{max}$ (' + yunitT + ')', fontsize = cf.fontsize)
                        if legend is 'in':
                            sp.set_ylim([-1.1, 1.1])
                        else:
                            sp.set_ylim([-1.1, 1.1])
                    else:
                        sp.set_ylabel(r'$\mathcal{T}$ (' + yunitT + ')', fontsize = cf.fontsize)
            except KeyError:
                yname = [r'$\mathcal{T}$']
                yunit = ''
                plt.ylabel(yname + ' (' + yunit + ')', fontsize = cf.fontsize)
        else:
            for subplot_number, subplot_values in enumerate(loopvalues):
                pos = np.unravel_index(subplot_number, subplotShape)
                sp = plt.subplot2grid(subplotShape, (pos[0], pos[1]))
                plt.axhline(0, color='k', linewidth=0.5)
                # loop over all combinations of the data
                ln = []
                for i, value in enumerate(subplot_values):
                    try:
                        label = cf.transportlabels[value[2]]
                    except KeyError:
                        label = value[2]
                    if scale:
                        value[0] = value[0] / maxT
                    if i == len(subplot_values)-1 and subplot_number >= 1:
                        ln += sp.plot(xdim, value[0], 'k', label=label)
                    else:
                        ln += sp.plot(xdim, value[0], label=label)
                if concentration and subplot_number == 0:
                    conv = cf.conversion.get('c') or 1.
                    c = np.real(np.mean(self.input.v('c0')[:, :, 0] + self.input.v('c1')[:, :, 0] +
                                        self.input.v('c2')[:, :, 0], axis=1)) * conv
                    if scale:
                        c = c / c.max()
                        ln += sp.plot(xdim, c, '--', color='grey', label=r'$\langle\bar{c}\rangle$')
                        labels = [l.get_label() for l in ln]
                        if legend is 'out':
                            plt.legend(ln, labels, bbox_to_anchor=(1.02, 0), loc=3, borderaxespad=0., fontsize=cf.fontsize2,
                                       labelspacing=0.1, handlelength=0.1, handletextpad=0.4)
                        elif legend is 'in':
                            plt.legend(ln, labels, loc='upper left', borderaxespad=0.2, fontsize=cf.fontsize2,
                                       labelspacing=0.1, handlelength=0.1, handletextpad=0.4, frameon=False)
                        if subplot_number == 0:
                            plt.title('Advective Transport')
                        else:
                            title = keyList[subplot_number-1]
                            try:
                                title = cf.names[title]
                            except:
                                pass
                            plt.title(title, fontsize=cf.fontsize)
                    else:
                        sp2 = sp.twinx()
                        ln += sp2.plot(xdim, c, '--', color='grey', label=r'$\langle\bar{c}\rangle$')
                        labels = [l.get_label() for l in ln]
                        if legend is 'out':
                            plt.legend(ln, labels, bbox_to_anchor=(1.3, 0), loc=3, borderaxespad=0., fontsize=cf.fontsize2,
                                       labelspacing=0.1, handlelength=0.1, handletextpad=0.4)
                        elif legend is 'in':
                            plt.legend(ln, labels, loc='upper left', borderaxespad=0.2, fontsize=cf.fontsize2,
                                       labelspacing=0.1, handlelength=0.1, handletextpad=0.4, frameon=False)
                        if subplot_number == 0:
                            plt.title(r'Advective Transport ', y=1.09, fontsize=cf.fontsize)
                        else:
                            title = keyList[subplot_number-1]
                            try:
                                title = cf.names[title]
                            except:
                                pass
                            plt.title(title, y=1.09, fontsize=cf.fontsize)
                else:
                    if legend is 'out':
                        plt.legend(bbox_to_anchor=(1.02, 0), loc=3, borderaxespad=0., fontsize=cf.fontsize2,
                               labelspacing=0.1, handlelength=0.1, handletextpad=0.4)
                    elif legend is 'in':
                        plt.legend(ln, labels, loc='upper left', borderaxespad=0.2, fontsize=cf.fontsize2,
                                   labelspacing=0.1, handlelength=0.1, handletextpad=0.4, frameon=False)
                    if subplot_number == 0:
                        plt.title('Advective Transport', fontsize=cf.fontsize)
                    else:
                        title = keyList[subplot_number-1]
                        try:
                            title = cf.names[title]
                        except:
                            pass
                        if concentration and subplot_number > 0:
                            plt.title(title, y=1.09, fontsize=cf.fontsize)
                        else:
                            plt.title(title, fontsize=cf.fontsize)
                # axis labels and limits. Try to get from config file, else take plain name
                try:
                    xname = cf.names['x']
                    xunit = cf.units['x']
                except KeyError:
                    xname = 'x'
                    xunit = ''
                plt.xlabel(xname + ' (' + xunit + ')', fontsize=cf.fontsize)
                try:
                    yunitT = cf.units['T']
                    if concentration:
                        if scale:
                            if subplot_number == 0:
                                sp.set_ylabel(r'$\mathcal{T}$ / $\mathcal{T}_{max}$, $c$ / $c_{max}$ (-)', fontsize=cf.fontsize)
                            else:
                                sp.set_ylabel(r'$\mathcal{T}$ / $\mathcal{T}_{max}$ (-)', fontsize=cf.fontsize)
                            if legend is 'in':
                                sp.set_ylim([-1.1, 1.1])
                            else:
                                sp.set_ylim([-1.1, 1.1])
                        else:
                            yunitc = cf.units['c']
                            sp.set_ylabel(r'$\mathcal{T}$ (' + yunitT + ')', fontsize=cf.fontsize)
                            sp2.set_ylabel(r'$c$ (' + yunitc + ')', fontsize=cf.fontsize)
                    else:
                        if scale:
                            sp.set_ylabel(r'$\mathcal{T}$ / $\mathcal{T}_{max}$ (' + yunitT + ')', fontsize=cf.fontsize)
                            if legend is 'in':
                                sp.set_ylim([-1.1, 1.1])
                            else:
                                sp.set_ylim([-1.1, 1.1])
                        else:
                            sp.set_ylabel(r'$\mathcal{T}$ (' + yunitT + ')', fontsize=cf.fontsize)
                except KeyError:
                    yname = [r'$\mathcal{T}$']
                    yunit = ''
                    plt.label(yname + ' (' + yunit + ')', fontsize=cf.fontsize)
        plt.xlim(0, max(xdim))
        plt.draw()
        return
Esempio n. 4
0
def cFunctionUncoupled(ws, Kv, F, Fsurf, Fbed, data, n, hasMatrix=False):
    ####################################################################################################################
    # Init
    ####################################################################################################################
    jmax = data.v('grid', 'maxIndex',
                  'x')  # maximum index of x grid (jmax+1 grid points incl. 0)
    kmax = data.v('grid', 'maxIndex',
                  'z')  # maximum index of z grid (kmax+1 grid points incl. 0)
    OMEGA = data.v('OMEGA')

    # Init Ctd
    nRHS = F.shape[-1]
    cCoef = np.zeros((jmax + 1, kmax + 1, 1, nRHS), dtype=complex)
    cMatrix = np.zeros((jmax + 1, 3, kmax + 1), dtype=complex)

    try:
        z = ny.dimensionalAxis(data.slice('grid'), 'z')[:, :, 0]
    except:
        z = -np.linspace(0, 1, kmax + 1).reshape((1, kmax + 1)) * np.ones(
            (jmax + 1, 1))

    ####################################################################################################################
    # build, save and solve the matrices in every water column
    ####################################################################################################################
    for j in range(0, jmax + 1):
        dz = z[j, 1:] - z[j, :-1]
        dz = dz
        dz_down = dz[:-1]
        dz_up = dz[1:]
        dz_av = 0.5 * (dz_up + dz_down)

        if not hasMatrix:
            A = np.zeros((3, kmax + 1), dtype=complex)

            ##### LEFT HAND SIDE #####
            # Build matrix.
            #  NB. can use general numerical schemes as dz < 0
            a = -0.5 * (Kv[j, 0:-2, 0] + Kv[j, 1:-1, 0]) / dz_down + ws[
                j, 0:-2, 0]  # for k-1: from 1..kmax-1
            b = 0.5 * (Kv[j, 0:-2, 0] + Kv[j, 1:-1, 0]) / dz_down + 0.5 * (
                Kv[j, 2:, 0] + Kv[j, 1:-1, 0]) / dz_up - ws[
                    j, 1:-1, 0]  # for k: from 1..kmax-1
            c = -0.5 * (Kv[j, 2:, 0] +
                        Kv[j, 1:-1, 0]) / dz_up  # for k+1: from 1..kmax
            # add inertia later

            # Build matrix k=1..kmax-1
            A[2, :-2] = a
            A[1, 1:-1] = b
            A[0, 2:] = c

            ## surface
            b = ws[j, 0, 0] - Kv[j, 0, 0] / dz[0]
            c = +Kv[j, 0, 0] / dz[0]

            A[1, 0] = b
            A[0, 1] = c

            ## bed
            a = -Kv[j, 0, 0] / dz[-1]
            b = Kv[j, 0, 0] / dz[-1]

            A[2, -2] = a
            A[1, -1] = b

            # save matrix
            cMatrix[j, Ellipsis] = copy(A[Ellipsis])
        else:
            A = copy(Kv[j, Ellipsis])

        A[1, 1:-1] += n * 1j * OMEGA * dz_av

        ################################################################################################################
        # Right hand side
        ################################################################################################################
        RHS = np.zeros([kmax + 1, nRHS], dtype=complex)

        RHS[1:-1, :] = F[j, 1:-1, :] * dz_up.reshape((kmax - 1, 1))
        RHS[0, :] = Fsurf[j, 0, :]
        RHS[-1, :] += Fbed[j, 0, :]

        ################################################################################################################
        # Solve
        ################################################################################################################
        cstag = solve_banded((1, 1),
                             A,
                             RHS,
                             overwrite_ab=True,
                             overwrite_b=True)
        cCoef[j, :, 0, :] = cstag.reshape(kmax + 1, nRHS)

    return cCoef, cMatrix
Esempio n. 5
0
    def contourplot(self, axis1, axis2, value_label, *args, **kwargs):
        """
        Plots 2DV contourplots of a variable over two axes

        Parameters:
            axis1: string
                axis plotted on the horizontal axis
            axis2: string
                axis plotted on the vertical axis
            value_label: string
                physical variable for which the controurplot needs to be made

        args:

        kwargs:
            x, z, f: integer or range of integers
                plots the given range of the associated dimension
            subplots: string
                generates subplots of the physical variable over the given string: 'sublevel' or 'f'. If 'sublevel',
                all sublevels that are associated with the physical variable appear in a subplot. If 'f', subplots will
                be generated over the frequency domain
            plotno: integer
                plot number
            operation: python function
                makes an operation on the physical variable using the python function. This function could be for
                instance a numpy function (e.g. np.abs, np.angle, np.imag or np.real) or a nifty function (e.g.
                ny.scalemax)
        """

        # get all keys/subkeys to data
        keyList = [value_label]+[i for i in args if isinstance(i, basestring)]      # key + subkeys to data

        # display a sub-level yes/no
        subplots = kwargs.get('subplots') or False          # Variable for subplots
        plotno = kwargs.get('plotno') or 1                  # set plot number (default 1)

        loopvalues = [None]             # values to loop subplots over
        if subplots == 'sublevel':
            loopvalues = ny.toList(self.input.getKeysOf(*keyList)) 
        elif subplots:
            loopvalues = [i for i in ny.toList(kwargs[subplots])]

        # determine number and shape of subplots
        numberOfSubplots = len(loopvalues)
        if numberOfSubplots <= 1:
            subplotShape = (1, 1)
        elif numberOfSubplots == 2:
            subplotShape = (1, 2)
        elif numberOfSubplots <= 8:
            subplotShape = (int(math.ceil(numberOfSubplots / 2.)), 2)
        elif numberOfSubplots <= 15:
            subplotShape = (int(math.ceil(numberOfSubplots / 3.)), 3)
        else:
            subplotShape = (int(math.ceil(numberOfSubplots / 4.)), 4)

        # load axis data for evaluating the value to be plotted
        d = {}                      # contains all axis data for evaluating the function
        for key in kwargs:
            if key in self.input.v('grid', 'dimensions'):
                d[key] = kwargs[key]

        ## load axis data
        axis1_axis = self.input.v('grid', 'axis', axis1).reshape(self.input.v('grid', 'maxIndex', axis1) + 1)
        axis2_axis = self.input.v('grid', 'axis', axis2).reshape(self.input.v('grid', 'maxIndex', axis2) + 1)
        d[axis1] = axis1_axis
        d[axis2] = axis2_axis

        #########
        # plot loop
        plt.figure(plotno, figsize=subplotShape)
        # plt.hold(True)

        # loop over all combinations of the data
        for subplot_number, sub in enumerate(loopvalues):
            plt.subplot(*(subplotShape+(subplot_number+1,)))

            # append keylist with current sublevel
            keyListTemp = copy(keyList)
            if subplots=='sublevel':
                keyListTemp.append(sub)
            elif subplots:
                d[subplots] = sub

            # load dimensional axes and the value to be plotted
            value = self.input.v(*keyListTemp, **d)
            axis1_dim = ny.dimensionalAxis(self.input.slice('grid'), axis1, **d)
            axis2_dim = ny.dimensionalAxis(self.input.slice('grid'), axis2, **d)
            if kwargs.get('operation'):
                if kwargs.get('operation') is not np.angle:
                    value = kwargs['operation'](value)
                else:
                    value = -kwargs['operation'](value) * 180 / np.pi
            else:
                value = np.real(value)

            conv = cf.conversion.get(axis1) or 1.   # convert size of axis depending on conversion factor in config
            axis1_dim = axis1_dim*conv
            conv = cf.conversion.get(axis2) or 1.   # convert size of axis depending on conversion factor in config
            axis2_dim = axis2_dim*conv
            conv = cf.conversion.get(value_label) or 1.   # convert size of axis depending on conversion factor in config
            value = value*conv

            # set cmap
            if 'c' in value_label:
                cmap = 'YlOrBr'
                normalisecolor = mpl.colors.Normalize(vmin=0, vmax=np.amax(np.abs(value)))
            else:
                if np.amax(np.abs(value))==0:
                    cmap = 'RdBu_r'
                    normalisecolor = mpl.colors.Normalize(vmin=0, vmax=0)
                elif np.amin(value) >= 0:
                    normalisecolor = mpl.colors.Normalize(vmin=0, vmax=np.amax(np.abs(value)))
                    cmap = 'Reds'
                elif np.amax(value) <= 0:
                    normalisecolor = mpl.colors.Normalize(vmin=np.amin(value), vmax=0)
                    cmap = 'Blues_r'
                else:
                    normalisecolor = mpl.colors.Normalize(vmin=-np.amax(np.abs(value)), vmax=np.amax(np.abs(value)))
                    cmap = 'RdBu_r'

            # plot
            plt.pcolormesh(axis1_dim, axis2_dim, value, norm=normalisecolor, cmap=cmap, shading='gouraud') #, cmap='YlOrBr'
            plt.plot(axis1_dim[:,1], axis2_dim[:,-1], 'k-', linewidth=0.2)
            plt.plot(axis1_dim[:,0], axis2_dim[:,0], 'k-', linewidth=0.2)
            plt.plot(axis1_dim[-1,:], axis2_dim[-1,:], 'k-', linewidth=0.2)
            plt.plot(axis1_dim[0,:], axis2_dim[0,:], 'k-', linewidth=0.2)
            if int(mpl.__version__.split('.')[0])>1:
                plt.gca().set_facecolor([.75, .75, .75])
            else:
                plt.gca().set_axis_bgcolor([.75, .75, .75])
            cb = plt.colorbar()
            plt.xlim(np.min(axis1_dim), np.max(axis1_dim))
            plt.ylim(np.min(axis2_dim), np.max(axis2_dim))

            ## Title and axis labels
            if numberOfSubplots > 1:
                if subplots == 'sublevel':
                    title = sub
                else:
                    title = subplots + ' = ' + str(sub)
                try:
                    title = cf.names[title]
                except:
                    pass
                plt.title(title, fontsize=cf.fontsize)

            # axis labels. Try to get from config file, else take plain name
            try:
                xname = cf.names[axis1]
                xunit = cf.units[axis1]
            except KeyError:
                xname = axis1
                xunit = ''
            try:
                yname = cf.names[axis2]
                yunit = cf.units[axis2]
            except KeyError:
                yname = axis2
                yunit = ''

            plt.xlabel(xname+' ('+xunit+')', fontsize=cf.fontsize)
            plt.ylabel(yname+' ('+yunit+')', fontsize=cf.fontsize)
            plt.xticks(fontsize=cf.fontsize2)
            plt.yticks(fontsize=cf.fontsize2)

            try:
                value_name = cf.names[value_label]
                value_unit = cf.units[value_label]
            except:
                value_name = value_label
                value_unit = ''
            if numberOfSubplots > 1:
                if kwargs.get('operation')==np.abs or kwargs.get('operation')==abs:
                    plt.suptitle('|'+value_name+'|'+' ('+value_unit+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.angle:
                    plt.suptitle('Phase('+value_name+')'+' ('+cf.units['phase']+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.real:
                    plt.suptitle('Re('+value_name+')'+' ('+value_unit+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.imag:
                    plt.suptitle('Im('+value_name+')'+' ('+value_unit+')', fontsize=cf.fontsize)
                else:
                    plt.suptitle(value_name+' ('+value_unit+')', fontsize=cf.fontsize)
            else:
                if kwargs.get('operation')==np.abs or kwargs.get('operation')==abs:
                    plt.title('|'+value_name+'|'+' ('+value_unit+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.angle:
                    plt.title('Phase('+value_name+')'+' ('+cf.units['phase']+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.real:
                    plt.title('Re('+value_name+')'+' ('+value_unit+')', fontsize=cf.fontsize)
                elif kwargs.get('operation')==np.imag:
                    plt.title('Im('+value_name+')'+' ('+value_unit+')', fontsize=cf.fontsize)
                else:
                    plt.title(value_name+' ('+value_unit+')', fontsize=cf.fontsize)
        plt.draw()
        return
Esempio n. 6
0
    def run(self):
        """Run function to initiate the calculation of the first order water level and velocities

        Returns:
            Dictionary with results. At least contains the variables listed as output in the registry
        """
        self.logger.info('Running module HydroFirst')

        # Initiate variables
        self.submodule = self.input.v('submodules')

        self.OMEGA = self.input.v('OMEGA')
        self.G = self.input.v('G')
        self.BETA = self.input.v('BETA')
        self.L = self.input.v('L')
        self.x = self.input.v('grid', 'axis', 'x') * self.input.v('L')
        self.dx = self.x[1:] - self.x[:-1]
        kmax = self.input.v('grid', 'maxIndex', 'z')
        self.z = self.input.v('grid', 'axis', 'z', 0, range(0, kmax + 1))
        self.zarr = ny.dimensionalAxis(
            self.input.slice('grid'), 'z'
        )[:, :, 0] - self.input.v('R', x=self.x / self.L).reshape(
            (len(self.x), 1)
        )  #YMD 22-8-17 includes reference level; note that we take a reference frame z=[-H-R, 0]

        self.Av0 = self.input.v('Av', x=self.x / self.L, z=0,
                                f=0).reshape(len(self.x), 1)
        self.Av0x = self.input.d('Av', x=self.x / self.L, z=0, f=0,
                                 dim='x').reshape(len(self.x), 1)

        self.sf = self.input.v('Roughness', x=self.x / self.L, z=0,
                               f=0).reshape(len(self.x), 1)
        self.sfx = self.input.d('Roughness',
                                x=self.x / self.L,
                                z=0,
                                f=0,
                                dim='x').reshape(len(self.x), 1)

        self.r = np.sqrt(2. * 1j * self.OMEGA / self.Av0).reshape(
            len(self.x), 1)
        self.H = self.input.v('H', x=self.x / self.L).reshape(len(
            self.x), 1) + self.input.v('R', x=self.x / self.L).reshape(
                len(self.x), 1)  # YMD added reference level 15-08-17
        self.alpha = (self.sf / (self.r * self.Av0 * np.sinh(self.r * self.H) +
                                 self.sf * np.cosh(self.r * self.H))).reshape(
                                     len(self.x), 1)

        self.B = self.input.v('B', x=self.x / self.L).reshape(len(self.x), 1)
        self.Bx = self.input.d('B', x=self.x / self.L,
                               dim='x').reshape(len(self.x),
                                                1).reshape(len(self.x), 1)
        self.u0 = self.input.v('zeta0', 'tide', range(0, len(self.x)), 0, 1)
        self.u0x = self.input.d('u0',
                                'tide',
                                range(0, len(self.x)),
                                0,
                                1,
                                dim='x')
        self.u0z = self.input.d('u0',
                                'tide',
                                range(0, len(self.x)),
                                0,
                                1,
                                dim='z')
        self.u0zz = self.input.d('u0',
                                 'tide',
                                 range(0, len(self.x)),
                                 0,
                                 1,
                                 dim='zz')

        self.M = ((self.alpha * np.sinh(self.r * self.H) / self.r) -
                  self.H) * (self.G / (2 * 1j * self.OMEGA)) * self.B
        self.bca = ny.amp_phase_input(self.input.v('A1'),
                                      self.input.v('phase1'), (3, ))[2]

        self.__bc = np.zeros(4)
        self.__F = []

        # compute and save results
        d = dict()
        d['zeta1'] = {}
        d['u1'] = {}

        for mod in self.submodule:
            # Compute results
            zeta, u = getattr(self, mod)()

            # save in dictionary
            nfz = NumericalFunctionWrapper(zeta[0], self.input.slice('grid'))
            nfz.addDerivative(zeta[1], dim='x')
            nfu = NumericalFunctionWrapper(u[0], self.input.slice('grid'))

            d['zeta1'][mod] = nfz.function
            d['u1'][mod] = nfu.function

        self.input.merge(d)
        return d
Esempio n. 7
0
    def availability(self, F, T, G, alpha1, alpha2):
        """Calculates the solution to the bed-evolution equation: the erodibility and availability of sediment

        Parameters:
            F - diffusive coefficient in the availability equation that goes with a_x
            T - coefficient (advective, diffusive and stokes) in the availability equation that goes with a

        Returns:
            a - availability of sediment
            f - erodibility of sediment
        """
        ################################################################################################################
        ## Init
        ################################################################################################################
        jmax = self.input.v('grid', 'maxIndex', 'x')
        B = self.input.v('B', range(0, jmax + 1), [0], [0])
        x = ny.dimensionalAxis(self.input, 'x')[:, 0, 0]
        dx = x[1:] - x[:-1]

        ################################################################################################################
        ## Solution to bed-evolution equation
        ################################################################################################################
        ## analytical solution
        if np.all(G == 0):
            P = np.zeros(jmax + 1)
        else:
            P = integrate.cumtrapz(
                G / (F - 10**-6) *
                np.exp(integrate.cumtrapz(T / F, dx=dx, axis=0, initial=0)),
                dx=dx,
                axis=0,
                initial=0)

        exponent = np.exp(-integrate.cumtrapz(T / F, dx=dx, axis=0, initial=0))

        # Boundary conditions (analytical solution)
        # BC 1: total amount of sediment in the system
        if self.input.v('sedbc') == 'astar':
            astar = self.input.v('astar')
            k = (astar * np.trapz(B, dx=dx, axis=0) /
                 np.trapz(B * exponent, dx=dx, axis=0))

            # BC 2: concentration at the seaward boundary
        elif self.input.v('sedbc') == 'csea':
            csea = self.input.v('csea')
            c000 = alpha1[0]
            k = csea / c000 * (self.input.v('grid', 'low', 'z', 0) -
                               self.input.v('grid', 'high', 'z', 0))

            # BC 3: incorrect boundary description
        else:
            from src.util.diagnostics.KnownError import KnownError
            raise KnownError(
                'incorrect seaward boundary type (sedbc) for sediment module')

        # final solution (analytical)
        f0uncap = (k - P) * exponent

        ## Check if f<1 everywhere,
        # if not compute numerical solution instead with a time-stepping routine that maximises f at 1.
        if all(f0uncap < 1):
            f0 = f0uncap
        else:
            f0, Smod = self.availability_numerical(np.real(T), np.real(F),
                                                   np.real(f0uncap), k, alpha1,
                                                   alpha2, G)

        ## compute derivative
        if np.all(G == 0) and all(f0uncap < 1):
            f0x = -T / F * f0uncap  # only use analytical derivative in case with no fluvial source of sediment and f<1; else not reliable.
        else:
            f0x = ny.derivative(f0, 'x', self.input.slice('grid'))

        return f0uncap, f0, f0x
Esempio n. 8
0
    def run(self):
        # self.timers[0].tic()
        self.logger.info('Running module StaticAvailability')

        ################################################################################################################
        ## Init
        ################################################################################################################
        jmax = self.input.v('grid', 'maxIndex', 'x')
        kmax = self.input.v('grid', 'maxIndex', 'z')
        fmax = self.input.v('grid', 'maxIndex', 'f')

        L = self.input.v('L')
        self.x = self.input.v('grid', 'axis', 'x')
        self.zarr = ny.dimensionalAxis(
            self.input.slice('grid'), 'z'
        )[:, :, 0] - self.input.v('R', x=self.x / L).reshape(
            (len(self.x), 1)
        )  #YMD 22-8-17 includes reference level; note that we take a reference frame z=[-H-R, 0]

        c00 = np.real(
            self.input.v('hatc0', 'a', range(0, jmax + 1), range(0, kmax + 1),
                         0))
        c04 = np.abs(
            self.input.v('hatc0', 'a', range(0, jmax + 1), range(0, kmax + 1),
                         2))
        # c20 = np.real(self.input.v('hatc2', 'a', range(0, jmax+1), range(0, kmax+1), 0))       # NB. do not include hatc2 in the definition of alpha1 here
        alpha1 = ny.integrate(c00, 'z', kmax, 0, self.input.slice('grid'))[:,
                                                                           0]
        alpha1[-1] += alpha1[
            -2]  # correct alpha1 at last point to prevent zero value
        alpha2 = ny.integrate(c04, 'z', kmax, 0,
                              self.input.slice('grid'))[:, 0] / alpha1 + 1.e-3
        # self.timers[0].toc()

        ################################################################################################################
        ## Compute T and F
        ################################################################################################################
        # self.timers[1].tic()
        d = self.compute_transport()
        G = self.compute_source()
        # self.timers[1].toc()

        ################################################################################################################
        ## 4. Calculate availability
        ################################################################################################################
        # self.timers[2].tic()
        # Add all mechanisms to datacontainer
        dctrans = DataContainer(d)

        # Calculate availability
        a, f0, f0x = self.availability(dctrans.v('F', range(0, jmax + 1)),
                                       dctrans.v('T', range(0, jmax + 1)), G,
                                       alpha1, alpha2)
        f0 = f0.reshape(jmax + 1, 1)
        f0x = f0x.reshape(jmax + 1, 1)

        d['a'] = a
        nfu = ny.functionTemplates.NumericalFunctionWrapper(
            f0[:, 0], self.input.slice('grid'))
        nfu.addDerivative(f0x[:, 0], 'x')
        d['f'] = nfu.function
        # self.timers[2].toc()

        ################################################################################################################
        # 5. Calculate concentrations, i.e. a*hatc(a) + ax*hatc(ax)
        ################################################################################################################
        # self.timers[3].tic()
        d['c0'] = {}
        d['c1'] = {}
        d['c2'] = {}

        # Calculate c0=f*hatc0
        for submod in self.input.getKeysOf('hatc0', 'a'):
            c0_comp = self.input.v('hatc0', 'a', submod, range(0, jmax + 1),
                                   range(0, kmax + 1), range(0, fmax + 1))
            d['c0'][submod] = {}
            tmp = f0[:, None] * c0_comp
            d['c0'][submod] = tmp

        # Calculate c1 = f*hatc1_f + fx*hatc1_fx
        for submod in self.input.getKeysOf('hatc1', 'a'):
            if submod == 'erosion':
                for subsubmod in self.input.getKeysOf('hatc1', 'a', 'erosion'):
                    c1_comp = self.input.v('hatc1', 'a', 'erosion', subsubmod,
                                           range(0, jmax + 1),
                                           range(0, kmax + 1),
                                           range(0, fmax + 1))
                    d['c1'] = self.dictExpand(d['c1'], 'erosion', subsubmod)
                    tmp = f0[:, None] * c1_comp
                    d['c1']['erosion'][subsubmod] = tmp

            elif submod == 'sedadv':
                c1_comp_a = self.input.v('hatc1', 'a', 'sedadv',
                                         range(0,
                                               jmax + 1), range(0, kmax + 1),
                                         range(0, fmax + 1))
                c1_comp_ax = self.input.v('hatc1', 'ax', 'sedadv',
                                          range(0,
                                                jmax + 1), range(0, kmax + 1),
                                          range(0, fmax + 1))
                d['c1'][submod] = {}
                tmp = f0[:, None] * c1_comp_a + f0x[:, None] * c1_comp_ax
                d['c1'][submod] = tmp

            else:
                c1_comp = self.input.v('hatc1', 'a', submod,
                                       range(0, jmax + 1), range(0, kmax + 1),
                                       range(0, fmax + 1))
                d['c1'][submod] = {}
                tmp = f0[:, None] * c1_comp
                d['c1'][submod] = tmp

        # Calculate c2 = f*hatc2
        for subsubmod in self.input.getKeysOf('hatc2', 'a', 'erosion'):
            c2_comp = self.input.v('hatc2', 'a', 'erosion', subsubmod,
                                   range(0, jmax + 1), range(0, kmax + 1),
                                   range(0, fmax + 1))
            d['c2'] = self.dictExpand(d['c2'], 'erosion', subsubmod)
            tmp = f0[:, None] * c2_comp
            d['c2']['erosion'][subsubmod] = tmp

        # self.timers[3].toc()
        # self.timers[0].disp('time availability - init')
        # self.timers[1].disp('time availability - T, F')
        # self.timers[2].disp('time availability - a, f')
        # self.timers[3].disp('time availability - to dict')
        # self.timers[4].disp('time availability - cap')
        # self.timers[5].disp('time availability - trap')
        # [self.timers[i].reset() for i in range(0, len(self.timers))]

        return d
Esempio n. 9
0
    def run(self):
        st.configure()
        data = self.input.getKeysOf('experimentdata')
        var1 = 'ws0'
        var2 = 'Q1'

        v2 = []
        v1 = []
        for dat in data:
            dc = self.input.v('experimentdata', dat)
            v1.append(dc.v(var1))
            v2.append(dc.v(var2))
        v1 = list(set(v1))
        v2 = list(set(v2))
        v1.sort()
        v2.sort()
        x = dc.v('grid', 'axis', 'x')
        xdim = ny.dimensionalAxis(dc.slice('grid'), 'x')[:, 0, 0]

        ETMloc = np.nan * np.ones((len(v1), len(v2)))
        maxc = np.nan * np.ones((len(v1), len(v2)))
        for q, dat in enumerate(data):
            print q

            dc = self.input.v('experimentdata', dat)
            i = v1.index(dc.v(var1))
            j = v2.index(dc.v(var2))

            c = dc.v('c', x=x, z=1, f=0)
            if c is None:
                c = dc.v('c0', x=x, z=1, f=0) + dc.v('c2', x=x, z=1, f=0)
            maxc[i, j] = np.max(c)

            try:
                # loc = ny.toList(self.findETM(xdim, T, Tx))
                loc = ny.toList(self.findETM(xdim, c))
                ETMloc[i, j] = np.asarray(loc)
            except:
                print 'no etm'

        plt.figure(1, figsize=(1, 1))
        log1 = 'True'
        log2 = 'False'
        if log1 == 'True':
            v1 = np.log10(np.asarray(v1))
        if log2 == 'True':
            v2 = np.log10(np.asarray(v2))

        x_up_round = np.ceil(max(xdim) / 10000.) * 10.
        ETMloc[np.where(ETMloc >= x_up_round * 1000.)] = x_up_round * 1000.
        levels = np.linspace(0., x_up_round, x_up_round / 2 + 1)
        plt.contourf(np.asarray(v1),
                     np.asarray(v2),
                     ETMloc.T / 1000.,
                     levels=levels)
        plt.title('ETM location (km)')
        if log1 == 'True':
            xmin = np.min(np.asarray(v1))
            xmax = np.max(np.asarray(v1))
            xtick = np.arange(np.ceil(xmin), np.floor(xmax) + 1)
            plt.xticks(xtick, [10.**i for i in xtick])
            plt.xlabel('$\log_{10} w_s$ (m/s)')

        plt.ylabel('Q $(m^3/s)$')

        plt.colorbar()

        # ## Fig 2
        # plt.figure(2, figsize=(1,1))
        # plt.contourf(np.asarray(v1), np.asarray(v2), maxc.T/1000., 40)
        # plt.title('Maximum near-bed\nconcentration (g/l)')
        # if log1 == 'True':
        #     xmin = np.min(np.asarray(v1))
        #     xmax = np.max(np.asarray(v1))
        #     xtick = np.arange(np.ceil(xmin),np.floor(xmax)+1)
        #     plt.xticks(xtick, [10.**i for i in xtick])
        #     plt.xlabel('$\log_{10} w_s$ (m/s)')
        #
        # plt.ylabel('Q $(m^3/s)$')

        # plt.colorbar()

        st.show()
        d = {}
        return d
Esempio n. 10
0
    def run(self):
        """Run function to initiate the calculation of the sediment transport

         Returns:
             Dictionary with results. At least contains the variables listed as output in the registry
         """
        # self.timer.tic()
        self.logger.info('Running module Sediment Capacity')

        ################################################################################################################
        ## 1. Initiate variables
        ################################################################################################################
        self.SIGMA = self.input.v('OMEGA')
        self.RHOS = self.input.v('RHOS')
        self.RHO0 = self.input.v('RHO0')
        self.DS = self.input.v('DS')
        self.GPRIME = self.input.v('G') * (
            self.RHOS - self.input.v('RHO0')) / self.input.v('RHO0')  #

        self.L = self.input.v('L')
        self.x = self.input.v('grid', 'axis', 'x') * self.input.v('L')
        jmax = self.input.v('grid', 'maxIndex', 'x')
        kmax = self.input.v('grid', 'maxIndex', 'z')
        self.z = self.input.v('grid', 'axis', 'z', 0, range(0, kmax + 1))
        self.zarr = ny.dimensionalAxis(
            self.input.slice('grid'), 'z'
        )[:, :, 0] - self.input.v('R', x=self.x / self.L).reshape(
            (len(self.x), 1)
        )  #YMD 22-8-17 includes reference level; note that we take a reference frame z=[-H-R, 0]

        self.WS = self.input.v('ws0', range(0, jmax + 1), [0], 0)
        self.WSx = self.input.d('ws0', range(0, jmax + 1), [0], 0, dim='x')
        self.Kv0 = self.input.v('Kv', range(0, jmax + 1), 0,
                                0).reshape(jmax + 1, 1)
        self.Kv0x = self.input.d('Kv', range(0, jmax + 1), 0, 0,
                                 dim='x').reshape(jmax + 1, 1)

        self.HR = (self.input.v('H', range(0, jmax + 1)).reshape(jmax + 1, 1) +
                   self.input.v('R', range(0, jmax + 1)).reshape(jmax + 1, 1))
        self.Hx = self.input.d('H', range(0, jmax + 1), dim='x').reshape(
            (jmax + 1, 1))

        if self.input.v('friction') is not None:
            self.sf = self.input.v(self.input.v('friction'),
                                   range(0,
                                         jmax + 1), 0, 0).reshape(jmax + 1, 1)
            self.sfx = self.input.d(self.input.v('friction'),
                                    range(0, jmax + 1),
                                    0,
                                    0,
                                    dim='x').reshape(jmax + 1, 1)
        else:
            self.sf = self.input.v('Roughness', range(0, jmax + 1), 0,
                                   0).reshape(jmax + 1, 1)
            self.sfx = self.input.d('Roughness',
                                    range(0, jmax + 1),
                                    0,
                                    0,
                                    dim='x').reshape(jmax + 1, 1)
        self.submodules_hydro = self.input.data['u1'].keys()
        self.submodules_sed = self.input.v('submodules')

        # Extract leading order surface elevation and horizontal and vertical velocities
        self.zeta0 = self.input.v('zeta0', 'tide', range(0, jmax + 1), 0,
                                  1).reshape(jmax + 1, 1)
        self.u0 = self.input.v('u0', 'tide', range(0, jmax + 1),
                               range(0, kmax + 1), 1)
        self.w0 = self.input.v('w0', 'tide', range(0, jmax + 1),
                               range(0, kmax + 1), 1)
        self.finf = self.input.v('finf')
        self.finfx = self.input.d('finf', dim='x')

        # Initiate dictionary to save results
        d = {}

        ################################################################################################################
        ## 2. Calculate leading, first and second order concentration amplitudes hatc0, hatc1 and hatc2
        ################################################################################################################
        # Initiate variables
        d['hatc0'] = {}
        d['hatc1'] = {'a': {}, 'ax': {}}
        d['hatc2'] = {}

        # Calculate leading-order concentration amplitudes
        d['hatc0'] = self.erosion_lead()

        # Calculate first order concentration amplitudes
        for sedmod in self.submodules_sed:
            hatc1 = getattr(self, sedmod)()
            for k in hatc1.keys():
                d['hatc1'][k].update(hatc1[k])

        # Calculate second order concentration amplitudes
        d['hatc2'] = self.erosion_second()
        # self.timer.toc()
        # self.timer.disp('time sediment capacity')
        # self.timer.reset()
        return d