Esempio n. 1
0
 def set_data(self, x, y, A):
     x = asarray(x).astype(Float32)
     y = asarray(y).astype(Float32)
     A = asarray(A)
     if len(x.shape) != 1 or len(y.shape) != 1\
        or A.shape[0:2] != (y.shape[0], x.shape[0]):
         raise TypeError("Axes don't match array shape")
     if len(A.shape) not in [2, 3]:
         raise TypeError("Can only plot 2D or 3D data")
     if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
         raise TypeError("3D arrays must have three (RGB) or four (RGBA) color components")
     if len(A.shape) == 3 and A.shape[2] == 1:
          A.shape = A.shape[0:2]
     if len(A.shape) == 2:
         if typecode(A) != UInt8:
             A = (self.cmap(self.norm(A))*255).astype(UInt8)
         else:
             A = repeat(A[:,:,NewAxis], 4, 2)
             A[:,:,3] = 255
     else:
         if typecode(A) != UInt8:
             A = (255*A).astype(UInt8)
         if A.shape[2] == 3:
             B = zeros(tuple(list(A.shape[0:2]) + [4]), UInt8)
             B[:,:,0:3] = A
             B[:,:,3] = 255
             A = B
     self._A = A
     self._Ax = x
     self._Ay = y
     self._imcache = None
Esempio n. 2
0
def psd(x, NFFT=256, Fs=2, detrend=detrend_none,
        window=window_hanning, noverlap=0):
    """
    The power spectral density by Welches average periodogram method.
    The vector x is divided into NFFT length segments.  Each segment
    is detrended by function detrend and windowed by function window.
    noperlap gives the length of the overlap between segments.  The
    absolute(fft(segment))**2 of each segment are averaged to compute Pxx,
    with a scaling to correct for power loss due to windowing.  Fs is
    the sampling frequency.

    -- NFFT must be a power of 2
    -- detrend and window are functions, unlike in matlab where they are
       vectors.
    -- if length x < NFFT, it will be zero padded to NFFT
    

    Returns the tuple Pxx, freqs

    Refs:
      Bendat & Piersol -- Random Data: Analysis and Measurement
        Procedures, John Wiley & Sons (1986)

    """

    if NFFT % 2:
        raise ValueError, 'NFFT must be a power of 2'

    # zero pad x up to NFFT if it is shorter than NFFT
    if len(x)<NFFT:
        n = len(x)
        x = resize(x, (NFFT,))
        x[n:] = 0
    

    # for real x, ignore the negative frequencies
    if typecode(x)==Complex: numFreqs = NFFT
    else: numFreqs = NFFT//2+1
        
    windowVals = window(ones((NFFT,),typecode(x)))
    step = NFFT-noverlap
    ind = range(0,len(x)-NFFT+1,step)
    n = len(ind)
    Pxx = zeros((numFreqs,n), Float)
    # do the ffts of the slices
    for i in range(n):
        thisX = x[ind[i]:ind[i]+NFFT]
        thisX = windowVals*detrend(thisX)
        fx = absolute(fft(thisX))**2
        Pxx[:,i] = divide(fx[:numFreqs], norm(windowVals)**2)

    # Scale the spectrum by the norm of the window to compensate for
    # windowing loss; see Bendat & Piersol Sec 11.5.2
    if n>1:
       Pxx = mean(Pxx,1)

    freqs = Fs/NFFT*arange(numFreqs)
    Pxx.shape = len(freqs),

    return Pxx, freqs
Esempio n. 3
0
 def set_data(self, x, y, A):
     x = asarray(x).astype(Float32)
     y = asarray(y).astype(Float32)
     A = asarray(A)
     if len(x.shape) != 1 or len(y.shape) != 1\
        or A.shape[0:2] != (y.shape[0], x.shape[0]):
         raise TypeError("Axes don't match array shape")
     if len(A.shape) not in [2, 3]:
         raise TypeError("Can only plot 2D or 3D data")
     if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
         raise TypeError(
             "3D arrays must have three (RGB) or four (RGBA) color components"
         )
     if len(A.shape) == 3 and A.shape[2] == 1:
         A.shape = A.shape[0:2]
     if len(A.shape) == 2:
         if typecode(A) != UInt8:
             A = (self.cmap(self.norm(A)) * 255).astype(UInt8)
         else:
             A = repeat(A[:, :, NewAxis], 4, 2)
             A[:, :, 3] = 255
     else:
         if typecode(A) != UInt8:
             A = (255 * A).astype(UInt8)
         if A.shape[2] == 3:
             B = zeros(tuple(list(A.shape[0:2]) + [4]), UInt8)
             B[:, :, 0:3] = A
             B[:, :, 3] = 255
             A = B
     self._A = A
     self._Ax = x
     self._Ay = y
     self._imcache = None
Esempio n. 4
0
    def _draw_steps(self, renderer, gc, xt, yt):
        siz=len(xt)
        if siz<2: return
        xt2=ones((2*siz,), typecode(xt))
        xt2[0:-1:2], xt2[1:-1:2], xt2[-1]=xt, xt[1:], xt[-1]
        yt2=ones((2*siz,), typecode(yt))
        yt2[0:-1:2], yt2[1::2]=yt, yt
        gc.set_linestyle('solid')

        if self._newstyle:
            renderer.draw_lines(gc, xt2, yt2, self._transform)
        else:
            renderer.draw_lines(gc, xt2, yt2)
Esempio n. 5
0
def specgram(x,
             NFFT=256,
             Fs=2,
             detrend=detrend_none,
             window=window_hanning,
             noverlap=128):
    """
    Compute a spectrogram of data in x.  Data are split into NFFT
    length segements and the PSD of each section is computed.  The
    windowing function window is applied to each segment, and the
    amount of overlap of each segment is specified with noverlap

    See pdf for more info.

    The returned times are the midpoints of the intervals over which
    the ffts are calculated
    """
    x = asarray(x)
    assert (NFFT > noverlap)
    if log(NFFT) / log(2) != int(log(NFFT) / log(2)):
        raise ValueError, 'NFFT must be a power of 2'

    # zero pad x up to NFFT if it is shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = resize(x, (NFFT, ))
        x[n:] = 0

    # for real x, ignore the negative frequencies
    if typecode(x) == Complex: numFreqs = NFFT
    else: numFreqs = NFFT // 2 + 1

    windowVals = window(ones((NFFT, ), typecode(x)))
    step = NFFT - noverlap
    ind = arange(0, len(x) - NFFT + 1, step)
    n = len(ind)
    Pxx = zeros((numFreqs, n), Float)
    # do the ffts of the slices

    for i in range(n):
        thisX = x[ind[i]:ind[i] + NFFT]
        thisX = windowVals * detrend(thisX)
        fx = absolute(fft(thisX))**2
        # Scale the spectrum by the norm of the window to compensate for
        # windowing loss; see Bendat & Piersol Sec 11.5.2
        Pxx[:, i] = divide(fx[:numFreqs], norm(windowVals)**2)
    t = 1 / Fs * (ind + NFFT / 2)
    freqs = Fs / NFFT * arange(numFreqs)

    return Pxx, freqs, t
Esempio n. 6
0
 def set_array(self, A):
     'Set the image array from numeric/numarray A'
     from numerix import typecode, typecodes
     if typecode(A) in typecodes['Float']:
         self._A = A.astype(nx.Float32)
     else:
         self._A = A.astype(nx.Int16)
Esempio n. 7
0
def specgram(x, NFFT=256, Fs=2, detrend=detrend_none,
             window=window_hanning, noverlap=128):
    """
    Compute a spectrogram of data in x.  Data are split into NFFT
    length segements and the PSD of each section is computed.  The
    windowing function window is applied to each segment, and the
    amount of overlap of each segment is specified with noverlap

    See pdf for more info.

    The returned times are the midpoints of the intervals over which
    the ffts are calculated
    """
    x = asarray(x)
    assert(NFFT>noverlap)
    if log(NFFT)/log(2) != int(log(NFFT)/log(2)):
       raise ValueError, 'NFFT must be a power of 2'

    # zero pad x up to NFFT if it is shorter than NFFT
    if len(x)<NFFT:
        n = len(x)
        x = resize(x, (NFFT,))
        x[n:] = 0
    

    # for real x, ignore the negative frequencies
    if typecode(x)==Complex: numFreqs=NFFT
    else: numFreqs = NFFT//2+1
        
    windowVals = window(ones((NFFT,),typecode(x)))
    step = NFFT-noverlap
    ind = arange(0,len(x)-NFFT+1,step)
    n = len(ind)
    Pxx = zeros((numFreqs,n), Float)
    # do the ffts of the slices

    for i in range(n):
        thisX = x[ind[i]:ind[i]+NFFT]
        thisX = windowVals*detrend(thisX)
        fx = absolute(fft(thisX))**2
        # Scale the spectrum by the norm of the window to compensate for
        # windowing loss; see Bendat & Piersol Sec 11.5.2
        Pxx[:,i] = divide(fx[:numFreqs], norm(windowVals)**2)
    t = 1/Fs*(ind+NFFT/2)
    freqs = Fs/NFFT*arange(numFreqs)

    return Pxx, freqs, t
Esempio n. 8
0
def vander(x,N=None):
    """
    X = vander(x,N=None)

    The Vandermonde matrix of vector x.  The i-th column of X is the
    the i-th power of x.  N is the maximum power to compute; if N is
    None it defaults to len(x).

    """
    if N is None: N=len(x)
    X = ones( (len(x),N), typecode(x))
    for i in range(N-1):
        X[:,i] = x**(N-i-1)
    return X
Esempio n. 9
0
def vander(x, N=None):
    """
    X = vander(x,N=None)

    The Vandermonde matrix of vector x.  The i-th column of X is the
    the i-th power of x.  N is the maximum power to compute; if N is
    None it defaults to len(x).

    """
    if N is None: N = len(x)
    X = ones((len(x), N), typecode(x))
    for i in range(N - 1):
        X[:, i] = x**(N - i - 1)
    return X
Esempio n. 10
0
    def set_data(self, A, shape=None):
        """
        Set the image array

        ACCEPTS: numeric/numarray/PIL Image A"""
        # check if data is PIL Image without importing Image
        if hasattr(A, 'getpixel'): X = pil_to_array(A)
        else: X = ma.asarray(A)  # assume array

        if (typecode(X) != UInt8 or len(X.shape) != 3 or X.shape[2] > 4
                or X.shape[2] < 3):
            cm.ScalarMappable.set_array(self, X)
        else:
            self._A = X

        self._imcache = None
Esempio n. 11
0
    def set_data(self, A, shape=None):
        """
        Set the image array

        ACCEPTS: numeric/numarray/PIL Image A"""
        # check if data is PIL Image without importing Image
        if hasattr(A, "getpixel"):
            X = pil_to_array(A)
        else:
            X = ma.asarray(A)  # assume array

        if typecode(X) != UInt8 or len(X.shape) != 3 or X.shape[2] > 4 or X.shape[2] < 3:
            cm.ScalarMappable.set_array(self, X)
        else:
            self._A = X

        self._imcache = None
Esempio n. 12
0
def longest_contiguous_ones(x):
    """
    return the indicies of the longest stretch of contiguous ones in x,
    assuming x is a vector of zeros and ones.
    """
    if len(x) == 0: return array([])

    ind = find(x == 0)
    if len(ind) == 0: return arange(len(x))
    if len(ind) == len(x): return array([])

    y = zeros((len(x) + 2, ), typecode(x))
    y[1:-1] = x
    dif = diff(y)
    up = find(dif == 1)
    dn = find(dif == -1)
    ind = find(dn - up == max(dn - up))
    ind = arange(take(up, ind), take(dn, ind))

    return ind
Esempio n. 13
0
def longest_contiguous_ones(x):
    """
    return the indicies of the longest stretch of contiguous ones in x,
    assuming x is a vector of zeros and ones.
    """
    if len(x)==0: return array([])

    ind = find(x==0)
    if len(ind)==0:  return arange(len(x))
    if len(ind)==len(x): return array([])

    y = zeros( (len(x)+2,),  typecode(x))
    y[1:-1] = x
    dif = diff(y)
    up = find(dif ==  1);
    dn = find(dif == -1);
    ind = find( dn-up == max(dn - up))
    ind = arange(take(up, ind), take(dn, ind))

    return ind
Esempio n. 14
0
 def __call__(self, X, alpha=1.0):
     """
     X is either a scalar or an array (of any dimension).
     If scalar, a tuple of rgba values is returned, otherwise
     an array with the new shape = oldshape+(4,). If the X-values
     are integers, then they are used as indices into the array.
     If they are floating point, then they must be in the
     interval (0.0, 1.0).
     Alpha must be a scalar.
     """
     if not self._isinit: self._init()
     alpha = min(alpha, 1.0) # alpha must be between 0 and 1
     alpha = max(alpha, 0.0)
     self._lut[:-3, -1] = alpha
     mask_bad = None
     if isinstance(X, (int, float)):
         vtype = 'scalar'
         xa = array([X])
     else:
         vtype = 'array'
         xma = ma.asarray(X)
         xa = xma.filled(0)
         mask_bad = ma.getmaskorNone(xma)
     if typecode(xa) in typecodes['Float']:
         xa = where(xa == 1.0, 0.9999999, xa) # Tweak so 1.0 is in range.
         xa = (xa * self.N).astype(Int)
     mask_under = xa < 0
     mask_over = xa > self.N-1
     xa = where(mask_under, self._i_under, xa)
     xa = where(mask_over, self._i_over, xa)
     if mask_bad is not None: # and sometrue(mask_bad):
         xa = where(mask_bad, self._i_bad, xa)
     #print 'types', typecode(self._lut), typecode(xa), xa.shape
     rgba = take(self._lut, xa)
     if vtype == 'scalar':
         rgba = tuple(rgba[0,:])
     #print rgba[0,1:10,:]       # Now the same for numpy, numeric...
     return rgba
Esempio n. 15
0
 def __call__(self, X, alpha=1.0):
     """
     X is either a scalar or an array (of any dimension).
     If scalar, a tuple of rgba values is returned, otherwise
     an array with the new shape = oldshape+(4,). If the X-values
     are integers, then they are used as indices into the array.
     If they are floating point, then they must be in the
     interval (0.0, 1.0).
     Alpha must be a scalar.
     """
     if not self._isinit: self._init()
     alpha = min(alpha, 1.0)  # alpha must be between 0 and 1
     alpha = max(alpha, 0.0)
     self._lut[:-3, -1] = alpha
     mask_bad = None
     if isinstance(X, (int, float)):
         vtype = 'scalar'
         xa = array([X])
     else:
         vtype = 'array'
         xma = ma.asarray(X)
         xa = xma.filled(0)
         mask_bad = ma.getmaskorNone(xma)
     if typecode(xa) in typecodes['Float']:
         xa = where(xa == 1.0, 0.9999999, xa)  # Tweak so 1.0 is in range.
         xa = (xa * self.N).astype(Int)
     mask_under = xa < 0
     mask_over = xa > self.N - 1
     xa = where(mask_under, self._i_under, xa)
     xa = where(mask_over, self._i_over, xa)
     if mask_bad is not None:  # and sometrue(mask_bad):
         xa = where(mask_bad, self._i_bad, xa)
     #print 'types', typecode(self._lut), typecode(xa), xa.shape
     rgba = take(self._lut, xa)
     if vtype == 'scalar':
         rgba = tuple(rgba[0, :])
     #print rgba[0,1:10,:]       # Now the same for numpy, numeric...
     return rgba
    def __call__(self, X, alpha=1.0):
        """
        X is either a scalar or an array (of any dimension).
        If scalar, a tuple of rgba values is returned, otherwise
        an array with the new shape = oldshape+(4,). If the X-values
        are integers, then they are used as indices into the array.
        If they are floating point, then they must be in the
        interval (0.0, 1.0).
        Alpha must be a scalar.
        """

        if not self._isinit: self._init()
        alpha = min(alpha, 1.0) # alpha must be between 0 and 1
        alpha = max(alpha, 0.0)
        self._lut[:-3, -1] = alpha
        mask_bad = None
        if not iterable(X):
            vtype = 'scalar'
            xa = array([X])
        else:
            vtype = 'array'
            xma = ma.asarray(X)
            xa = xma.filled(0)
            mask_bad = ma.getmask(xma)
        if typecode(xa) in typecodes['Float']:
            putmask(xa, xa==1.0, 0.9999999) #Treat 1.0 as slightly less than 1.
            xa = (xa * self.N).astype(Int)
        # Set the over-range indices before the under-range;
        # otherwise the under-range values get converted to over-range.
        putmask(xa, xa>self.N-1, self._i_over)
        putmask(xa, xa<0, self._i_under)
        if mask_bad is not None and mask_bad.shape == xa.shape:
            putmask(xa, mask_bad, self._i_bad)
        rgba = take(self._lut, xa)
        if vtype == 'scalar':
            rgba = tuple(rgba[0,:])
        return rgba
Esempio n. 17
0
def psd(x,
        NFFT=256,
        Fs=2,
        detrend=detrend_none,
        window=window_hanning,
        noverlap=0):
    """
    The power spectral density by Welches average periodogram method.
    The vector x is divided into NFFT length segments.  Each segment
    is detrended by function detrend and windowed by function window.
    noperlap gives the length of the overlap between segments.  The
    absolute(fft(segment))**2 of each segment are averaged to compute Pxx,
    with a scaling to correct for power loss due to windowing.  Fs is
    the sampling frequency.

    -- NFFT must be a power of 2
    -- detrend and window are functions, unlike in matlab where they are
       vectors.
    -- if length x < NFFT, it will be zero padded to NFFT
    

    Returns the tuple Pxx, freqs

    Refs:
      Bendat & Piersol -- Random Data: Analysis and Measurement
        Procedures, John Wiley & Sons (1986)

    """

    if NFFT % 2:
        raise ValueError, 'NFFT must be a power of 2'

    # zero pad x up to NFFT if it is shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = resize(x, (NFFT, ))
        x[n:] = 0

    # for real x, ignore the negative frequencies
    if typecode(x) == Complex: numFreqs = NFFT
    else: numFreqs = NFFT // 2 + 1

    windowVals = window(ones((NFFT, ), typecode(x)))
    step = NFFT - noverlap
    ind = range(0, len(x) - NFFT + 1, step)
    n = len(ind)
    Pxx = zeros((numFreqs, n), Float)
    # do the ffts of the slices
    for i in range(n):
        thisX = x[ind[i]:ind[i] + NFFT]
        thisX = windowVals * detrend(thisX)
        fx = absolute(fft(thisX))**2
        Pxx[:, i] = divide(fx[:numFreqs], norm(windowVals)**2)

    # Scale the spectrum by the norm of the window to compensate for
    # windowing loss; see Bendat & Piersol Sec 11.5.2
    if n > 1:
        Pxx = mean(Pxx, 1)

    freqs = Fs / NFFT * arange(numFreqs)
    Pxx.shape = len(freqs),

    return Pxx, freqs
Esempio n. 18
0
def zeros_like(a):
    """Return an array of zeros of the shape and typecode of a."""

    return zeros(a.shape,typecode(a))
Esempio n. 19
0
def csd(x,
        y,
        NFFT=256,
        Fs=2,
        detrend=detrend_none,
        window=window_hanning,
        noverlap=0):
    """
    The cross spectral density Pxy by Welches average periodogram
    method.  The vectors x and y are divided into NFFT length
    segments.  Each segment is detrended by function detrend and
    windowed by function window.  noverlap gives the length of the
    overlap between segments.  The product of the direct FFTs of x and
    y are averaged over each segment to compute Pxy, with a scaling to
    correct for power loss due to windowing.  Fs is the sampling
    frequency.

    NFFT must be a power of 2

    Returns the tuple Pxy, freqs

    

    Refs:
      Bendat & Piersol -- Random Data: Analysis and Measurement
        Procedures, John Wiley & Sons (1986)

    """

    if NFFT % 2:
        raise ValueError, 'NFFT must be a power of 2'

    # zero pad x and y up to NFFT if they are shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = resize(x, (NFFT, ))
        x[n:] = 0
    if len(y) < NFFT:
        n = len(y)
        y = resize(y, (NFFT, ))
        y[n:] = 0

    # for real x, ignore the negative frequencies
    if typecode(x) == Complex: numFreqs = NFFT
    else: numFreqs = NFFT // 2 + 1

    windowVals = window(ones((NFFT, ), typecode(x)))
    step = NFFT - noverlap
    ind = range(0, len(x) - NFFT + 1, step)
    n = len(ind)
    Pxy = zeros((numFreqs, n), Complex)

    # do the ffts of the slices
    for i in range(n):
        thisX = x[ind[i]:ind[i] + NFFT]
        thisX = windowVals * detrend(thisX)
        thisY = y[ind[i]:ind[i] + NFFT]
        thisY = windowVals * detrend(thisY)
        fx = fft(thisX)
        fy = fft(thisY)
        Pxy[:, i] = conjugate(fx[:numFreqs]) * fy[:numFreqs]

    # Scale the spectrum by the norm of the window to compensate for
    # windowing loss; see Bendat & Piersol Sec 11.5.2
    if n > 1: Pxy = mean(Pxy, 1)
    Pxy = divide(Pxy, norm(windowVals)**2)
    freqs = Fs / NFFT * arange(numFreqs)
    Pxy.shape = len(freqs),
    return Pxy, freqs
Esempio n. 20
0
def zeros_like(a):
    """Return an array of zeros of the shape and typecode of a."""

    return zeros(a.shape, typecode(a))
Esempio n. 21
0
def cohere_pairs(X,
                 ij,
                 NFFT=256,
                 Fs=2,
                 detrend=detrend_none,
                 window=window_hanning,
                 noverlap=0,
                 preferSpeedOverMemory=True,
                 progressCallback=donothing_callback,
                 returnPxx=False):
    """
    Cxy, Phase, freqs = cohere_pairs( X, ij, ...)
    
    Compute the coherence for all pairs in ij.  X is a
    numSamples,numCols Numeric array.  ij is a list of tuples (i,j).
    Each tuple is a pair of indexes into the columns of X for which
    you want to compute coherence.  For example, if X has 64 columns,
    and you want to compute all nonredundant pairs, define ij as

      ij = []
      for i in range(64):
          for j in range(i+1,64):
              ij.append( (i,j) )

    The other function arguments, except for 'preferSpeedOverMemory'
    (see below), are explained in the help string of 'psd'.

    Return value is a tuple (Cxy, Phase, freqs).

      Cxy -- a dictionary of (i,j) tuples -> coherence vector for that
        pair.  Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]).  Number of
        dictionary keys is len(ij)
      
      Phase -- a dictionary of phases of the cross spectral density at
        each frequency for each pair.  keys are (i,j).

      freqs -- a vector of frequencies, equal in length to either the
        coherence or phase vectors for any i,j key.  Eg, to make a coherence
        Bode plot:

          subplot(211)
          plot( freqs, Cxy[(12,19)])
          subplot(212)
          plot( freqs, Phase[(12,19)])
      
    For a large number of pairs, cohere_pairs can be much more
    efficient than just calling cohere for each pair, because it
    caches most of the intensive computations.  If N is the number of
    pairs, this function is O(N) for most of the heavy lifting,
    whereas calling cohere for each pair is O(N^2).  However, because
    of the caching, it is also more memory intensive, making 2
    additional complex arrays with approximately the same number of
    elements as X.

    The parameter 'preferSpeedOverMemory', if false, limits the
    caching by only making one, rather than two, complex cache arrays.
    This is useful if memory becomes critical.  Even when
    preferSpeedOverMemory is false, cohere_pairs will still give
    significant performace gains over calling cohere for each pair,
    and will use subtantially less memory than if
    preferSpeedOverMemory is true.  In my tests with a 43000,64 array
    over all nonredundant pairs, preferSpeedOverMemory=1 delivered a
    33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared
    with preferSpeedOverMemory=0.  But both solutions were more than
    10x faster than naievly crunching all possible pairs through
    cohere.

    See test/cohere_pairs_test.py in the src tree for an example
    script that shows that this cohere_pairs and cohere give the same
    results for a given pair.

    """
    numRows, numCols = X.shape

    # zero pad if X is too short
    if numRows < NFFT:
        tmp = X
        X = zeros((NFFT, numCols), typecode(X))
        X[:numRows, :] = tmp
        del tmp

    numRows, numCols = X.shape
    # get all the columns of X that we are interested in by checking
    # the ij tuples
    seen = {}
    for i, j in ij:
        seen[i] = 1
        seen[j] = 1
    allColumns = seen.keys()
    Ncols = len(allColumns)
    del seen

    # for real X, ignore the negative frequencies
    if typecode(X) == Complex: numFreqs = NFFT
    else: numFreqs = NFFT // 2 + 1

    # cache the FFT of every windowed, detrended NFFT length segement
    # of every channel.  If preferSpeedOverMemory, cache the conjugate
    # as well
    windowVals = window(ones((NFFT, ), typecode(X)))
    ind = range(0, numRows - NFFT + 1, NFFT - noverlap)
    numSlices = len(ind)
    FFTSlices = {}
    FFTConjSlices = {}
    Pxx = {}
    slices = range(numSlices)
    normVal = norm(windowVals)**2
    for iCol in allColumns:
        progressCallback(i / Ncols, 'Cacheing FFTs')
        Slices = zeros((numSlices, numFreqs), Complex)
        for iSlice in slices:
            thisSlice = X[ind[iSlice]:ind[iSlice] + NFFT, iCol]
            thisSlice = windowVals * detrend(thisSlice)
            Slices[iSlice, :] = fft(thisSlice)[:numFreqs]

        FFTSlices[iCol] = Slices
        if preferSpeedOverMemory:
            FFTConjSlices[iCol] = conjugate(Slices)
        Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal)
    del Slices, ind, windowVals

    # compute the coherences and phases for all pairs using the
    # cached FFTs
    Cxy = {}
    Phase = {}
    count = 0
    N = len(ij)
    for i, j in ij:
        count += 1
        if count % 10 == 0:
            progressCallback(count / N, 'Computing coherences')

        if preferSpeedOverMemory:
            Pxy = FFTSlices[i] * FFTConjSlices[j]
        else:
            Pxy = FFTSlices[i] * conjugate(FFTSlices[j])
        if numSlices > 1: Pxy = mean(Pxy)
        Pxy = divide(Pxy, normVal)
        Cxy[(i, j)] = divide(absolute(Pxy)**2, Pxx[i] * Pxx[j])
        Phase[(i, j)] = arctan2(Pxy.imag, Pxy.real)

    freqs = Fs / NFFT * arange(numFreqs)
    if returnPxx:
        return Cxy, Phase, freqs, Pxx
    else:
        return Cxy, Phase, freqs
Esempio n. 22
0
    def make_image(self):
        if self._A is not None:
            if self._imcache is None:
                if typecode(self._A) == UInt8:
                    im = _image.frombyte(self._A, 0)
                else:
                    x = self.to_rgba(self._A, self._alpha)
                    im = _image.fromarray(x, 0)
                self._imcache = im
            else:
                im = self._imcache
        else:
            raise RuntimeError(
                'You must first set the image array or the image attribute')

        bg = colorConverter.to_rgba(self.axes.get_frame().get_facecolor(), 0)

        if self.origin == 'upper':
            im.flipud_in()

        im.set_bg(*bg)
        im.is_grayscale = (self.cmap.name == "gray"
                           and len(self._A.shape) == 2)

        im.set_aspect(self._aspectd[self._aspect])
        im.set_interpolation(self._interpd[self._interpolation])

        # image input dimensions
        numrows, numcols = im.get_size()
        im.reset_matrix()

        xmin, xmax, ymin, ymax = self.get_extent()
        dxintv = xmax - xmin
        dyintv = ymax - ymin

        # the viewport scale factor
        sx = dxintv / self.axes.viewLim.width()
        sy = dyintv / self.axes.viewLim.height()

        if im.get_interpolation() != _image.NEAREST:
            im.apply_translation(-1, -1)

        # the viewport translation
        tx = (xmin - self.axes.viewLim.xmin()) / dxintv * numcols

        #if flipy:
        #    ty = -(ymax-self.axes.viewLim.ymax())/dyintv * numrows
        #else:
        #    ty = (ymin-self.axes.viewLim.ymin())/dyintv * numrows
        ty = (ymin - self.axes.viewLim.ymin()) / dyintv * numrows

        l, b, widthDisplay, heightDisplay = self.axes.bbox.get_bounds()

        im.apply_translation(tx, ty)
        im.apply_scaling(sx, sy)

        # resize viewport to display
        rx = widthDisplay / numcols
        ry = heightDisplay / numrows

        if im.get_aspect() == _image.ASPECT_PRESERVE:
            if ry < rx: rx = ry
            # todo: center the image in viewport
            im.apply_scaling(rx, rx)

        else:
            im.apply_scaling(rx, ry)

        #print tx, ty, sx, sy, rx, ry, widthDisplay, heightDisplay
        im.resize(int(widthDisplay + 0.5),
                  int(heightDisplay + 0.5),
                  norm=self._filternorm,
                  radius=self._filterrad)

        if self.origin == 'upper':
            im.flipud_in()

        return im
Esempio n. 23
0
def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none,
        window=window_hanning, noverlap=0):
    """
    The cross spectral density Pxy by Welches average periodogram
    method.  The vectors x and y are divided into NFFT length
    segments.  Each segment is detrended by function detrend and
    windowed by function window.  noverlap gives the length of the
    overlap between segments.  The product of the direct FFTs of x and
    y are averaged over each segment to compute Pxy, with a scaling to
    correct for power loss due to windowing.  Fs is the sampling
    frequency.

    NFFT must be a power of 2

    Returns the tuple Pxy, freqs

    

    Refs:
      Bendat & Piersol -- Random Data: Analysis and Measurement
        Procedures, John Wiley & Sons (1986)

    """

    if NFFT % 2:
        raise ValueError, 'NFFT must be a power of 2'

    # zero pad x and y up to NFFT if they are shorter than NFFT
    if len(x)<NFFT:
        n = len(x)
        x = resize(x, (NFFT,))
        x[n:] = 0
    if len(y)<NFFT:
        n = len(y)
        y = resize(y, (NFFT,))
        y[n:] = 0

    # for real x, ignore the negative frequencies
    if typecode(x)==Complex: numFreqs = NFFT
    else: numFreqs = NFFT//2+1
        
    windowVals = window(ones((NFFT,),typecode(x)))
    step = NFFT-noverlap
    ind = range(0,len(x)-NFFT+1,step)
    n = len(ind)
    Pxy = zeros((numFreqs,n), Complex)

    # do the ffts of the slices
    for i in range(n):
        thisX = x[ind[i]:ind[i]+NFFT]
        thisX = windowVals*detrend(thisX)
        thisY = y[ind[i]:ind[i]+NFFT]
        thisY = windowVals*detrend(thisY)
        fx = fft(thisX)
        fy = fft(thisY)
        Pxy[:,i] = conjugate(fx[:numFreqs])*fy[:numFreqs]



    # Scale the spectrum by the norm of the window to compensate for
    # windowing loss; see Bendat & Piersol Sec 11.5.2
    if n>1: Pxy = mean(Pxy,1)
    Pxy = divide(Pxy, norm(windowVals)**2)
    freqs = Fs/NFFT*arange(numFreqs)
    Pxy.shape = len(freqs),
    return Pxy, freqs
Esempio n. 24
0
    def make_image(self):
        if self._A is not None:
            if self._imcache is None:
                if typecode(self._A) == UInt8:
                    im = _image.frombyte(self._A, 0)
                else:
                    x = self.to_rgba(self._A, self._alpha)
                    im = _image.fromarray(x, 0)
                self._imcache = im
            else:
                im = self._imcache
        else:
            raise RuntimeError('You must first set the image array or the image attribute')


        bg = colorConverter.to_rgba(self.axes.get_frame().get_facecolor(), 0)

        if self.origin=='upper':
            im.flipud_in()

        im.set_bg( *bg)
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        im.set_aspect(self._aspectd[self._aspect])
        im.set_interpolation(self._interpd[self._interpolation])



        # image input dimensions
        numrows, numcols = im.get_size()
        im.reset_matrix()

        xmin, xmax, ymin, ymax = self.get_extent()
        dxintv = xmax-xmin
        dyintv = ymax-ymin

        # the viewport scale factor
        sx = dxintv/self.axes.viewLim.width()
        sy = dyintv/self.axes.viewLim.height()

        if im.get_interpolation()!=_image.NEAREST:
            im.apply_translation(-1, -1)

        # the viewport translation
        tx = (xmin-self.axes.viewLim.xmin())/dxintv * numcols


        #if flipy:
        #    ty = -(ymax-self.axes.viewLim.ymax())/dyintv * numrows
        #else:
        #    ty = (ymin-self.axes.viewLim.ymin())/dyintv * numrows
        ty = (ymin-self.axes.viewLim.ymin())/dyintv * numrows

        l, b, widthDisplay, heightDisplay = self.axes.bbox.get_bounds()


        im.apply_translation(tx, ty)
        im.apply_scaling(sx, sy)

        # resize viewport to display
        rx = widthDisplay / numcols
        ry = heightDisplay  / numrows


        if im.get_aspect()==_image.ASPECT_PRESERVE:
            if ry < rx: rx = ry
            # todo: center the image in viewport
            im.apply_scaling(rx, rx)

        else:
            im.apply_scaling(rx, ry)

        #print tx, ty, sx, sy, rx, ry, widthDisplay, heightDisplay
        im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
                  norm=self._filternorm, radius=self._filterrad)

        if self.origin=='upper':
            im.flipud_in()

        return im
Esempio n. 25
0
def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none,
                  window=window_hanning, noverlap=0,
                  preferSpeedOverMemory=True,
                  progressCallback=donothing_callback,
                  returnPxx=False):

    """
    Cxy, Phase, freqs = cohere_pairs( X, ij, ...)
    
    Compute the coherence for all pairs in ij.  X is a
    numSamples,numCols Numeric array.  ij is a list of tuples (i,j).
    Each tuple is a pair of indexes into the columns of X for which
    you want to compute coherence.  For example, if X has 64 columns,
    and you want to compute all nonredundant pairs, define ij as

      ij = []
      for i in range(64):
          for j in range(i+1,64):
              ij.append( (i,j) )

    The other function arguments, except for 'preferSpeedOverMemory'
    (see below), are explained in the help string of 'psd'.

    Return value is a tuple (Cxy, Phase, freqs).

      Cxy -- a dictionary of (i,j) tuples -> coherence vector for that
        pair.  Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]).  Number of
        dictionary keys is len(ij)
      
      Phase -- a dictionary of phases of the cross spectral density at
        each frequency for each pair.  keys are (i,j).

      freqs -- a vector of frequencies, equal in length to either the
        coherence or phase vectors for any i,j key.  Eg, to make a coherence
        Bode plot:

          subplot(211)
          plot( freqs, Cxy[(12,19)])
          subplot(212)
          plot( freqs, Phase[(12,19)])
      
    For a large number of pairs, cohere_pairs can be much more
    efficient than just calling cohere for each pair, because it
    caches most of the intensive computations.  If N is the number of
    pairs, this function is O(N) for most of the heavy lifting,
    whereas calling cohere for each pair is O(N^2).  However, because
    of the caching, it is also more memory intensive, making 2
    additional complex arrays with approximately the same number of
    elements as X.

    The parameter 'preferSpeedOverMemory', if false, limits the
    caching by only making one, rather than two, complex cache arrays.
    This is useful if memory becomes critical.  Even when
    preferSpeedOverMemory is false, cohere_pairs will still give
    significant performace gains over calling cohere for each pair,
    and will use subtantially less memory than if
    preferSpeedOverMemory is true.  In my tests with a 43000,64 array
    over all nonredundant pairs, preferSpeedOverMemory=1 delivered a
    33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared
    with preferSpeedOverMemory=0.  But both solutions were more than
    10x faster than naievly crunching all possible pairs through
    cohere.

    See test/cohere_pairs_test.py in the src tree for an example
    script that shows that this cohere_pairs and cohere give the same
    results for a given pair.

    """
    numRows, numCols = X.shape

    # zero pad if X is too short
    if numRows < NFFT:
        tmp = X
        X = zeros( (NFFT, numCols), typecode(X))
        X[:numRows,:] = tmp
        del tmp

    numRows, numCols = X.shape
    # get all the columns of X that we are interested in by checking
    # the ij tuples
    seen = {}
    for i,j in ij:
        seen[i]=1; seen[j] = 1
    allColumns = seen.keys()
    Ncols = len(allColumns)
    del seen
    
    # for real X, ignore the negative frequencies
    if typecode(X)==Complex: numFreqs = NFFT
    else: numFreqs = NFFT//2+1

    # cache the FFT of every windowed, detrended NFFT length segement
    # of every channel.  If preferSpeedOverMemory, cache the conjugate
    # as well
    windowVals = window(ones((NFFT,), typecode(X)))
    ind = range(0, numRows-NFFT+1, NFFT-noverlap)
    numSlices = len(ind)
    FFTSlices = {}
    FFTConjSlices = {}
    Pxx = {}
    slices = range(numSlices)
    normVal = norm(windowVals)**2
    for iCol in allColumns:
        progressCallback(i/Ncols, 'Cacheing FFTs')
        Slices = zeros( (numSlices,numFreqs), Complex)
        for iSlice in slices:                    
            thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol]
            thisSlice = windowVals*detrend(thisSlice)
            Slices[iSlice,:] = fft(thisSlice)[:numFreqs]
            
        FFTSlices[iCol] = Slices
        if preferSpeedOverMemory:
            FFTConjSlices[iCol] = conjugate(Slices)
        Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal)
    del Slices, ind, windowVals    

    # compute the coherences and phases for all pairs using the
    # cached FFTs
    Cxy = {}
    Phase = {}
    count = 0
    N = len(ij)
    for i,j in ij:
        count +=1
        if count%10==0:
            progressCallback(count/N, 'Computing coherences')

        if preferSpeedOverMemory:
            Pxy = FFTSlices[i] * FFTConjSlices[j]
        else:
            Pxy = FFTSlices[i] * conjugate(FFTSlices[j])
        if numSlices>1: Pxy = mean(Pxy)
        Pxy = divide(Pxy, normVal)
        Cxy[(i,j)] = divide(absolute(Pxy)**2, Pxx[i]*Pxx[j])
        Phase[(i,j)] =  arctan2(Pxy.imag, Pxy.real)

    freqs = Fs/NFFT*arange(numFreqs)
    if returnPxx:
       return Cxy, Phase, freqs, Pxx
    else:
       return Cxy, Phase, freqs