Esempio n. 1
0
    def test_density(self):
        # Check that the integral of the density equals 1.
        n = 100
        v = np.random.rand(n)
        a, b = histogram(v, density=True)
        area = np.sum(a * np.diff(b))
        assert_almost_equal(area, 1)

        # Check with non-constant bin widths
        v = np.arange(10)
        bins = [0, 1, 3, 6, 10]
        a, b = histogram(v, bins, density=True)
        assert_array_equal(a, .1)
        assert_equal(np.sum(a * np.diff(b)), 1)

        # Test that passing False works too
        a, b = histogram(v, bins, density=False)
        assert_array_equal(a, [1, 2, 3, 4])

        # Variale bin widths are especially useful to deal with
        # infinities.
        v = np.arange(10)
        bins = [0, 1, 3, 6, np.inf]
        a, b = histogram(v, bins, density=True)
        assert_array_equal(a, [.1, .1, .1, 0.])

        # Taken from a bug report from N. Becker on the numpy-discussion
        # mailing list Aug. 6, 2010.
        counts, dmy = np.histogram([1, 2, 3, 4], [0.5, 1.5, np.inf],
                                   density=True)
        assert_equal(counts, [.25, 0])
Esempio n. 2
0
def _unique1d(ar,
              return_index=False,
              return_inverse=False,
              return_counts=False):
    """
    Find the unique elements of an array, ignoring shape.
    """
    ar = np.asanyarray(ar).flatten()

    optional_indices = return_index or return_inverse

    if optional_indices:
        perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
        aux = ar[perm]
    else:
        ar.sort()
        aux = ar
    mask = np.empty(aux.shape, dtype=np.bool_)
    mask[:1] = True
    mask[1:] = aux[1:] != aux[:-1]

    ret = (aux[mask], )
    if return_index:
        ret += (perm[mask], )
    if return_inverse:
        imask = np.cumsum(mask) - 1
        inv_idx = np.empty(mask.shape, dtype=np.intp)
        inv_idx[perm] = imask
        ret += (inv_idx, )
    if return_counts:
        idx = np.concatenate(np.nonzero(mask) + ([mask.size], ))
        ret += (np.diff(idx), )
    return ret
Esempio n. 3
0
    def test_normed(self):
        sup = suppress_warnings()
        with sup:
            rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
            # Check that the integral of the density equals 1.
            n = 100
            v = np.random.rand(n)
            a, b = histogram(v, normed=True)
            area = np.sum(a * np.diff(b))
            assert_almost_equal(area, 1)
            assert_equal(len(rec), 1)

        sup = suppress_warnings()
        with sup:
            rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
            # Check with non-constant bin widths (buggy but backwards
            # compatible)
            v = np.arange(10)
            bins = [0, 1, 5, 9, 10]
            a, b = histogram(v, bins, normed=True)
            area = np.sum(a * np.diff(b))
            assert_almost_equal(area, 1)
            assert_equal(len(rec), 1)
Esempio n. 4
0
    def test_outliers(self):
        # Check that outliers are not tallied
        a = np.arange(10) + .5

        # Lower outliers
        h, b = histogram(a, range=[0, 9])
        assert_equal(h.sum(), 9)

        # Upper outliers
        h, b = histogram(a, range=[1, 10])
        assert_equal(h.sum(), 9)

        # Normalization
        h, b = histogram(a, range=[1, 9], density=True)
        assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)

        # Weights
        w = np.arange(10) + .5
        h, b = histogram(a, range=[1, 9], weights=w, density=True)
        assert_equal((h * np.diff(b)).sum(), 1)

        h, b = histogram(a, bins=8, range=[1, 9], weights=w)
        assert_equal(h, w[1:-1])
Esempio n. 5
0
def histogramdd(sample,
                bins=10,
                range=None,
                normed=None,
                weights=None,
                density=None):
    """
    Compute the multidimensional histogram of some data.

    Parameters
    ----------
    sample : (N, D) array, or (D, N) array_like
        The data to be histogrammed.

        Note the unusual interpretation of sample when an array_like:

        * When an array, each row is a coordinate in a D-dimensional space -
          such as ``histogramgramdd(np.array([p1, p2, p3]))``.
        * When an array_like, each element is the list of values for single
          coordinate - such as ``histogramgramdd((X, Y, Z))``.

        The first form should be preferred.

    bins : sequence or int, optional
        The bin specification:

        * A sequence of arrays describing the bin edges along each dimension.
        * The number of bins for each dimension (nx, ny, ... =bins)
        * The number of bins for all dimensions (nx=ny=...=bins).

    range : sequence, optional
        A sequence of length D, each an optional (lower, upper) tuple giving
        the outer bin edges to be used if the edges are not given explicitly in
        `bins`.
        An entry of None in the sequence results in the minimum and maximum
        values being used for the corresponding dimension.
        The default, None, is equivalent to passing a tuple of D None values.
    density : bool, optional
        If False, the default, returns the number of samples in each bin.
        If True, returns the probability *density* function at the bin,
        ``bin_count / sample_count / bin_volume``.
    normed : bool, optional
        An alias for the density argument that behaves identically. To avoid
        confusion with the broken normed argument to `histogram`, `density`
        should be preferred.
    weights : (N,) array_like, optional
        An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
        Weights are normalized to 1 if normed is True. If normed is False,
        the values of the returned histogram are equal to the sum of the
        weights belonging to the samples falling into each bin.

    Returns
    -------
    H : ndarray
        The multidimensional histogram of sample x. See normed and weights
        for the different possible semantics.
    edges : list
        A list of D arrays describing the bin edges for each dimension.

    See Also
    --------
    histogram: 1-D histogram
    histogram2d: 2-D histogram

    Examples
    --------
    >>> r = np.random.randn(100,3)
    >>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
    >>> H.shape, edges[0].size, edges[1].size, edges[2].size
    ((5, 8, 4), 6, 9, 5)

    """

    try:
        # Sample is an ND-array.
        N, D = sample.shape
    except (AttributeError, ValueError):
        # Sample is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        N, D = sample.shape

    nbin = np.empty(D, int)
    edges = D * [None]
    dedges = D * [None]
    if weights is not None:
        weights = np.asarray(weights)

    try:
        M = len(bins)
        if M != D:
            raise ValueError(
                'The dimension of bins must be equal to the dimension of the '
                ' sample x.')
    except TypeError:
        # bins is an integer
        bins = D * [bins]

    # normalize the range argument
    if range is None:
        range = (None, ) * D
    elif len(range) != D:
        raise ValueError('range argument must have one entry per dimension')

    # Create edge arrays
    for i in _range(D):
        if np.ndim(bins[i]) == 0:
            if bins[i] < 1:
                raise ValueError(
                    '`bins[{}]` must be positive, when an integer'.format(i))
            smin, smax = _get_outer_edges(sample[:, i], range[i])
            edges[i] = np.linspace(smin, smax, bins[i] + 1)
        elif np.ndim(bins[i]) == 1:
            edges[i] = np.asarray(bins[i])
            if np.any(edges[i][:-1] > edges[i][1:]):
                raise ValueError(
                    '`bins[{}]` must be monotonically increasing, when an array'
                    .format(i))
        else:
            raise ValueError(
                '`bins[{}]` must be a scalar or 1d array'.format(i))

        nbin[i] = len(edges[i]) + 1  # includes an outlier on each end
        dedges[i] = np.diff(edges[i])

    # Compute the bin number each sample falls into.
    Ncount = tuple(
        # avoid np.digitize to work around gh-11022
        np.searchsorted(edges[i], sample[:, i], side='right')
        for i in _range(D))

    # Using digitize, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right edge to be
    # counted in the last bin, and not as an outlier.
    for i in _range(D):
        # Find which points are on the rightmost edge.
        on_edge = (sample[:, i] == edges[i][-1])
        # Shift these points one bin to the left.
        Ncount[i][on_edge] -= 1

    # Compute the sample indices in the flattened histogram matrix.
    # This raises an error if the array is too large.
    xy = np.ravel_multi_index(Ncount, nbin)

    # Compute the number of repetitions in xy and assign it to the
    # flattened histmat.
    hist = np.bincount(xy, weights, minlength=nbin.prod())

    # Shape into a proper matrix
    hist = hist.reshape(nbin)

    # This preserves the (bad) behavior observed in gh-7845, for now.
    hist = hist.astype(float, casting='safe')

    # Remove outliers (indices 0 and -1 for each dimension).
    core = D * (slice(1, -1), )
    hist = hist[core]

    # handle the aliasing normed argument
    if normed is None:
        if density is None:
            density = False
    elif density is None:
        # an explicit normed argument was passed, alias it to the new name
        density = normed
    else:
        raise TypeError("Cannot specify both 'normed' and 'density'")

    if density:
        # calculate the probability density function
        s = hist.sum()
        for i in _range(D):
            shape = np.ones(D, int)
            shape[i] = nbin[i] - 2
            hist = hist / dedges[i].reshape(shape)
        hist /= s

    if (hist.shape != nbin - 2).any():
        raise RuntimeError("Internal Shape Error")
    return hist, edges
Esempio n. 6
0
def histogram(a, bins=10, range=None, normed=None, weights=None, density=None):
    r"""
    Compute the histogram of a set of data.

    Parameters
    ----------
    a : array_like
        Input data. The histogram is computed over the flattened array.
    bins : int or sequence of scalars or str, optional
        If `bins` is an int, it defines the number of equal-width
        bins in the given range (10, by default). If `bins` is a
        sequence, it defines the bin edges, including the rightmost
        edge, allowing for non-uniform bin widths.

        .. versionadded:: 1.11.0

        If `bins` is a string, it defines the method used to calculate the
        optimal bin width, as defined by `histogram_bin_edges`.

    range : (float, float), optional
        The lower and upper range of the bins.  If not provided, range
        is simply ``(a.min(), a.max())``.  Values outside the range are
        ignored. The first element of the range must be less than or
        equal to the second. `range` affects the automatic bin
        computation as well. While bin width is computed to be optimal
        based on the actual data within `range`, the bin count will fill
        the entire range including portions containing no data.
    normed : bool, optional

        .. deprecated:: 1.6.0

        This is equivalent to the `density` argument, but produces incorrect
        results for unequal bin widths. It should not be used.

        .. versionchanged:: 1.15.0
            DeprecationWarnings are actually emitted.

    weights : array_like, optional
        An array of weights, of the same shape as `a`.  Each value in
        `a` only contributes its associated weight towards the bin count
        (instead of 1). If `density` is True, the weights are
        normalized, so that the integral of the density over the range
        remains 1.
    density : bool, optional
        If ``False``, the result will contain the number of samples in
        each bin. If ``True``, the result is the value of the
        probability *density* function at the bin, normalized such that
        the *integral* over the range is 1. Note that the sum of the
        histogram values will not be equal to 1 unless bins of unity
        width are chosen; it is not a probability *mass* function.

        Overrides the ``normed`` keyword if given.

    Returns
    -------
    hist : array
        The values of the histogram. See `density` and `weights` for a
        description of the possible semantics.
    bin_edges : array of dtype float
        Return the bin edges ``(length(hist)+1)``.


    See Also
    --------
    histogramdd, bincount, searchsorted, digitize, histogram_bin_edges

    Notes
    -----
    All but the last (righthand-most) bin is half-open.  In other words,
    if `bins` is::

      [1, 2, 3, 4]

    then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
    the second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which
    *includes* 4.


    Examples
    --------
    >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
    (array([0, 2, 1]), array([0, 1, 2, 3]))
    >>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
    (array([ 0.25,  0.25,  0.25,  0.25]), array([0, 1, 2, 3, 4]))
    >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
    (array([1, 4, 1]), array([0, 1, 2, 3]))

    >>> a = np.arange(5)
    >>> hist, bin_edges = np.histogram(a, density=True)
    >>> hist
    array([ 0.5,  0. ,  0.5,  0. ,  0. ,  0.5,  0. ,  0.5,  0. ,  0.5])
    >>> hist.sum()
    2.4999999999999996
    >>> np.sum(hist * np.diff(bin_edges))
    1.0

    .. versionadded:: 1.11.0

    Automated Bin Selection Methods example, using 2 peak random data
    with 2000 points:

    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.RandomState(10)  # deterministic random data
    >>> a = np.hstack((rng.normal(size=1000),
    ...                rng.normal(loc=5, scale=2, size=1000)))
    >>> plt.hist(a, bins='auto')  # arguments are passed to np.histogram
    >>> plt.title("Histogram with 'auto' bins")
    >>> plt.show()

    """
    a, weights = _ravel_and_check_weights(a, weights)

    bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights)

    # Histogram is an integer or a float array depending on the weights.
    if weights is None:
        ntype = np.dtype(np.intp)
    else:
        ntype = weights.dtype

    # We set a block size, as this allows us to iterate over chunks when
    # computing histograms, to minimize memory usage.
    BLOCK = 65536

    # The fast path uses bincount, but that only works for certain types
    # of weight
    simple_weights = (weights is None or np.can_cast(weights.dtype, np.double)
                      or np.can_cast(weights.dtype, complex))

    if uniform_bins is not None and simple_weights:
        # Fast algorithm for equal bins
        # We now convert values of a to bin indices, under the assumption of
        # equal bin widths (which is valid here).
        first_edge, last_edge, n_equal_bins = uniform_bins

        # Initialize empty histogram
        n = np.zeros(n_equal_bins, ntype)

        # Pre-compute histogram scaling factor
        norm = n_equal_bins / _unsigned_subtract(last_edge, first_edge)

        # We iterate over blocks here for two reasons: the first is that for
        # large arrays, it is actually faster (for example for a 10^8 array it
        # is 2x as fast) and it results in a memory footprint 3x lower in the
        # limit of large arrays.
        for i in _range(0, len(a), BLOCK):
            tmp_a = a[i:i + BLOCK]
            if weights is None:
                tmp_w = None
            else:
                tmp_w = weights[i:i + BLOCK]

            # Only include values in the right range
            keep = (tmp_a >= first_edge)
            keep &= (tmp_a <= last_edge)
            if not np.logical_and.reduce(keep):
                tmp_a = tmp_a[keep]
                if tmp_w is not None:
                    tmp_w = tmp_w[keep]

            # This cast ensures no type promotions occur below, which gh-10322
            # make unpredictable. Getting it wrong leads to precision errors
            # like gh-8123.
            tmp_a = tmp_a.astype(bin_edges.dtype, copy=False)

            # Compute the bin indices, and for values that lie exactly on
            # last_edge we need to subtract one
            f_indices = _unsigned_subtract(tmp_a, first_edge) * norm
            indices = f_indices.astype(np.intp)
            indices[indices == n_equal_bins] -= 1

            # The index computation is not guaranteed to give exactly
            # consistent results within ~1 ULP of the bin edges.
            decrement = tmp_a < bin_edges[indices]
            indices[decrement] -= 1
            # The last bin includes the right edge. The other bins do not.
            increment = ((tmp_a >= bin_edges[indices + 1])
                         & (indices != n_equal_bins - 1))
            indices[increment] += 1

            # We now compute the histogram using bincount
            if ntype.kind == 'c':
                n.real += np.bincount(indices,
                                      weights=tmp_w.real,
                                      minlength=n_equal_bins)
                n.imag += np.bincount(indices,
                                      weights=tmp_w.imag,
                                      minlength=n_equal_bins)
            else:
                n += np.bincount(indices,
                                 weights=tmp_w,
                                 minlength=n_equal_bins).astype(ntype)
    else:
        # Compute via cumulative histogram
        cum_n = np.zeros(bin_edges.shape, ntype)
        if weights is None:
            for i in _range(0, len(a), BLOCK):
                sa = np.sort(a[i:i + BLOCK])
                cum_n += _search_sorted_inclusive(sa, bin_edges)
        else:
            zero = np.zeros(1, dtype=ntype)
            for i in _range(0, len(a), BLOCK):
                tmp_a = a[i:i + BLOCK]
                tmp_w = weights[i:i + BLOCK]
                sorting_index = np.argsort(tmp_a)
                sa = tmp_a[sorting_index]
                sw = tmp_w[sorting_index]
                cw = np.concatenate((zero, sw.cumsum()))
                bin_index = _search_sorted_inclusive(sa, bin_edges)
                cum_n += cw[bin_index]

        n = np.diff(cum_n)

    # density overrides the normed keyword
    if density is not None:
        if normed is not None:
            # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6)
            warnings.warn(
                "The normed argument is ignored when density is provided. "
                "In future passing both will result in an error.",
                DeprecationWarning,
                stacklevel=2)
        normed = None

    if density:
        db = np.array(np.diff(bin_edges), float)
        return n / db / n.sum(), bin_edges
    elif normed:
        # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6)
        warnings.warn(
            "Passing `normed=True` on non-uniform bins has always been "
            "broken, and computes neither the probability density "
            "function nor the probability mass function. "
            "The result is only correct if the bins are uniform, when "
            "density=True will produce the same result anyway. "
            "The argument will be removed in a future version of "
            "numpy.",
            np.VisibleDeprecationWarning,
            stacklevel=2)

        # this normalization is incorrect, but
        db = np.array(np.diff(bin_edges), float)
        return n / (n * db).sum(), bin_edges
    else:
        if normed is not None:
            # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6)
            warnings.warn(
                "Passing normed=False is deprecated, and has no effect. "
                "Consider passing the density argument instead.",
                DeprecationWarning,
                stacklevel=2)
        return n, bin_edges