# This file was automatically created by FeynRules 2.0.8 # Mathematica version: 8.0 for Linux x86 (64-bit) (February 23, 2011) # Date: Tue 11 Nov 2014 15:33:22 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-G', order={'QCD': 1}) GC_2 = Coupling(name='GC_2', value='complex(0,1)*G**2', order={'QCD': 2}) GC_3 = Coupling(name='GC_3', value='cw*complex(0,1)*gw', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='-(complex(0,1)*gw**2)', order={'QED': 2}) GC_5 = Coupling(name='GC_5', value='cw**2*complex(0,1)*gw**2', order={'QED': 2}) GC_6 = Coupling(name='GC_6', value='complex(0,1)*gw*sw', order={'QED': 1}) GC_7 = Coupling(name='GC_7', value='-2*cw*complex(0,1)*gw**2*sw', order={'QED': 2}) GC_8 = Coupling(name='GC_8', value='complex(0,1)*gw**2*sw**2', order={'QED': 2})
# This file was automatically created by FeynRules $Revision: 821 $ # Mathematica version: 7.0 for Microsoft Windows (32-bit) (February 18, 2009) # Date: Mon 3 Oct 2011 13:27:06 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec GC_1 = Coupling(name = 'GC_1', value = '-(ee*complex(0,1))/3.', order = {'QED':1}) GC_2 = Coupling(name = 'GC_2', value = '(2*ee*complex(0,1))/3.', order = {'QED':1}) GC_3 = Coupling(name = 'GC_3', value = '-(ee*complex(0,1))', order = {'QED':1}) GC_4 = Coupling(name = 'GC_4', value = '-G', order = {'QCD':1}) GC_5 = Coupling(name = 'GC_5', value = 'complex(0,1)*G', order = {'QCD':1})
# This file was automatically created by FeynRules 2.3.36 # Mathematica version: 12.1.1 for Mac OS X x86 (64-bit) (June 19, 2020) # Date: Mon 30 Nov 2020 13:40:59 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name = 'GC_1', value = '-(ee*complex(0,1))/3.', order = {'QED':1}) GC_2 = Coupling(name = 'GC_2', value = '(2*ee*complex(0,1))/3.', order = {'QED':1}) GC_3 = Coupling(name = 'GC_3', value = '-(ee*complex(0,1))', order = {'QED':1}) GC_4 = Coupling(name = 'GC_4', value = 'ee*complex(0,1)', order = {'QED':1}) GC_5 = Coupling(name = 'GC_5', value = 'ee**2*complex(0,1)', order = {'QED':2})
# This file was automatically created by FeynRules 2.0.6 # Mathematica version: 8.0 for Linux x86 (64-bit) (October 10, 2011) # Date: Thu 20 Feb 2014 17:14:11 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1}) GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2}) GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1}) GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1}) GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2}) GC_9 = Coupling(name='GC_9', value='-gx', order={'QED': 1}) GC_10 = Coupling(name='GC_10', value='complex(0,1)*gxd', order={'QED': 1}) GC_11 = Coupling(name='GC_11', value='complex(0,1)*gxl', order={'QED': 1}) GC_12 = Coupling(name='GC_12', value='complex(0,1)*gxu', order={'QED': 1})
# This file was automatically created by FeynRules 2.3.2 # Mathematica version: 12.1.0 for Mac OS X x86 (64-bit) (March 14, 2020) # Date: Fri 28 May 2021 15:01:09 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1}) GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2}) GC_6 = Coupling(name='GC_6', value='2*ee**2*complex(0,1)', order={'QED': 2}) GC_7 = Coupling(name='GC_7', value='-ee**2/(2.*cw)', order={'QED': 2}) GC_8 = Coupling(name='GC_8', value='(ee**2*complex(0,1))/(2.*cw)', order={'QED': 2}) GC_9 = Coupling(name='GC_9', value='ee**2/(2.*cw)', order={'QED': 2}) GC_10 = Coupling(name='GC_10', value='-G', order={'QCD': 1}) GC_11 = Coupling(name='GC_11', value='complex(0,1)*G', order={'QCD': 1})
# This file was automatically created by FeynRules 2.3.10 # Mathematica version: 9.0 for Linux x86 (64-bit) (November 20, 2012) # Date: Sun 30 Oct 2016 21:38:37 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot R2GC_113_1 = Coupling(name='R2GC_113_1', value='-G**4/(192.*cmath.pi**2)', order={'QCD': 4}) R2GC_113_2 = Coupling(name='R2GC_113_2', value='G**4/(64.*cmath.pi**2)', order={'QCD': 4}) R2GC_114_3 = Coupling(name='R2GC_114_3', value='-(complex(0,1)*G**4)/(192.*cmath.pi**2)', order={'QCD': 4}) R2GC_114_4 = Coupling(name='R2GC_114_4', value='(complex(0,1)*G**4)/(64.*cmath.pi**2)', order={'QCD': 4}) R2GC_115_5 = Coupling(name='R2GC_115_5', value='(complex(0,1)*G**4)/(192.*cmath.pi**2)', order={'QCD': 4}) R2GC_115_6 = Coupling(name='R2GC_115_6', value='-(complex(0,1)*G**4)/(64.*cmath.pi**2)', order={'QCD': 4})
# This file was automatically created by FeynRules 1.7.195 # Mathematica version: 8.0 for Mac OS X x86 (64-bit) (October 5, 2011) # Date: Mon 16 Dec 2013 09:04:48 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1}) GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2}) GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1}) GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1}) GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2}) GC_9 = Coupling(name='GC_9', value='-6*complex(0,1)*lam', order={'QED': 2}) GC_10 = Coupling(name='GC_10', value='(ee**2*complex(0,1))/(2.*sw**2)', order={'QED': 2}) GC_11 = Coupling(name='GC_11',
# This file was automatically created by FeynRules 2.0.23 # Mathematica version: 9.0 for Mac OS X x86 (64-bit) (November 20, 2012) # Date: Sat 20 Sep 2014 16:11:37 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(AH*ch*complex(0,1))', order={'HIW': 1}) GC_2 = Coupling(name='GC_2', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='-(ee*complex(0,1))', order={'QED': 1}) GC_5 = Coupling(name='GC_5', value='-G', order={'QCD': 1}) GC_6 = Coupling(name='GC_6', value='complex(0,1)*G', order={'QCD': 1}) GC_7 = Coupling(name='GC_7', value='complex(0,1)*G**2', order={'QCD': 2}) GC_8 = Coupling(name='GC_8', value='-(ch*complex(0,1)*GH)', order={'HIG': 1}) GC_9 = Coupling(name='GC_9', value='-(ch*G*GH)', order={'HIG': 1, 'QCD': 1}) GC_10 = Coupling(name='GC_10', value='ch*complex(0,1)*G**2*GH', order={ 'HIG': 1, 'QCD': 2
# This file was automatically created by FeynRules 1.7.100 # Mathematica version: 7.0 for Linux x86 (64-bit) (February 18, 2009) # Date: Wed 28 Nov 2012 10:15:27 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec GC_1 = Coupling(name='GC_1', value='2*A0FC1x1*complex(0,1)', order={'MT1': 1}) GC_2 = Coupling(name='GC_2', value='A0FC1x2*complex(0,1) + A0FC2x1*complex(0,1)', order={'MT1': 1}) GC_3 = Coupling(name='GC_3', value='2*A0FC2x2*complex(0,1)', order={'MT1': 1}) GC_4 = Coupling(name='GC_4', value='A0FC1x3*complex(0,1) + A0FC3x1*complex(0,1)', order={'MT1': 1}) GC_5 = Coupling(name='GC_5', value='A0FC2x3*complex(0,1) + A0FC3x2*complex(0,1)', order={'MT1': 1}) GC_6 = Coupling(name='GC_6', value='2*A0FC3x3*complex(0,1)', order={'MT1': 1}) GC_7 = Coupling(name='GC_7', value='A12S1*complex(0,1)', order={'MT3': 1}) GC_8 = Coupling(name='GC_8', value='A12S2*complex(0,1)', order={'MT3': 1}) GC_9 = Coupling(name='GC_9', value='A12S3*complex(0,1)', order={'MT3': 1})
# This file was automatically created by FeynRules $Revision: 364 $ # Mathematica version: 7.0 for Mac OS X x86 (64-bit) (November 11, 2008) # Date: Wed 10 Nov 2010 10:19:46 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='-G', order={'QCD': 1}) GC_5 = Coupling(name='GC_5', value='complex(0,1)*G', order={'QCD': 1}) GC_6 = Coupling(name='GC_6', value='complex(0,1)*G**2', order={'QCD': 2}) GC_7 = Coupling(name='GC_7', value='ca*cw*complex(0,1)*gw', order={'QED': 1}) GC_8 = Coupling(name='GC_8', value='-(complex(0,1)*gw**2)', order={'QED': 2}) GC_9 = Coupling(name='GC_9', value='ca**2*cw**2*complex(0,1)*gw**2', order={'QED': 2}) GC_10 = Coupling(name='GC_10', value='-(cw*complex(0,1)*gw*sa)', order={'QED': 1})
# This file was automatically created by FeynRules 2.1.48 # Mathematica version: 8.0 for Mac OS X x86 (64-bit) (November 6, 2010) # Date: Wed 2 Apr 2014 11:19:40 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-G', order={'QCD': 1}) GC_10 = Coupling(name='GC_10', value='(complex(0,1)*gw)/2.', order={'QED': 1}) GC_100 = Coupling( name='GC_100', value= '-2*complex(0,1)*l1*TH1x1*TH1x2 - complex(0,1)*l6*TH1x2*TH2x1 - complex(0,1)*l6*TH1x1*TH2x2 - complex(0,1)*l3*TH2x1*TH2x2 - complex(0,1)*l4*TH2x1*TH2x2 + 2*complex(0,1)*l5*TH2x1*TH2x2', order={'QED': 2}) GC_101 = Coupling( name='GC_101', value= '-(l6*TH1x1*TH1x2) - (l4*TH1x2*TH2x1)/2. - (l4*TH1x1*TH2x2)/2. - l7*TH2x1*TH2x2', order={'QED': 2}) GC_102 = Coupling( name='GC_102', value= 'l6*TH1x1*TH1x2 + (l4*TH1x2*TH2x1)/2. + (l4*TH1x1*TH2x2)/2. + l7*TH2x1*TH2x2', order={'QED': 2}) GC_103 = Coupling(
# This file was automatically created by FeynRules 1.7.69 # Mathematica version: 8.0 for Mac OS X x86 (64-bit) (November 6, 2010) # Date: Mon 1 Oct 2012 14:58:26 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec GC_1 = Coupling(name = 'GC_1', value = '-(ee*complex(0,1))/3.', order = {'QED':1}) GC_2 = Coupling(name = 'GC_2', value = '(2*ee*complex(0,1))/3.', order = {'QED':1}) GC_3 = Coupling(name = 'GC_3', value = '-(ee*complex(0,1))', order = {'QED':1}) GC_4 = Coupling(name = 'GC_4', value = 'ee*complex(0,1)', order = {'QED':1}) GC_5 = Coupling(name = 'GC_5', value = 'ee**2*complex(0,1)', order = {'QED':2})
# This file was automatically created by FeynRules 2.4.68 # Mathematica version: 10.4.1 for Mac OS X x86 (64-bit) (April 11, 2016) # Date: Thu 6 Jun 2019 21:52:44 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_10 = Coupling(name='GC_10', value='2*ee**2*complex(0,1)', order={'QED': 2}) GC_100 = Coupling(name='GC_100', value='-(ee**2*vev)/(4.*cw) + (cw*ee**2*vev)/(4.*sw**2)', order={'QED': 1}) GC_101 = Coupling(name='GC_101', value='(ee**2*vev)/(4.*cw) + (cw*ee**2*vev)/(4.*sw**2)', order={'QED': 1}) GC_102 = Coupling( name='GC_102', value= '-(ee**2*complex(0,1)*vev)/2. - (cw**2*ee**2*complex(0,1)*vev)/(4.*sw**2) - (ee**2*complex(0,1)*sw**2*vev)/(4.*cw**2)', order={'QED': 1}) GC_103 = Coupling( name='GC_103', value= 'ee**2*complex(0,1)*vev + (cw**2*ee**2*complex(0,1)*vev)/(2.*sw**2) + (ee**2*complex(0,1)*sw**2*vev)/(2.*cw**2)', order={'QED': 1})
# This file was automatically created by FeynRules 2.3.13 # Mathematica version: 9.0 for Mac OS X x86 (64-bit) (November 20, 2012) # Date: Mon 10 Oct 2016 08:07:13 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_10 = Coupling(name='GC_10', value='(cw**2*ee**2*complex(0,1))/sw**2', order={'QED': 2}) GC_11 = Coupling(name='GC_11', value='(ee*complex(0,1))/(sw*cmath.sqrt(2))', order={'QED': 1}) GC_12 = Coupling(name='GC_12', value='(CKM1x1*ee*complex(0,1))/(sw*cmath.sqrt(2))', order={'QED': 1}) GC_13 = Coupling(name='GC_13', value='(CKM1x2*ee*complex(0,1))/(sw*cmath.sqrt(2))', order={'QED': 1}) GC_14 = Coupling(name='GC_14', value='(CKM2x1*ee*complex(0,1))/(sw*cmath.sqrt(2))', order={'QED': 1}) GC_15 = Coupling(name='GC_15',
# This file was automatically created by FeynRules 2.3.29 # Mathematica version: 10.0 for Mac OS X x86 (64-bit) (September 10, 2014) # Date: Thu 27 Jul 2017 17:29:36 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1}) GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1}) GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1}) GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1}) GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2}) GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1}) GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1}) GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2}) GC_9 = Coupling(name='GC_9', value='-6*complex(0,1)*lam', order={'QED': 2}) GC_10 = Coupling( name='GC_10', value='(C81qq*complex(0,1))/Lambda**2 - (C83qq*complex(0,1))/Lambda**2', order={'NP': 2})