コード例 #1
0
ファイル: couplings.py プロジェクト: echapon/sherpa
# This file was automatically created by FeynRules 2.0.8
# Mathematica version: 8.0 for Linux x86 (64-bit) (February 23, 2011)
# Date: Tue 11 Nov 2014 15:33:22

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-G', order={'QCD': 1})

GC_2 = Coupling(name='GC_2', value='complex(0,1)*G**2', order={'QCD': 2})

GC_3 = Coupling(name='GC_3', value='cw*complex(0,1)*gw', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='-(complex(0,1)*gw**2)', order={'QED': 2})

GC_5 = Coupling(name='GC_5',
                value='cw**2*complex(0,1)*gw**2',
                order={'QED': 2})

GC_6 = Coupling(name='GC_6', value='complex(0,1)*gw*sw', order={'QED': 1})

GC_7 = Coupling(name='GC_7',
                value='-2*cw*complex(0,1)*gw**2*sw',
                order={'QED': 2})

GC_8 = Coupling(name='GC_8',
                value='complex(0,1)*gw**2*sw**2',
                order={'QED': 2})
コード例 #2
0
ファイル: couplings.py プロジェクト: jtchilders/anlatlassvn
# This file was automatically created by FeynRules $Revision: 821 $
# Mathematica version: 7.0 for Microsoft Windows (32-bit) (February 18, 2009)
# Date: Mon 3 Oct 2011 13:27:06


from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec



GC_1 = Coupling(name = 'GC_1',
                value = '-(ee*complex(0,1))/3.',
                order = {'QED':1})

GC_2 = Coupling(name = 'GC_2',
                value = '(2*ee*complex(0,1))/3.',
                order = {'QED':1})

GC_3 = Coupling(name = 'GC_3',
                value = '-(ee*complex(0,1))',
                order = {'QED':1})

GC_4 = Coupling(name = 'GC_4',
                value = '-G',
                order = {'QCD':1})

GC_5 = Coupling(name = 'GC_5',
                value = 'complex(0,1)*G',
                order = {'QCD':1})
コード例 #3
0
# This file was automatically created by FeynRules 2.3.36
# Mathematica version: 12.1.1 for Mac OS X x86 (64-bit) (June 19, 2020)
# Date: Mon 30 Nov 2020 13:40:59


from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot



GC_1 = Coupling(name = 'GC_1',
                value = '-(ee*complex(0,1))/3.',
                order = {'QED':1})

GC_2 = Coupling(name = 'GC_2',
                value = '(2*ee*complex(0,1))/3.',
                order = {'QED':1})

GC_3 = Coupling(name = 'GC_3',
                value = '-(ee*complex(0,1))',
                order = {'QED':1})

GC_4 = Coupling(name = 'GC_4',
                value = 'ee*complex(0,1)',
                order = {'QED':1})

GC_5 = Coupling(name = 'GC_5',
                value = 'ee**2*complex(0,1)',
                order = {'QED':2})
コード例 #4
0
# This file was automatically created by FeynRules 2.0.6
# Mathematica version: 8.0 for Linux x86 (64-bit) (October 10, 2011)
# Date: Thu 20 Feb 2014 17:14:11

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1})

GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2})

GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1})

GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1})

GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2})

GC_9 = Coupling(name='GC_9', value='-gx', order={'QED': 1})

GC_10 = Coupling(name='GC_10', value='complex(0,1)*gxd', order={'QED': 1})

GC_11 = Coupling(name='GC_11', value='complex(0,1)*gxl', order={'QED': 1})

GC_12 = Coupling(name='GC_12', value='complex(0,1)*gxu', order={'QED': 1})
コード例 #5
0
# This file was automatically created by FeynRules 2.3.2
# Mathematica version: 12.1.0 for Mac OS X x86 (64-bit) (March 14, 2020)
# Date: Fri 28 May 2021 15:01:09

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1})

GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2})

GC_6 = Coupling(name='GC_6', value='2*ee**2*complex(0,1)', order={'QED': 2})

GC_7 = Coupling(name='GC_7', value='-ee**2/(2.*cw)', order={'QED': 2})

GC_8 = Coupling(name='GC_8',
                value='(ee**2*complex(0,1))/(2.*cw)',
                order={'QED': 2})

GC_9 = Coupling(name='GC_9', value='ee**2/(2.*cw)', order={'QED': 2})

GC_10 = Coupling(name='GC_10', value='-G', order={'QCD': 1})

GC_11 = Coupling(name='GC_11', value='complex(0,1)*G', order={'QCD': 1})
コード例 #6
0
ファイル: CT_couplings.py プロジェクト: jcallem94/feynrules
# This file was automatically created by FeynRules 2.3.10
# Mathematica version: 9.0 for Linux x86 (64-bit) (November 20, 2012)
# Date: Sun 30 Oct 2016 21:38:37

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

R2GC_113_1 = Coupling(name='R2GC_113_1',
                      value='-G**4/(192.*cmath.pi**2)',
                      order={'QCD': 4})

R2GC_113_2 = Coupling(name='R2GC_113_2',
                      value='G**4/(64.*cmath.pi**2)',
                      order={'QCD': 4})

R2GC_114_3 = Coupling(name='R2GC_114_3',
                      value='-(complex(0,1)*G**4)/(192.*cmath.pi**2)',
                      order={'QCD': 4})

R2GC_114_4 = Coupling(name='R2GC_114_4',
                      value='(complex(0,1)*G**4)/(64.*cmath.pi**2)',
                      order={'QCD': 4})

R2GC_115_5 = Coupling(name='R2GC_115_5',
                      value='(complex(0,1)*G**4)/(192.*cmath.pi**2)',
                      order={'QCD': 4})

R2GC_115_6 = Coupling(name='R2GC_115_6',
                      value='-(complex(0,1)*G**4)/(64.*cmath.pi**2)',
                      order={'QCD': 4})
コード例 #7
0
# This file was automatically created by FeynRules 1.7.195
# Mathematica version: 8.0 for Mac OS X x86 (64-bit) (October 5, 2011)
# Date: Mon 16 Dec 2013 09:04:48

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1})

GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2})

GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1})

GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1})

GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2})

GC_9 = Coupling(name='GC_9', value='-6*complex(0,1)*lam', order={'QED': 2})

GC_10 = Coupling(name='GC_10',
                 value='(ee**2*complex(0,1))/(2.*sw**2)',
                 order={'QED': 2})

GC_11 = Coupling(name='GC_11',
コード例 #8
0
# This file was automatically created by FeynRules 2.0.23
# Mathematica version: 9.0 for Mac OS X x86 (64-bit) (November 20, 2012)
# Date: Sat 20 Sep 2014 16:11:37

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(AH*ch*complex(0,1))', order={'HIW': 1})

GC_2 = Coupling(name='GC_2', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='-(ee*complex(0,1))', order={'QED': 1})

GC_5 = Coupling(name='GC_5', value='-G', order={'QCD': 1})

GC_6 = Coupling(name='GC_6', value='complex(0,1)*G', order={'QCD': 1})

GC_7 = Coupling(name='GC_7', value='complex(0,1)*G**2', order={'QCD': 2})

GC_8 = Coupling(name='GC_8', value='-(ch*complex(0,1)*GH)', order={'HIG': 1})

GC_9 = Coupling(name='GC_9', value='-(ch*G*GH)', order={'HIG': 1, 'QCD': 1})

GC_10 = Coupling(name='GC_10',
                 value='ch*complex(0,1)*G**2*GH',
                 order={
                     'HIG': 1,
                     'QCD': 2
コード例 #9
0
# This file was automatically created by FeynRules 1.7.100
# Mathematica version: 7.0 for Linux x86 (64-bit) (February 18, 2009)
# Date: Wed 28 Nov 2012 10:15:27

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec

GC_1 = Coupling(name='GC_1', value='2*A0FC1x1*complex(0,1)', order={'MT1': 1})

GC_2 = Coupling(name='GC_2',
                value='A0FC1x2*complex(0,1) + A0FC2x1*complex(0,1)',
                order={'MT1': 1})

GC_3 = Coupling(name='GC_3', value='2*A0FC2x2*complex(0,1)', order={'MT1': 1})

GC_4 = Coupling(name='GC_4',
                value='A0FC1x3*complex(0,1) + A0FC3x1*complex(0,1)',
                order={'MT1': 1})

GC_5 = Coupling(name='GC_5',
                value='A0FC2x3*complex(0,1) + A0FC3x2*complex(0,1)',
                order={'MT1': 1})

GC_6 = Coupling(name='GC_6', value='2*A0FC3x3*complex(0,1)', order={'MT1': 1})

GC_7 = Coupling(name='GC_7', value='A12S1*complex(0,1)', order={'MT3': 1})

GC_8 = Coupling(name='GC_8', value='A12S2*complex(0,1)', order={'MT3': 1})

GC_9 = Coupling(name='GC_9', value='A12S3*complex(0,1)', order={'MT3': 1})
コード例 #10
0
# This file was automatically created by FeynRules $Revision: 364 $
# Mathematica version: 7.0 for Mac OS X x86 (64-bit) (November 11, 2008)
# Date: Wed 10 Nov 2010 10:19:46

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='-G', order={'QCD': 1})

GC_5 = Coupling(name='GC_5', value='complex(0,1)*G', order={'QCD': 1})

GC_6 = Coupling(name='GC_6', value='complex(0,1)*G**2', order={'QCD': 2})

GC_7 = Coupling(name='GC_7', value='ca*cw*complex(0,1)*gw', order={'QED': 1})

GC_8 = Coupling(name='GC_8', value='-(complex(0,1)*gw**2)', order={'QED': 2})

GC_9 = Coupling(name='GC_9',
                value='ca**2*cw**2*complex(0,1)*gw**2',
                order={'QED': 2})

GC_10 = Coupling(name='GC_10',
                 value='-(cw*complex(0,1)*gw*sa)',
                 order={'QED': 1})
コード例 #11
0
# This file was automatically created by FeynRules 2.1.48
# Mathematica version: 8.0 for Mac OS X x86 (64-bit) (November 6, 2010)
# Date: Wed 2 Apr 2014 11:19:40

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-G', order={'QCD': 1})

GC_10 = Coupling(name='GC_10', value='(complex(0,1)*gw)/2.', order={'QED': 1})

GC_100 = Coupling(
    name='GC_100',
    value=
    '-2*complex(0,1)*l1*TH1x1*TH1x2 - complex(0,1)*l6*TH1x2*TH2x1 - complex(0,1)*l6*TH1x1*TH2x2 - complex(0,1)*l3*TH2x1*TH2x2 - complex(0,1)*l4*TH2x1*TH2x2 + 2*complex(0,1)*l5*TH2x1*TH2x2',
    order={'QED': 2})

GC_101 = Coupling(
    name='GC_101',
    value=
    '-(l6*TH1x1*TH1x2) - (l4*TH1x2*TH2x1)/2. - (l4*TH1x1*TH2x2)/2. - l7*TH2x1*TH2x2',
    order={'QED': 2})

GC_102 = Coupling(
    name='GC_102',
    value=
    'l6*TH1x1*TH1x2 + (l4*TH1x2*TH2x1)/2. + (l4*TH1x1*TH2x2)/2. + l7*TH2x1*TH2x2',
    order={'QED': 2})

GC_103 = Coupling(
コード例 #12
0
ファイル: couplings.py プロジェクト: dpinna/MCmodels
# This file was automatically created by FeynRules 1.7.69
# Mathematica version: 8.0 for Mac OS X x86 (64-bit) (November 6, 2010)
# Date: Mon 1 Oct 2012 14:58:26


from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec



GC_1 = Coupling(name = 'GC_1',
                value = '-(ee*complex(0,1))/3.',
                order = {'QED':1})

GC_2 = Coupling(name = 'GC_2',
                value = '(2*ee*complex(0,1))/3.',
                order = {'QED':1})

GC_3 = Coupling(name = 'GC_3',
                value = '-(ee*complex(0,1))',
                order = {'QED':1})

GC_4 = Coupling(name = 'GC_4',
                value = 'ee*complex(0,1)',
                order = {'QED':1})

GC_5 = Coupling(name = 'GC_5',
                value = 'ee**2*complex(0,1)',
                order = {'QED':2})
コード例 #13
0
ファイル: couplings.py プロジェクト: yguler/model-repository
# This file was automatically created by FeynRules 2.4.68
# Mathematica version: 10.4.1 for Mac OS X x86 (64-bit) (April 11, 2016)
# Date: Thu 6 Jun 2019 21:52:44

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_10 = Coupling(name='GC_10', value='2*ee**2*complex(0,1)', order={'QED': 2})

GC_100 = Coupling(name='GC_100',
                  value='-(ee**2*vev)/(4.*cw) + (cw*ee**2*vev)/(4.*sw**2)',
                  order={'QED': 1})

GC_101 = Coupling(name='GC_101',
                  value='(ee**2*vev)/(4.*cw) + (cw*ee**2*vev)/(4.*sw**2)',
                  order={'QED': 1})

GC_102 = Coupling(
    name='GC_102',
    value=
    '-(ee**2*complex(0,1)*vev)/2. - (cw**2*ee**2*complex(0,1)*vev)/(4.*sw**2) - (ee**2*complex(0,1)*sw**2*vev)/(4.*cw**2)',
    order={'QED': 1})

GC_103 = Coupling(
    name='GC_103',
    value=
    'ee**2*complex(0,1)*vev + (cw**2*ee**2*complex(0,1)*vev)/(2.*sw**2) + (ee**2*complex(0,1)*sw**2*vev)/(2.*cw**2)',
    order={'QED': 1})
コード例 #14
0
# This file was automatically created by FeynRules 2.3.13
# Mathematica version: 9.0 for Mac OS X x86 (64-bit) (November 20, 2012)
# Date: Mon 10 Oct 2016 08:07:13

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_10 = Coupling(name='GC_10',
                 value='(cw**2*ee**2*complex(0,1))/sw**2',
                 order={'QED': 2})

GC_11 = Coupling(name='GC_11',
                 value='(ee*complex(0,1))/(sw*cmath.sqrt(2))',
                 order={'QED': 1})

GC_12 = Coupling(name='GC_12',
                 value='(CKM1x1*ee*complex(0,1))/(sw*cmath.sqrt(2))',
                 order={'QED': 1})

GC_13 = Coupling(name='GC_13',
                 value='(CKM1x2*ee*complex(0,1))/(sw*cmath.sqrt(2))',
                 order={'QED': 1})

GC_14 = Coupling(name='GC_14',
                 value='(CKM2x1*ee*complex(0,1))/(sw*cmath.sqrt(2))',
                 order={'QED': 1})

GC_15 = Coupling(name='GC_15',
コード例 #15
0
ファイル: couplings.py プロジェクト: tommytschida/TopEFT
# This file was automatically created by FeynRules 2.3.29
# Mathematica version: 10.0 for Mac OS X x86 (64-bit) (September 10, 2014)
# Date: Thu 27 Jul 2017 17:29:36

from object_library import all_couplings, Coupling

from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot

GC_1 = Coupling(name='GC_1', value='-(ee*complex(0,1))/3.', order={'QED': 1})

GC_2 = Coupling(name='GC_2', value='(2*ee*complex(0,1))/3.', order={'QED': 1})

GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))', order={'QED': 1})

GC_4 = Coupling(name='GC_4', value='ee*complex(0,1)', order={'QED': 1})

GC_5 = Coupling(name='GC_5', value='ee**2*complex(0,1)', order={'QED': 2})

GC_6 = Coupling(name='GC_6', value='-G', order={'QCD': 1})

GC_7 = Coupling(name='GC_7', value='complex(0,1)*G', order={'QCD': 1})

GC_8 = Coupling(name='GC_8', value='complex(0,1)*G**2', order={'QCD': 2})

GC_9 = Coupling(name='GC_9', value='-6*complex(0,1)*lam', order={'QED': 2})

GC_10 = Coupling(
    name='GC_10',
    value='(C81qq*complex(0,1))/Lambda**2 - (C83qq*complex(0,1))/Lambda**2',
    order={'NP': 2})