Esempio n. 1
0
    def plot_output(cls, ts, i_inj, states, y_states=None, suffix="", show=True, save=False, l=1, lt=1,
                    targstyle='-'):
        """
        Plot voltage and ion concentrations, potentially compared to a target model

        Args:
          ts(ndarray of dimension [time]): time steps of the measurements
          i_inj(ndarray of dimension [time]): input current
          states(ndarray of dimension [time, state_var, nb_neuron]):
          y_states(list of ndarray [time, nb_neuron], optional): list of values for the target model, each element is an
            ndarray containing the recordings of one state variable (Default value = None)
          suffix(str): suffix for the name of the saved file (Default value = "")
          show(bool): If True, show the figure (Default value = True)
          save(bool): If True, save the figure (Default value = False)
          l(float): width of the main lines (Default value = 1)
          lt(float): width of the target lines (Default value = 1)
          targstyle(str): style of the target lines (Default value = '-')

        """

        plt.figure()
        nb_plots = len(cls._ions) + 2
        custom_cycler = None
        if (states.ndim > 3): # circuit in parallel
            states = np.reshape(np.swapaxes(states,-2,-1), (states.shape[0], states.shape[1], -1))
            custom_cycler = cycler('color', utils.COLORS.repeat(y_states[cls.V_pos].shape[1]))
            y_states = [np.reshape(y, (y.shape[0], -1)) if y is not None else None for y in y_states]

        # Plot voltage
        p = plt.subplot(nb_plots, 1, 1)
        if custom_cycler is not None:
            p.set_prop_cycle(custom_cycler)
        plt.plot(ts, states[:, cls.V_pos], linewidth=l)
        if y_states is not None:
            if y_states[cls.V_pos] is not None:
                plt.plot(ts, y_states[cls.V_pos], 'r', linestyle=targstyle, linewidth=lt, label='target model')
                plt.legend()
        plt.ylabel('Voltage (mV)')

        for i, (ion, pos) in enumerate(cls._ions.items()):
            p = plt.subplot(nb_plots, 1, 2+i)
            if custom_cycler is not None:
                p.set_prop_cycle(custom_cycler)
            plt.plot(ts, states[:, pos], linewidth=l)
            if y_states is not None:
                if y_states[pos] is not None:
                    plt.plot(ts, y_states[pos], 'r', linestyle=targstyle, linewidth=lt, label='target model')
                    plt.legend()
            plt.ylabel('[{}]'.format(ion))

        plt.subplot(nb_plots, 1, nb_plots)
        plt.plot(ts, i_inj, 'b')
        plt.xlabel('t (ms)')
        plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)')

        utils.save_show(show, save, utils.IMG_DIR + 'output_%s' % suffix)
Esempio n. 2
0
def hhsimp_box(df):
    utils.box(df, ['b', 'g', 'm', 'g', 'm'], ['C_m', 'g_L', 'g_K', 'E_L', 'E_K'])
    plt.title('Membrane')
    utils.save_show(True, True, 'boxmemb', dpi=300)
    plt.subplot(3, 1, 1)
    utils.box(df, ['m', '#610395'], ['a__mdp', 'b__mdp'])
    plt.title('Midpoint')
    plt.subplot(3, 1, 2)
    utils.box(df, ['m', '#610395'], ['a__scale', 'b__scale'])
    plt.title('Scale')
    plt.subplot(3, 1, 3)
    utils.box(df, ['m', '#610395'], ['a__tau', 'b__tau'])
    plt.yscale('log')
    plt.title('Time constant')
    plt.tight_layout()
    utils.save_show(True, True, 'boxrates', dpi=300)
Esempio n. 3
0
    def plot_results(self,
                     ts,
                     i_inj_values,
                     results,
                     ca_true=None,
                     suffix="",
                     show=True,
                     save=False):

        V = results[:, 0]
        a = results[:, 1]
        b = results[:, 2]

        il = self._i_L(V)
        ik = self._i_K(a, b, V)

        plt.figure()

        plt.subplot(4, 1, 1)
        plt.plot(ts, V, 'k')
        plt.title('Leaky Integrator Neuron')
        plt.ylabel('V (mV)')

        plt.subplot(4, 1, 2)
        plt.plot(ts, il, 'g', label='$I_{L}$')
        plt.plot(ts, ik, 'c', label='$I_{K}$')
        plt.ylabel('Current')
        plt.legend()

        plt.subplot(4, 1, 3)
        plt.plot(ts, a, 'c', label='a')
        plt.plot(ts, b, 'b', label='b')
        plt.ylabel('Gating Value')
        plt.legend()

        plt.subplot(4, 1, 4)
        plt.plot(ts, i_inj_values, 'b')
        plt.xlabel('t (ms)')
        plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)')
        # plt.ylim(-1, 40)

        utils.save_show(show, save, name='Results_{}'.format(suffix), dpi=300)
Esempio n. 4
0
    def boxplot_vars(var_dic, suffix="", show=False, save=True):
        df = pd.DataFrame.from_dict(var_dic)
        plt.figure()
        plt.subplot(121)
        cols = [RATE_COLORS['n'], RATE_COLORS['n'], RATE_COLORS['f'], 'k']
        box(df, cols, CONDS)
        plt.title('Conductances')
        plt.subplot(122)
        cols = ['b', RATE_COLORS['n'], RATE_COLORS['f'], 'k']
        box(df, cols, MEMB)
        # plt.plot([DEFAULT[m] for m in MEMB], 'r', marker='*', linestyle='', markersize=10)
        plt.title('Membrane')
        utils.save_show(show,
                        save,
                        name='{}MEmbrane_{}'.format(utils.NEUR_DIR,
                                                    suffix).format(suffix),
                        dpi=300)

        plt.figure()
        plt.subplot(211)
        box(df, ['#666666'], ['rho_ca'])
        plt.title('Rho_ca')
        plt.yscale('log')
        plt.subplot(212)
        box(df, ['#0000ff'], ['decay_ca'])  # , 'b')
        plt.title('Decay_ca')
        plt.tight_layout()
        utils.save_show(show,
                        save,
                        name='{}CalciumPump_{}'.format(utils.NEUR_DIR, suffix),
                        dpi=300)

        plt.figure()
        for i, type in enumerate(['mdp', 'scale', 'tau']):
            plt.subplot(3, 1, i + 1)
            plt.title(type)
            labels = [
                '{}__{}'.format(rate, type) for rate in RATE_COLORS.keys()
            ]
            cols = RATE_COLORS.values()
            if (type == 'tau'):
                labels = ['h__alpha' if x == 'h__tau' else x for x in labels]
                plt.yscale('log')
            box(df, cols, labels)
        utils.save_show(show,
                        save,
                        name='{}Rates_{}'.format(utils.NEUR_DIR, suffix),
                        dpi=300)
Esempio n. 5
0
if __name__ == '__main__':

    show_res('Forward_celeggrouprealeq0.2', -1)

    get_data()
    get_curr()

    with open('forward_input', 'rb') as f:
        cur = pickle.load(f)

    df = pd.DataFrame(cur.transpose(), index=labels.values())
    sns.heatmap(df, cmap='jet')
    plt.title('Membrane potentials (mV)')
    plt.xlabel('Time (ms)')
    plt.ylabel('Neuron')
    utils.save_show(False, False, 'Input Current', dpi=300)

    suffix = sys.argv[1]
    for i, m in enumerate(cfg_model.models):
        if cfg_model.NEURON_MODEL == m:
            suffix = cfg_model.models_name[i] + suffix
            break
    if fake:
        suffix = suffix + 'fake'
    else:
        suffix = suffix + 'real'
    if eq_cost:
        suffix = suffix + 'eqcost'
    else:
        suffix = suffix + 'difcost'
    suffix = suffix + str(dt)
Esempio n. 6
0
    def study_vars(cls, p, suffix='', target=None, show=False, save=True):
        cls.plot_vars(p,
                      func=utils.bar,
                      suffix='compared_%s' % suffix,
                      show=show,
                      save=save)
        cls.boxplot_vars(p, suffix='boxes_%s' % suffix, show=show, save=save)

        if p['C_m'].shape != (1, ):
            corr = pd.DataFrame(p).corr()
            plt.subplots(figsize=(11, 9))
            # Generate a custom diverging colormap
            cmap = sns.diverging_palette(220, 10, as_cmap=True)
            # Draw the heatmap with the mask and correct aspect ratio
            sns.heatmap(corr,
                        cmap=cmap,
                        center=0,
                        square=True,
                        linewidths=.5,
                        cbar_kws={"shrink": .5})
            utils.save_show(show=show,
                            save=save,
                            name='{}Correlation_{}'.format(
                                utils.NEUR_DIR, suffix))

    # def comp(toto, curs):
    #     import time
    #     st = time.time()
    #     v = toto.calculate_exc(curs)[:, 0]
    #     print('explicit', time.time() - st)
    #     plt.subplot(2, 1, 1)
    #     plt.plot(np.arange(0, len(v) * toto.dt, toto.dt), v, 'r')
    #     plt.xlabel('Time (ms)')
    #     plt.ylabel('Voltage (mV)')
    #     plt.title('Explicit solver, dt=%sms' % toto.dt)
    #     st = time.time()
    #     v = toto.calculate(curs)[:, 0]
    #     print('implicit', time.time() - st)
    #     plt.subplot(2, 1, 2)
    #     plt.plot(np.arange(0, len(v) * toto.dt, toto.dt), v, 'g')
    #     plt.xlabel('Time (ms)')
    #     plt.ylabel('Voltage (mV)')
    #     plt.title('Implicit-explicit solver, dt=%sms' % toto.dt)
    #     plt.tight_layout()
    #     plt.savefig('/home/marcus/Pictures/thesisreport/solversdt%s' % toto.dt, dpi=250)
    #     plt.close()
    #
    # def step_exc(self, X, i_inj):
    #     """Integrate and update voltage after one time step
    #
    #     Args:
    #       X(np.array or tensor): state vector
    #       i_inj(np.array or tensor): input current
    #
    #     """
    #     V = X[self.V_pos]
    #     p = X[1]
    #     q = X[2]
    #     n = X[3]
    #     e = X[4]
    #     f = X[5]
    #     cac = X[-1]
    #
    #     h = self._h(cac)
    #     V = V + ((i_inj - self._i_ca(V, e, f, h) - self._i_ks(V, n) - self._i_kf(V, p, q) - self._i_leak(V)) /
    #              self._param[
    #                  'C_m']) * self.dt
    #
    #     cac = cac + (-self._i_ca(V, e, f, h) * self._param['rho_ca'] - (
    #             (cac - self.REST_CA) / self._param['decay_ca'])) * self.dt
    #     p = self._update_gate(p, 'p', V)
    #     q = self._update_gate(q, 'q', V)
    #     n = self._update_gate(n, 'n', V)
    #     e = self._update_gate(e, 'e', V)
    #     f = self._update_gate(f, 'f', V)
    #
    #     if self._tensors:
    #         return tf.stack([V, p, q, n, e, f, cac], 0)
    #     else:
    #         return np.array([V, p, q, n, e, f, cac])


#     @staticmethod
#     def ica_from_v(X, v_fix, self):
#         e = X[1]
#         f = X[2]
#         cac = X[-1]
#
#         h = self._h(cac)
#         tau = self._param['e__tau']
#         e = ((tau * self.dt) / (tau + self.dt)) * ((e / self.dt) + (self._inf(v_fix, 'e') / tau))
#         tau = self._param['f__tau']
#         f = ((tau * self.dt) / (tau + self.dt)) * ((f / self.dt) + (self._inf(v_fix, 'f') / tau))
#         ica = self._i_ca(v_fix, e, f, h)
#         cac += (-self._i_ca(v_fix, e, f, h) * self._param['rho_ca'] - (
#                 (cac - self.REST_CA) / self._param['decay_ca'])) * self.dt
#
#         if self._tensors:
#             return tf.stack([ica, e, f, h, cac], 0)
#         else:
#             return [ica, e, f, h, cac]
#
#     @staticmethod
#     def ik_from_v(X, v_fix, self):
#         p = X[1]
#         q = X[2]
#         n = X[3]
#
#         tau = self._param['p__tau']
#         p = ((tau * self.dt) / (tau + self.dt)) * ((p / self.dt) + (self._inf(v_fix, 'p') / tau))
#         tau = self._param['q__tau']
#         q = ((tau * self.dt) / (tau + self.dt)) * ((q / self.dt) + (self._inf(v_fix, 'q') / tau))
#         tau = self._param['n__tau']
#         n = ((tau * self.dt) / (tau + self.dt)) * ((n / self.dt) + (self._inf(v_fix, 'n') / tau))
#         ik = self._i_kf(v_fix, p, q) + self._i_ks(v_fix, n)
#
#         if self._tensors:
#             return tf.stack([ik, p, q, n], 0)
#         else:
#             return [ik, p, q, n]
#
#
# def plots_ica_from_v(ts, V, results, name="ica", show=False, save=True):
#     """plot i_ca and Ca conc depending on the voltage
#
#     Args:
#       ts:
#       V:
#       results:
#       name:  (Default value = "ica")
#       show(bool): If True, show the figure (Default value = True)
#       save(bool): If True, save the figure (Default value = False)
#
#     Returns:
#
#     """
#     ica = results[:, 0]
#     e = results[:, 1]
#     f = results[:, 2]
#     h = results[:, 3]
#     cac = results[:, -1]
#
#     plt.figure()
#
#     plt.subplot(4, 1, 1)
#     plt.title('Hodgkin-Huxley Neuron : I_ca from a fixed V')
#     plt.plot(ts, ica, 'b')
#     plt.ylabel('I_ca')
#
#     plt.subplot(4, 1, 2)
#     plt.plot(ts, cac, 'r')
#     plt.ylabel('$Ca^{2+}$ concentration')
#
#     plt.subplot(4, 1, 3)
#     plt.plot(ts, e, RATE_COLORS['e'], label='e')
#     plt.plot(ts, f, RATE_COLORS['f'], label='f')
#     plt.plot(ts, h, RATE_COLORS['h'], label='h')
#     plt.ylabel('Gating Value')
#     plt.legend()
#
#     plt.subplot(4, 1, 4)
#     plt.plot(ts, V, 'k')
#     plt.ylabel('V (input) (mV)')
#     plt.xlabel('t (ms)')
#
#     utils.save_show(show, save, name)
#
#
# def plots_ik_from_v(ts, V, results, name="ik", show=True, save=False):
#     """plot i_k depending on the voltage
#
#     Args:
#       ts:
#       V:
#       results:
#       name:  (Default value = "ik")
#       show(bool): If True, show the figure (Default value = True)
#       save(bool): If True, save the figure (Default value = False)
#
#     Returns:
#
#     """
#     ik = results[:, 0]
#     p = results[:, 1]
#     q = results[:, 2]
#     n = results[:, 3]
#
#     plt.figure()
#
#     plt.subplot(3, 1, 1)
#     plt.title('Hodgkin-Huxley Neuron : I_ca from a fixed V')
#     plt.plot(ts, ik, 'b')
#     plt.ylabel('I_k')
#
#     plt.subplot(3, 1, 2)
#     plt.plot(ts, p, RATE_COLORS['p'], label='p')
#     plt.plot(ts, q, RATE_COLORS['q'], label='q')
#     plt.plot(ts, n, RATE_COLORS['n'], label='n')
#     plt.ylabel('Gating Value')
#     plt.legend()
#
#     plt.subplot(3, 1, 3)
#     plt.plot(ts, V, 'k')
#     plt.ylabel('V (input) (mV)')
#     plt.xlabel('t (ms)')
#
#     utils.save_show(show, save, name)
#     plt.close()
Esempio n. 7
0
    def plot_vars(cls,
                  var_dic,
                  suffix="evolution",
                  show=False,
                  save=True,
                  func=utils.plot):
        """plot variation/comparison/boxplots of all variables organized by categories

        Args:
          var_dic:
          suffix:  (Default value = "")
          show(bool): If True, show the figure (Default value = True)
          save(bool): If True, save the figure (Default value = False)
          func:  (Default value = plot)

        Returns:

        """
        fig = plt.figure()
        grid = plt.GridSpec(2, 3)
        for nb in range(len(GATES)):
            gate = GATES[nb]
            cls.plot_vars_gate(gate,
                               var_dic['{}__mdp'.format(gate)],
                               var_dic['{}__scale'.format(gate)],
                               var_dic['{}__tau'.format(gate)],
                               fig,
                               grid[nb], (nb % 3 == 0),
                               func=func)
        cls.plot_vars_gate('h',
                           var_dic['h__mdp'],
                           var_dic['h__scale'],
                           var_dic['h__alpha'],
                           fig,
                           grid[5],
                           False,
                           func=func)
        plt.tight_layout()
        utils.save_show(show,
                        save,
                        name='{}Rates_{}'.format(utils.NEUR_DIR, suffix),
                        dpi=300)

        fig = plt.figure()
        grid = plt.GridSpec(1, 2)
        subgrid = gridspec.GridSpecFromSubplotSpec(4, 1, grid[0], hspace=0.1)
        for i, var in enumerate(CONDS):
            ax = plt.Subplot(fig, subgrid[i])
            func(ax, var_dic[var])  # )
            ax.set_ylabel(var)
            if (i == 0):
                ax.set_title('Conductances')
            fig.add_subplot(ax)
        subgrid = gridspec.GridSpecFromSubplotSpec(4, 1, grid[1], hspace=0.1)
        for i, var in enumerate(MEMB):
            ax = plt.Subplot(fig, subgrid[i])
            func(ax, var_dic[var])  # )
            ax.set_ylabel(var)
            if (i == 0):
                ax.set_title('Membrane')
            ax.yaxis.tick_right()
            fig.add_subplot(ax)
        plt.tight_layout()
        utils.save_show(show,
                        save,
                        name='{}Membrane_{}'.format(utils.NEUR_DIR, suffix),
                        dpi=300)

        plt.figure()
        ax = plt.subplot(211)
        func(ax, var_dic['rho_ca'])  # , 'r')
        plt.ylabel('Rho_ca')
        plt.yscale('log')
        ax = plt.subplot(212)
        func(ax, var_dic['decay_ca'])  # , 'b')
        plt.ylabel('Decay_ca')
        utils.save_show(show,
                        save,
                        name='{}CalciumPump_{}'.format(utils.NEUR_DIR, suffix),
                        dpi=300)
Esempio n. 8
0
    def plot_results(self,
                     ts,
                     i_inj_values,
                     results,
                     ca_true=None,
                     suffix="",
                     show=True,
                     save=False):
        """plot all dynamics

        Args:
          ts: 
          i_inj_values: 
          results: 
          ca_true:  (Default value = None)
          suffix:  (Default value = "")
          show(bool): If True, show the figure (Default value = True)
          save(bool): If True, save the figure (Default value = False)

        Returns:

        """
        V = results[:, 0]
        p = results[:, 1]
        q = results[:, 2]
        n = results[:, 3]
        e = results[:, 4]
        f = results[:, 5]
        cac = results[:, 6]

        h = self._h(cac)
        ica = self._i_ca(V, e, f, h)
        ik = self._i_ks(V, n) + self._i_kf(V, p, q)
        il = self._i_leak(V)

        plt.figure()

        plt.subplot(5, 1, 1)
        plt.title('C.elegans Hodgkin-Huxley Neuron')
        if (V.ndim == 1):
            plt.plot(ts, V, 'k')
        else:
            plt.plot(ts, V)
        plt.ylabel('V (mV)')

        plt.subplot(5, 1, 2)
        if (ca_true is not None):
            plt.plot(ts, ca_true, 'Navy', linestyle='-.', label='real data')
            plt.legend()
        if (V.ndim == 1):
            plt.plot(ts, cac, 'r')
        else:
            plt.plot(ts, cac)
        plt.ylabel('[$Ca^{2+}$]')

        plt.subplot(5, 1, 3)
        plt.plot(ts, ica, RATE_COLORS['f'], label='$I_{Ca}$')
        plt.plot(ts, ik, 'm', label='$I_{K}$')
        plt.plot(ts, il, 'g', label='$I_{L}$')
        plt.ylabel('Current')
        plt.legend()

        plt.subplot(5, 1, 4)
        plt.plot(ts, p, RATE_COLORS['p'], label='p')
        plt.plot(ts, q, RATE_COLORS['q'], label='q')
        plt.plot(ts, n, RATE_COLORS['n'], label='n')
        plt.plot(ts, e, RATE_COLORS['e'], label='e')
        plt.plot(ts, f, RATE_COLORS['f'], label='f')
        plt.plot(ts, h, RATE_COLORS['h'], label='h')
        plt.ylabel('Gating Value')
        plt.legend()

        plt.subplot(5, 1, 5)
        plt.plot(ts, i_inj_values, 'b')
        plt.xlabel('t (ms)')
        plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)')
        # plt.ylim(-1, 40)
        utils.save_show(show, save, name='Results_{}'.format(suffix), dpi=300)
Esempio n. 9
0
def leak_box(df):
    utils.box(df, ['b', 'g', 'Gold'], ['C_m', 'g_L', 'E_L'])
    plt.title('Membrane')
    utils.save_show(True, True, 'box1', dpi=300)
Esempio n. 10
0
    # utils.save_show(True, True, 'dispreal', dpi=300)

    dd = optim.get_vars_all(dir, losses=True)
    optim.plot_loss_rate(dd['loss'], dd['rates'], dd['loss_test'], 50, show=True)
    from odynn import datas

    dic = optim.get_vars(dir, loss=True)
    train, test = optim.get_data(dir)
    print(dic['loss'])
    df = pd.DataFrame(dic['loss'], columns=['loss'])
    # df = pd.DataFrame.from_dict(dic)#.head(4)
    df = df.sort_values('loss').reset_index(drop=True)
    # df = df.dropna()
    sns.barplot(x=df.index, y='loss', data=df)
    # df.plot.bar(y='loss')
    utils.save_show(True, True, 'lossfin_virt', dpi=300);exit()
    # df = df[df['loss'] <= np.min(df['loss'])]

    # hhsimp_box(df)
    # cfg_model.NEURON_MODEL.boxplot_vars(dic, show=True, save=True)
    dic = df.to_dict('list')
    # dic = collections.OrderedDict(sorted(dic.items(), key=lambda t: t[0]))
    # obj = circuit.CircuitTf.create_random(n_neuron=9, syn_keys={(i,i+1):True for i in range(8)}, gap_keys={}, n_rand=50, dt=0.1)
    p = optim.get_best_result(dir)
    print(p)
    # p = {k: v[0] for k,v in p.items()}

    for i in range(train[1].shape[-1]):
        ns.comp_pars_targ(p, cfg_model.NEURON_MODEL.default_params, dt=train[0][1] - train[0][0], i_inj=train[1][:,i], suffix='virtrain%s'%i, show=True, save=True)
    for i in range(test[1].shape[-1]):
        ns.comp_pars_targ(p, cfg_model.NEURON_MODEL.default_params, dt=test[0][1] - test[0][0], i_inj=test[1][:,i], suffix='virtest%s'%i, show=True, save=True)