Esempio n. 1
0
model.connect('GComp.G','CT1Comp.G')
model.connect('CT2Comp.CT2','CT1Comp.CT2')
model.add_subsystem('ATComp',ATComp(num_panel=airfoil.NUM_SAMPLES))
model.connect('CT1Comp.CT1','ATComp.CT1')
model.connect('CT2Comp.CT2','ATComp.CT2')

model.add_subsystem('VelocityComp',VelocityComp(num_panel=airfoil.NUM_SAMPLES,aoa=airfoil.aoa))
model.connect('GammaComp.gamma','VelocityComp.gamma')
model.connect('thetaComp.theta','VelocityComp.theta')
model.connect('ATComp.AT','VelocityComp.AT')

model.add_subsystem('LiftComp',LiftComp(num_panel=airfoil.NUM_SAMPLES))
model.connect('VelocityComp.V','LiftComp.V')
model.connect('arcComp.S','LiftComp.S')

model.add_design_var('input.y')
model.add_objective('LiftComp.CL')
leftmost_id = int(airfoil.NUM_SAMPLES/2)
model.add_constraint('input.y',indices=[0,leftmost_id,-1],equals=[airfoil.boundaryPoints_Y[0],airfoil.boundaryPoints_Y[leftmost_id],airfoil.boundaryPoints_Y[-1]])
prob = Problem(model=model)



prob.driver = ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['maxiter'] = 300
prob.driver.options['tol'] = 1e-6
prob.set_solver_print(level=0)
prob.model.approx_totals()
prob.setup()
Esempio n. 2
0
def run_open_mdao():
    if USE_SCALING:
        # prepare scaling
        global offset_weight
        global offset_stress
        global scale_weight
        global scale_stress
        runner = MultiRun(use_calcu=not USE_ABA, use_aba=USE_ABA, non_liner=False, project_name_prefix=PROJECT_NAME_PREFIX,
                          force_recalc=False)
        sur = Surrogate(use_abaqus=USE_ABA, pgf=False, show_plots=False, scale_it=False)
        res, surro = sur.auto_run(SAMPLE_HALTON, 16, SURRO_POLYNOM, run_validation=False)
        p = runner.new_project_r_t(range_rib[0], range_shell[0])
        offset_weight = p.calc_wight()
        p = runner.new_project_r_t(range_rib[1], range_shell[1])
        max_weight = p.calc_wight()
        offset_stress = surro.predict([range_rib[1], range_shell[1]])
        max_stress = surro.predict([range_rib[0], range_shell[0]])
        scale_weight = (max_weight - offset_weight)
        scale_stress = (max_stress - offset_stress)


    write_mdao_log('iter,time,ribs(float),ribs,shell,stress,weight')

    model = Group()
    indeps = IndepVarComp()

    indeps.add_output('ribs', (22 - offset_rib) / scale_rib)
    indeps.add_output('shell', (0.0024 - offset_shell) / scale_shell)

    model.add_subsystem('des_vars', indeps)
    model.add_subsystem('wing', WingStructureSurro())
    model.connect('des_vars.ribs', ['wing.ribs', 'con_cmp1.ribs'])
    model.connect('des_vars.shell', 'wing.shell')

    # design variables, limits and constraints
    model.add_design_var('des_vars.ribs', lower=(range_rib[0] - offset_rib) / scale_rib, upper=(range_rib[1] - offset_rib) / scale_rib)
    model.add_design_var('des_vars.shell', lower=(range_shell[0] - offset_shell) / scale_shell, upper=(range_shell[1] - offset_shell) / scale_shell)

    # objective
    model.add_objective('wing.weight', scaler=0.0001)

    # constraint
    print('constrain stress: ' + str((max_shear_strength - offset_stress) / scale_stress))
    model.add_constraint('wing.stress', upper=(max_shear_strength - offset_stress) / scale_stress)
    model.add_subsystem('con_cmp1', ExecComp('con1 = (ribs * '+str(scale_rib)+') - int(ribs[0] * '+str(scale_rib)+')'))
    model.add_constraint('con_cmp1.con1', upper=.5)

    prob = Problem(model)

    # setup the optimization
    if USE_PYOPTSPARSE:
        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = OPTIMIZER
        prob.driver.opt_settings['SwarmSize'] = 8
        prob.driver.opt_settings['stopIters'] = 5
    else:
        prob.driver = ScipyOptimizeDriver()
        prob.driver.options['optimizer'] = OPTIMIZER  # ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', 'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP']
        prob.driver.options['tol'] = TOL
        prob.driver.options['disp'] = True
        prob.driver.options['maxiter'] = 1000
        #prob.driver.opt_settings['etol'] = 100

    prob.setup()
    prob.set_solver_print(level=0)
    prob.model.approx_totals()
    prob.setup(check=True, mode='fwd')
    prob.run_driver()

    print('done')
    print('ribs: ' + str((prob['wing.ribs'] * scale_rib) + offset_rib))
    print('shell: ' + str((prob['wing.shell'] * scale_shell) + offset_shell) + ' m')
    print('weight= ' + str((prob['wing.weight'] * scale_weight) + offset_weight))
    print('stress= ' + str((prob['wing.stress'] * scale_stress) + offset_stress) + ' ~ ' + str(prob['wing.stress']))
    print('execution counts wing: ' + str(prob.model.wing.executionCounter))
Esempio n. 3
0
group.add_subsystem('theta_comp', IndepVarComp('theta', val=np.pi / 3.))
group.add_subsystem('v_comp', IndepVarComp('v', val=1.))
group.add_subsystem('vx_comp', ExecComp('vx = v * cos(theta)'))
group.add_subsystem('vy_comp', ExecComp('vy = v * sin(theta)'))
group.add_subsystem('integrator_group', integrator)

group.connect('final_time_comp.final_time', 'integrator_group.final_time')
group.connect('theta_comp.theta', 'vx_comp.theta')
group.connect('theta_comp.theta', 'vy_comp.theta')
group.connect('v_comp.v', 'vx_comp.v')
group.connect('v_comp.v', 'vy_comp.v')

group.connect('vx_comp.vx', 'integrator_group.initial_condition:vx')
group.connect('vy_comp.vy', 'integrator_group.initial_condition:vy')

group.add_design_var('final_time_comp.final_time', lower=1e-3)
group.add_design_var('theta_comp.theta', lower=0., upper=np.pi / 2.)
group.add_constraint('integrator_group.state:y', indices=[-1], equals=0.)
group.add_objective('integrator_group.state:x', index=-1, scaler=-1.)

prob = Problem()
prob.model = group

prob.driver = ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
# from openmdao.api import pyOptSparseDriver
# prob.driver = driver = pyOptSparseDriver()
# driver.options['optimizer'] = 'SNOPT'
# driver.opt_settings['Verify level'] = 0
# driver.opt_settings['Major iterations limit'] = 200 #1000
# driver.opt_settings['Minor iterations limit'] = 1000