Esempio n. 1
0
 def _get_event_context(self, idx, nodal_plane_index=1):
     """
     Returns the event contexts for a specific event
     """
     idx = idx[0]
     rctx = RuptureContext()
     rup = self.records[idx]
     setattr(rctx, 'mag', rup.event.magnitude.value)
     if nodal_plane_index == 2:
         setattr(rctx, 'strike',
             rup.event.mechanism.nodal_planes.nodal_plane_2['strike'])
         setattr(rctx, 'dip',
             rup.event.mechanism.nodal_planes.nodal_plane_2['dip'])
         setattr(rctx, 'rake',
             rup.event.mechanism.nodal_planes.nodal_plane_2['rake'])
     else:
         setattr(rctx, 'strike', 0.0)
         setattr(rctx, 'dip', 90.0)
         rctx.rake = rup.event.mechanism.get_rake_from_mechanism_type()
     if rup.event.rupture.surface:
         setattr(rctx, 'ztor', rup.event.rupture.surface.get_top_edge_depth())
         setattr(rctx, 'width', rup.event.rupture.surface.width)
         setattr(rctx, 'hypo_loc', rup.event.rupture.surface.get_hypo_location(1000))
     else:
         setattr(rctx, 'ztor', rup.event.depth)
         # Use the PeerMSR to define the area and assuming an aspect ratio
         # of 1 get the width
         setattr(rctx, 'width',
                 np.sqrt(DEFAULT_MSR.get_median_area(rctx.mag, 0)))
         # Default hypocentre location to the middle of the rupture
         setattr(rctx, 'hypo_loc', (0.5, 0.5))
     setattr(rctx, 'hypo_depth', rup.event.depth)
     setattr(rctx, 'hypo_lat', rup.event.latitude)
     setattr(rctx, 'hypo_lon', rup.event.longitude)
     return rctx
 def test_get_mean_and_stddevs_good(self):
     """
     Tests the full execution of the GMPE tables for valid data
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     rctx.rake = 90.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([20.0, 20.0, 10.0, 5.0, 1.0E-19])
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGA(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.25 * np.ones(5), 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.SA(1.0),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.4 * np.ones(5), 5)
 def test_get_mean_table(self, idx=0):
     """
     Test the retrieval of the mean amplification tables for a given
     magnitude and IMT
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 1.5
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.PGA(), rctx),
         expected_table)
     # SA
     expected_table[:, self.IDX] = 2.0 * np.ones(10)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(0.5), rctx),
         expected_table)
     # SA (period interpolation)
     interpolator = interp1d(np.log10(self.amp_table.periods),
                             np.log10(np.array([1.5, 2.0, 0.5])))
     period = 0.3
     expected_table[:, self.IDX] = (
         10.0 ** interpolator(np.log10(period))) * np.ones(10.)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(period), rctx),
         expected_table)
Esempio n. 4
0
 def test_get_mean_and_stddevs_good_amplified(self):
     """
     Tests the full execution of the GMPE tables for valid data with
     amplification
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     sctx.vs30 = 100. * np.ones(5)
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([20., 20., 10., 5., 1.0E-19])
     expected_sigma = 0.25 * np.ones(5)
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGA(), stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], expected_sigma, 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.SA(1.0), stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.4 * np.ones(5), 5)
 def test_get_mean_and_stddevs(self):
     """
     Tests mean and standard deviations without amplification
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([2.0, 2.0, 1.0, 0.5, 1.0E-20])
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGA(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.SA(1.0),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.8 * np.ones(5), 5)
     # PGV
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGV(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean),
                                          10. * expected_mean,
                                          5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
Esempio n. 6
0
 def test_get_mean_table(self, idx=0):
     """
     Test the retrieval of the mean amplification tables for a given
     magnitude and IMT
     """
     ctx = RuptureContext()
     ctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 1.5
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.PGA(), ctx),
         expected_table)
     # SA
     expected_table[:, self.IDX] = 2.0 * np.ones(10)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(0.5), ctx),
         expected_table)
     # SA (period interpolation)
     interpolator = interp1d(np.log10(self.amp_table.periods),
                             np.log10(np.array([1.5, 2.0, 0.5])))
     period = 0.3
     expected_table[:, self.IDX] = (10.0**interpolator(
         np.log10(period))) * np.ones(10)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(period), ctx),
         expected_table)
Esempio n. 7
0
 def _get_event_context(self, idx, nodal_plane_index=1):
     """
     Returns the event contexts for a specific event
     """
     idx = idx[0]
     rctx = RuptureContext()
     rup = self.records[idx]
     setattr(rctx, 'mag', rup.event.magnitude.value)
     if nodal_plane_index == 2:
         setattr(rctx, 'dip',
             rup.event.mechanism.nodal_planes.nodal_plane_2['dip'])
         setattr(rctx, 'rake', 
             rup.event.mechanism.nodal_planes.nodal_plane_2['rake'])
     else:
         setattr(rctx, 'dip',
             rup.event.mechanism.nodal_planes.nodal_plane_1['dip'])
         setattr(rctx, 'rake',
             rup.event.mechanism.nodal_planes.nodal_plane_1['rake'])
     if not rctx.rake:
         rctx.rake = rup.event.mechanism.get_rake_from_mechanism_type()
     if rup.event.rupture:
         setattr(rctx, 'ztor', rup.event.rupture.depth)
         setattr(rctx, 'width', rup.event.rupture.width)
     setattr(rctx, 'hypo_depth', rup.event.depth)
     return rctx
Esempio n. 8
0
 def test_get_amplification_factors(self):
     """
     Tests the amplification tables
     """
     ctx = RuptureContext()
     ctx.rake = 45.0
     ctx.mag = 6.0
     # Takes distances at the values found in the table (not checking
     # distance interpolation)
     ctx.rjb = np.copy(self.amp_table.distances[:, 0, 0])
     # Test Vs30 is 700.0 m/s midpoint between the 400 m/s and 1000 m/s
     # specified in the table
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.ones_like(ctx.rjb)
     # Check PGA and PGV
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGA(), ctx, ctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 1.5) * expected_mean)
     np.testing.assert_array_almost_equal(sigma_amp[0], 0.9 * expected_mean)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGV(), ctx, ctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 0.5) * expected_mean)
     np.testing.assert_array_almost_equal(sigma_amp[0], 0.9 * expected_mean)
     # Sa (0.5)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.SA(0.5), ctx, ctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 2.0) * expected_mean)
     np.testing.assert_array_almost_equal(sigma_amp[0], 0.9 * expected_mean)
Esempio n. 9
0
 def test_get_mean_and_stddevs(self):
     """
     Tests mean and standard deviations without amplification
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     ctx = RuptureContext()
     ctx.mag = 6.0
     # Test values at the given distances and those outside range
     ctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     ctx.sids = np.arange(5)
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([2.0, 2.0, 1.0, 0.5, 1.0E-20])
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx,
                                             imt_module.PGA(), stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx,
                                             imt_module.SA(1.0), stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.8 * np.ones(5), 5)
     # PGV
     mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx,
                                             imt_module.PGV(), stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), 10. * expected_mean,
                                          5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
Esempio n. 10
0
def calculate_total_std(gsim_list, imts, vs30):
    std_total = {}
    std_inter = {}
    std_intra = {}
    for gsim in gsim_list:
        rctx = RuptureContext()
        # The calculator needs these inputs but they are not used
        # in the std calculation
        rctx.mag = 5
        rctx.rake = 0
        rctx.hypo_depth = 0
        dctx = DistancesContext()
        dctx.rjb = np.copy(np.array([1]))  # I do not care about the distance
        dctx.rrup = np.copy(np.array([1]))  # I do not care about the distance
        sctx = SitesContext()
        sctx.vs30 = vs30 * np.ones_like(np.array([0]))
        for imt in imts:
            gm_table, [
                gm_stddev_inter, gm_stddev_intra
            ] = (gsim.get_mean_and_stddevs(
                sctx, rctx, dctx, imt,
                [const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT]))
            std_total[gsim, imt] = (np.sqrt(gm_stddev_inter[0]**2 +
                                            gm_stddev_intra[0]**2))
            std_inter[gsim, imt] = gm_stddev_inter[0]
            std_intra[gsim, imt] = gm_stddev_intra[0]
    return (std_total, std_inter, std_intra)
Esempio n. 11
0
 def _get_event_context(self, idx, nodal_plane_index=1):
     """
     Returns the event contexts for a specific event
     """
     idx = idx[0]
     rctx = RuptureContext()
     rup = self.records[idx]
     setattr(rctx, 'mag', rup.event.magnitude.value)
     if nodal_plane_index == 2:
         setattr(rctx, 'strike',
                 rup.event.mechanism.nodal_planes.nodal_plane_2['strike'])
         setattr(rctx, 'dip',
                 rup.event.mechanism.nodal_planes.nodal_plane_2['dip'])
         setattr(rctx, 'rake',
                 rup.event.mechanism.nodal_planes.nodal_plane_2['rake'])
     else:
         setattr(rctx, 'strike', 0.0)
         setattr(rctx, 'dip', 90.0)
         rctx.rake = rup.event.mechanism.get_rake_from_mechanism_type()
     if rup.event.rupture:
         setattr(rctx, 'ztor',
                 rup.event.rupture.surface.get_top_edge_depth())
         setattr(rctx, 'width', rup.event.rupture.surface.width)
         setattr(rctx, 'hypo_loc',
                 rup.event.rupture.surface.get_hypo_location(1000))
     else:
         setattr(rctx, 'ztor', rup.event.depth)
     setattr(rctx, 'hypo_depth', rup.event.depth)
     setattr(rctx, 'hypo_lat', rup.event.latitude)
     setattr(rctx, 'hypo_lon', rup.event.longitude)
     return rctx
Esempio n. 12
0
 def _get_event_context(self, idx, nodal_plane_index=1):
     """
     Returns the event contexts for a specific event
     """
     idx = idx[0]
     rctx = RuptureContext()
     rup = self.records[idx]
     setattr(rctx, 'mag', rup.event.magnitude.value)
     if nodal_plane_index == 2:
         setattr(rctx, 'strike',
             rup.event.mechanism.nodal_planes.nodal_plane_2['strike'])
         setattr(rctx, 'dip',
             rup.event.mechanism.nodal_planes.nodal_plane_2['dip'])
         setattr(rctx, 'rake',
             rup.event.mechanism.nodal_planes.nodal_plane_2['rake'])
     else:
         setattr(rctx, 'strike', 0.0)
         setattr(rctx, 'dip', 90.0)
         rctx.rake = rup.event.mechanism.get_rake_from_mechanism_type()
     if rup.event.rupture.surface:
         setattr(rctx, 'ztor', rup.event.rupture.surface.get_top_edge_depth())
         setattr(rctx, 'width', rup.event.rupture.surface.width)
         setattr(rctx, 'hypo_loc', rup.event.rupture.surface.get_hypo_location(1000))
     else:
         setattr(rctx, 'ztor', rup.event.depth)
         # Use the PeerMSR to define the area and assuming an aspect ratio
         # of 1 get the width
         setattr(rctx, 'width',
                 np.sqrt(DEFAULT_MSR.get_median_area(rctx.mag, 0)))
         # Default hypocentre location to the middle of the rupture
         setattr(rctx, 'hypo_loc', (0.5, 0.5))
     setattr(rctx, 'hypo_depth', rup.event.depth)
     setattr(rctx, 'hypo_lat', rup.event.latitude)
     setattr(rctx, 'hypo_lon', rup.event.longitude)
     return rctx
Esempio n. 13
0
    def test_dist_not_in_increasing_order(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.mag = 5.
        dctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        dctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
Esempio n. 14
0
    def get_gsim_contexts(self):
        """
        Returns a comprehensive set of GMPE contecxt objects
        """
        assert isinstance(self.rupture, Rupture)
        assert isinstance(self.target_sites, SiteCollection)
        # Distances
        dctx = DistancesContext()
        # Rupture distance
        setattr(dctx, 'rrup',
                self.rupture.surface.get_min_distance(self.target_sites.mesh))
        # Rx
        setattr(dctx, 'rx',
                self.rupture.surface.get_rx_distance(self.target_sites.mesh))
        # Rjb
        setattr(
            dctx, 'rjb',
            self.rupture.surface.get_joyner_boore_distance(
                self.target_sites.mesh))
        # Rhypo
        setattr(
            dctx, 'rhypo',
            self.rupture.hypocenter.distance_to_mesh(self.target_sites.mesh))
        # Repi
        setattr(
            dctx, 'repi',
            self.rupture.hypocenter.distance_to_mesh(self.target_sites.mesh,
                                                     with_depths=False))
        # Ry0
        setattr(dctx, 'ry0',
                self.rupture.surface.get_ry0_distance(self.target_sites.mesh))
        # Rcdpp - ignored at present
        setattr(dctx, 'rcdpp', None)
        # Azimuth - ignored at present
        setattr(dctx, 'azimuth', None)
        setattr(dctx, 'hanging_wall', None)
        # Rvolc
        setattr(dctx, "rvolc", np.zeros_like(self.target_sites.mesh.lons))
        # Sites
        sctx = SitesContext()
        key_list = ['_vs30', '_vs30measured', '_z1pt0', '_z2pt5', '_backarc']
        for key in key_list:
            setattr(sctx, key[1:], getattr(self.target_sites, key))
        for key in ['lons', 'lats']:
            setattr(sctx, key, getattr(self.target_sites, key))

        # Rupture
        rctx = RuptureContext()
        setattr(rctx, 'mag', self.magnitude)
        setattr(rctx, 'strike', self.strike)
        setattr(rctx, 'dip', self.dip)
        setattr(rctx, 'rake', self.rake)
        setattr(rctx, 'ztor', self.ztor)
        setattr(rctx, 'hypo_depth', self.rupture.hypocenter.depth)
        setattr(rctx, 'hypo_lat', self.rupture.hypocenter.latitude)
        setattr(rctx, 'hypo_lon', self.rupture.hypocenter.longitude)
        setattr(rctx, 'hypo_loc', self.hypo_loc)
        setattr(rctx, 'width', self.rupture.surface.get_width())
        return sctx, rctx, dctx
Esempio n. 15
0
def evaluate_model(site_params, rup_params, df, npts, azimuth, moveout, mod,
                   imt):
    sx = SitesContext()
    rx = RuptureContext()
    dx = DistancesContext()

    # TODO: some site parameters can be pulled from the dataframe so we don't
    # have to use the defaults (vs30, azimuth, etc.)
    if not moveout:
        npts = df.shape[0]
    for param in site_params.keys():
        setattr(sx, param, np.full(npts, site_params[param]))

    rx.__dict__.update(rup_params)
    rx.mag = df['EarthquakeMagnitude'].iloc[0]
    rx.hypo_depth = df['EarthquakeDepth'].iloc[0]

    if moveout:
        dx.rjb = np.linspace(0, df['JoynerBooreDistance'].max(), npts)
        dx.rrup = np.sqrt(dx.rjb**2 + df['EarthquakeDepth'].iloc[0]**2)
        dx.rhypo = dx.rrup
        dx.repi = dx.rjb
    else:
        dx.rjb = df['JoynerBooreDistance']
        dx.rrup = df['RuptureDistance']
        dx.rhypo = df['HypocentralDistance']
        dx.repi = df['EpicentralDistance']

    # TODO: some of these distances can be pulled from the dataframe
    dx.ry0 = dx.rjb
    dx.rx = np.full_like(dx.rjb, -1)
    dx.azimuth = np.full_like(npts, azimuth)
    dx.rcdpp = dx.rjb
    dx.rvolc = dx.rjb

    try:
        mean, sd = MODELS_DICT[mod]().get_mean_and_stddevs(
            sx, rx, dx,
            manage_imts(imt)[0], [StdDev.TOTAL])
        mean = convert_units(mean, imt)
        if moveout:
            return mean, dx
        else:
            return mean, sd[0]
    except Exception:
        return
    def test_dist_not_in_increasing_order(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.mag = 5.
        dctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        dctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
Esempio n. 17
0
    def test_mag_greater_8pt5(self):
        gmpe = SadighEtAl1997()

        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.rake = 0.0
        dctx.rrup = numpy.array([0., 1.])
        sctx.vs30 = numpy.array([800., 800.])

        rctx.mag = 9.0
        mean_rock_9, _ = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, PGA(),
                                                   [StdDev.TOTAL])
        rctx.mag = 8.5
        mean_rock_8pt5, _ = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, PGA(),
                                                      [StdDev.TOTAL])
        numpy.testing.assert_allclose(mean_rock_9, mean_rock_8pt5)

        sctx.vs30 = numpy.array([300., 300.])
        rctx.mag = 9.0
        mean_soil_9, _ = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, PGA(),
                                                   [StdDev.TOTAL])
        rctx.mag = 8.5
        mean_soil_8pt5, _ = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, PGA(),
                                                      [StdDev.TOTAL])
        numpy.testing.assert_allclose(mean_soil_9, mean_soil_8pt5)
Esempio n. 18
0
 def test_get_sigma_table(self):
     """
     Test the retrieval of the standard deviation modification tables
     for a given magnitude and IMT
     """
     ctx = RuptureContext()
     ctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 0.8
     stddevs = [const.StdDev.TOTAL]
     pga_table = self.amp_table.get_sigma_tables(imt_module.PGA(), ctx,
                                                 stddevs)[0]
     np.testing.assert_array_almost_equal(pga_table, expected_table)
     # SA (for coverage)
     sa_table = self.amp_table.get_sigma_tables(imt_module.SA(0.3), ctx,
                                                stddevs)[0]
     np.testing.assert_array_almost_equal(sa_table, expected_table)
Esempio n. 19
0
 def test_get_mean_stddevs_unsupported_stddev(self):
     """
     Tests the execution of the GMPE with an unsupported standard deviation
     type
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     sctx.vs30 = 1000. * np.ones(5)
     stddevs = [const.StdDev.TOTAL, const.StdDev.INTER_EVENT]
     with self.assertRaises(ValueError) as ve:
         gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.PGA(),
                                   stddevs)
     self.assertEqual(str(ve.exception),
                      "Standard Deviation type Inter event not supported")
Esempio n. 20
0
 def test_get_amplification_factors(self):
     """
     Tests the amplification tables
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Takes distances at the values found in the table (not checking
     # distance interpolation)
     dctx.rjb = np.copy(self.amp_table.distances[:, 0, 0])
     # Test Vs30 is 700.0 m/s midpoint between the 400 m/s and 1000 m/s
     # specified in the table
     sctx = SitesContext()
     sctx.vs30 = 700.0 * np.ones_like(dctx.rjb)
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.ones_like(dctx.rjb)
     expected_sigma = np.ones_like(dctx.rjb)
     # Check PGA and PGV
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGA(), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 1.5) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGV(), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 0.5) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
     # Sa (0.5)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.SA(0.5), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 2.0) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
Esempio n. 21
0
 def _get_poes(self, **kwargs):
     default_kwargs = dict(sctx=SitesContext(),
                           rctx=RuptureContext(),
                           dctx=DistancesContext(),
                           imt=self.DEFAULT_IMT(),
                           imls=[1.0, 2.0, 3.0],
                           truncation_level=1.0)
     default_kwargs.update(kwargs)
     kwargs = default_kwargs
     return self.gsim.get_poes(**kwargs)
Esempio n. 22
0
 def test_get_mean_stddevs_unsupported_stddev(self):
     """
     Tests the execution of the GMPE with an unsupported standard deviation
     type
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     sctx.vs30 = 1000. * np.ones(5)
     stddevs = [const.StdDev.TOTAL, const.StdDev.INTER_EVENT]
     with self.assertRaises(ValueError) as ve:
         gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.PGA(),
                                   stddevs)
     self.assertEqual(str(ve.exception),
                      "Standard Deviation type Inter event not supported")
Esempio n. 23
0
    def check_gmpe_adjustments(self, adj_gmpe_set, original_gmpe):
        """
        Takes a set of three adjusted GMPEs representing the "low", "middle"
        and "high" stress drop adjustments for Germany and compares them
        against the original "target" GMPE for a variety of magnitudes
        and styles of fauling.
        """
        low_gsim, mid_gsim, high_gsim = adj_gmpe_set
        tot_std = [const.StdDev.TOTAL]
        for imt in self.imts:
            for mag in self.mags:
                for rake in self.rakes:
                    rctx = RuptureContext()
                    rctx.mag = mag
                    rctx.rake = rake
                    rctx.hypo_depth = 10.
                    # Get "original" values
                    mean = original_gmpe.get_mean_and_stddevs(self.sctx, rctx,
                                                              self.dctx, imt,
                                                              tot_std)[0]
                    mean = np.exp(mean)
                    # Get "low" adjustments (0.75 times the original)
                    low_mean = low_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                             self.dctx, imt,
                                                             tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(low_mean) / mean, 0.75 * np.ones_like(low_mean))

                    # Get "middle" adjustments (1.25 times the original)
                    mid_mean = mid_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                             self.dctx, imt,
                                                             tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(mid_mean) / mean, 1.25 * np.ones_like(mid_mean))

                    # Get "high" adjustments (1.5 times the original)
                    high_mean = high_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                               self.dctx, imt,
                                                               tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(high_mean) / mean,
                        1.5 * np.ones_like(high_mean))
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     sctx = SitesContext()
     sctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     rctx = RuptureContext()
     rctx.mag = 5.0
     rctx.rake = 0
     dctx = DistancesContext()
     dctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     dctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rhypo', numpy.array([15.0, 15.0, 16.0]))
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
Esempio n. 25
0
 def test_get_sigma_table(self):
     """
     Test the retrieval of the standard deviation modification tables
     for a given magnitude and IMT
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 0.8
     stddevs = ["Total"]
     pga_table = self.amp_table.get_sigma_tables(imt_module.PGA(),
                                                 rctx,
                                                 stddevs)[0]
     np.testing.assert_array_almost_equal(pga_table, expected_table)
     # SA (for coverage)
     sa_table = self.amp_table.get_sigma_tables(imt_module.SA(0.3),
                                                rctx,
                                                stddevs)[0]
     np.testing.assert_array_almost_equal(sa_table, expected_table)
Esempio n. 26
0
 def setUp(self):
     """
     """
     self.gsim = TromansEtAl2019SigmaMu
     self.rctx = RuptureContext()
     self.rctx.mag = 6.5
     self.rctx.rake = 0.
     self.dctx = DistancesContext()
     self.dctx.rjb = np.array([5., 10., 20., 50., 100.])
     self.sctx = SitesContext()
     self.sctx.vs30 = 500. * np.ones(5)
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     sctx = SitesContext()
     sctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     rctx = RuptureContext()
     rctx.mag = 5.0
     rctx.rake = 0
     dctx = DistancesContext()
     dctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     dctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rhypo', numpy.array([15.0, 15.0, 16.0]))
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
Esempio n. 28
0
 def get_response_spectrum(self, magnitude, distance, periods, rake=90, vs30=800, damping=0.05):
     """
     """
     responses = np.zeros((len(periods),))
     p_damping = damping * 100
     rup = RuptureContext()
     rup.mag = magnitude
     rup.rake = rake
     dists = DistancesContext()
     dists.rjb = np.array([distance])
     sites = SitesContext()
     sites.vs30 = np.array([vs30])
     stddev_types = [StdDev.TOTAL]
     for i, period in enumerate(periods):
         if period == 0:
             imt = _PGA()
         else:
             imt = _SA(period, p_damping)
         responses[i] = np.exp(self._gmpe.get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[0][0])
     return ResponseSpectrum(periods, responses, unit='g', damping=damping)
Esempio n. 29
0
 def setUp(self):
     """
     Setup with a set of distances and site paramwters
     """
     self.imts = [PGA(), SA(0.1), SA(0.2), SA(0.5), SA(1.0), SA(2.0)]
     self.mags = [4.5, 5.5, 6.5, 7.5]
     self.rakes = [-90., 0., 90.]
     self.ctx = RuptureContext()
     self.ctx.sids = np.arange(5)
     self.ctx.rhypo = np.array([5., 10., 20., 50., 100.])
     self.ctx.vs30 = 800.0 * np.ones(5)
Esempio n. 30
0
 def test_zero_distance(self):
     # test the calculation in case of zero rrup distance (for rrup=0
     # the slab correction term has a singularity). In this case the
     # method should return values equal to the ones obtained by
     # replacing 0 values with 0.1
     ctx = RuptureContext()
     ctx.sids = [0, 1]
     ctx.vs30 = numpy.array([800.0, 800.0])
     ctx.mag = 5.0
     ctx.rake = 0.0
     ctx.hypo_depth = 0.0
     ctx.rrup = numpy.array([0.0, 0.2])
     ctx.occurrence_rate = .0001
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     ctx.rrup = numpy.array([0.1, 0.2])
     mean_01, stds_01 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_01)
     numpy.testing.assert_array_equal(stds_0, stds_01)
Esempio n. 31
0
    def test_equality(self):
        sctx1 = SitesContext()
        sctx1.vs30 = numpy.array([500., 600., 700.])
        sctx1.vs30measured = True
        sctx1.z1pt0 = numpy.array([40., 50., 60.])
        sctx1.z2pt5 = numpy.array([1, 2, 3])

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 == sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = False
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])

        self.assertTrue(sctx1 != sctx2)

        rctx = RuptureContext()
        rctx.mag = 5.
        self.assertTrue(sctx1 != rctx)
Esempio n. 32
0
    def test_equality(self):
        sctx1 = SitesContext()
        sctx1.vs30 = numpy.array([500., 600., 700.])
        sctx1.vs30measured = True
        sctx1.z1pt0 = numpy.array([40., 50., 60.])
        sctx1.z2pt5 = numpy.array([1, 2, 3])

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 == sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = False
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])

        self.assertTrue(sctx1 != sctx2)

        rctx = RuptureContext()
        rctx.mag = 5.
        self.assertTrue(sctx1 != rctx)
Esempio n. 33
0
    def test_get_mean_and_stddevs_good(self):
        """
        Tests the full execution of the GMPE tables for valid data
        """
        gsim = GMPETable(gmpe_table=self.TABLE_FILE)
        ctx = RuptureContext()
        ctx.mag = 6.0
        # Test values at the given distances and those outside range
        ctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
        ctx.vs30 = 1000. * np.ones(5)
        ctx.sids = np.arange(5)
        stddevs = [const.StdDev.TOTAL]
        expected_mean = np.array([2.0, 2.0, 1.0, 0.5, 1.0E-20])
        expected_sigma = 0.25 * np.ones(5)
        imts = [imt_module.PGA(), imt_module.SA(1.0), imt_module.PGV()]
        # PGA
        mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx, imts[0],
                                                stddevs)
        np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
        np.testing.assert_array_almost_equal(sigma[0], expected_sigma, 5)
        # SA
        mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx, imts[1],
                                                stddevs)
        np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
        np.testing.assert_array_almost_equal(sigma[0], 0.4 * np.ones(5), 5)
        # PGV
        mean, sigma = gsim.get_mean_and_stddevs(ctx, ctx, ctx, imts[2],
                                                stddevs)
        np.testing.assert_array_almost_equal(np.exp(mean), 10. * expected_mean,
                                             5)
        np.testing.assert_array_almost_equal(sigma[0], expected_sigma, 5)

        # StdDev.ALL check
        contexts.get_mean_stds([gsim], ctx, imts)
Esempio n. 34
0
    def test_mag_greater_8pt5(self):
        gmpe = SadighEtAl1997()

        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.rake =  0.0
        dctx.rrup = numpy.array([0., 1.])
        sctx.vs30 = numpy.array([800., 800.])

        rctx.mag = 9.0
        mean_rock_9, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        rctx.mag = 8.5
        mean_rock_8pt5, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        numpy.testing.assert_allclose(mean_rock_9, mean_rock_8pt5)

        sctx.vs30 = numpy.array([300., 300.])
        rctx.mag = 9.0
        mean_soil_9, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        rctx.mag = 8.5
        mean_soil_8pt5, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        numpy.testing.assert_allclose(mean_soil_9, mean_soil_8pt5)
Esempio n. 35
0
    def test_mag_dist_outside_range(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        # rupture with Mw = 3 (Mblg=2.9434938048208452) at rhypo = 1 must give
        # same mean as rupture with Mw = 4.4 (Mblg=4.8927897867183798) at
        # rhypo = 10
        rctx.mag = 2.9434938048208452
        dctx.rhypo = numpy.array([1])
        mean_mw3_d1, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        rctx.mag = 4.8927897867183798
        dctx.rhypo = numpy.array([10])
        mean_mw4pt4_d10, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        self.assertAlmostEqual(float(mean_mw3_d1), float(mean_mw4pt4_d10))

        # rupture with Mw = 9 (Mblg = 8.2093636421088814) at rhypo = 1500 km
        # must give same mean as rupture with Mw = 8.2
        # (Mblg = 7.752253535347597) at rhypo = 1000
        rctx.mag = 8.2093636421088814
        dctx.rhypo = numpy.array([1500.])
        mean_mw9_d1500, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        rctx.mag = 7.752253535347597
        dctx.rhypo = numpy.array([1000.])
        mean_mw8pt2_d1000, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        self.assertAlmostEqual(mean_mw9_d1500, mean_mw8pt2_d1000)
Esempio n. 36
0
 def _disaggregate_poe(self, **kwargs):
     default_kwargs = dict(
         sctx=SitesContext(),
         rctx=RuptureContext(),
         dctx=DistancesContext(),
         imt=self.DEFAULT_IMT(),
         iml=2.0,
         truncation_level=1.0,
         n_epsilons=3,
     )
     default_kwargs.update(kwargs)
     kwargs = default_kwargs
     return self.gsim.disaggregate_poe(**kwargs)
    def test_mag_dist_outside_range(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        # rupture with Mw = 3 (Mblg=2.9434938048208452) at rhypo = 1 must give
        # same mean as rupture with Mw = 4.4 (Mblg=4.8927897867183798) at
        # rhypo = 10
        rctx.mag = 2.9434938048208452
        dctx.rhypo = numpy.array([1])
        mean_mw3_d1, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 4.8927897867183798
        dctx.rhypo = numpy.array([10])
        mean_mw4pt4_d10, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(float(mean_mw3_d1), float(mean_mw4pt4_d10))

        # rupture with Mw = 9 (Mblg = 8.2093636421088814) at rhypo = 1500 km
        # must give same mean as rupture with Mw = 8.2
        # (Mblg = 7.752253535347597) at rhypo = 1000
        rctx.mag = 8.2093636421088814
        dctx.rhypo = numpy.array([1500.])
        mean_mw9_d1500, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 7.752253535347597
        dctx.rhypo = numpy.array([1000.])
        mean_mw8pt2_d1000, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(mean_mw9_d1500, mean_mw8pt2_d1000)
Esempio n. 38
0
 def test_recarray_conversion(self):
     # automatic recarray conversion for backward compatibility
     imt = PGA()
     gsim = AbrahamsonGulerce2020SInter()
     ctx = RuptureContext()
     ctx.mag = 5.
     ctx.sids = [0, 1]
     ctx.vs30 = [760., 760.]
     ctx.rrup = [100., 110.]
     ctx.occurrence_rate = .000001
     mean, _stddevs = gsim.get_mean_and_stddevs(ctx, ctx, ctx, imt, [])
     numpy.testing.assert_allclose(mean, [-5.81116004, -6.00192455])
Esempio n. 39
0
    def check_gmpe_adjustments(self, adj_gmpe_set, original_gmpe):
        """
        Takes a set of three adjusted GMPEs representing the "low", "middle"
        and "high" stress drop adjustments for Germany and compares them
        against the original "target" GMPE for a variety of magnitudes
        and styles of fauling.
        """
        low_gsim, mid_gsim, high_gsim = adj_gmpe_set
        tot_std = [const.StdDev.TOTAL]
        for imt in self.imts:
            for mag in self.mags:
                for rake in self.rakes:
                    rctx = RuptureContext()
                    rctx.mag = mag
                    rctx.rake = rake
                    rctx.hypo_depth = 10.
                    # Get "original" values
                    mean = original_gmpe.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    mean = np.exp(mean)
                    # Get "low" adjustments (0.75 times the original)
                    low_mean = low_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(low_mean) / mean, 0.75 * np.ones_like(low_mean))

                    # Get "middle" adjustments (1.25 times the original)
                    mid_mean = mid_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(mid_mean) / mean, 1.25 * np.ones_like(mid_mean))

                    # Get "high" adjustments (1.5 times the original)
                    high_mean = high_gsim.get_mean_and_stddevs(
                        self.sctx, rctx, self.dctx, imt, tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(high_mean) / mean,
                        1.5 * np.ones_like(high_mean))
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     ctx = RuptureContext()
     ctx.sids = [0, 1, 2]
     ctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     ctx.mag = 5.0
     ctx.rake = 0
     ctx.occurrence_rate = .0001
     ctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     ctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
Esempio n. 41
0
 def test_zero_distance(self):
     # test the calculation in case of zero rrup distance (for rrup=0
     # the equations have a singularity). In this case the
     # method should return values equal to the ones obtained by
     # replacing 0 values with 1
     sctx = SitesContext()
     rctx = RuptureContext()
     dctx = DistancesContext()
     setattr(sctx, 'vs30', numpy.array([500.0, 2500.0]))
     setattr(rctx, 'mag', 5.0)
     setattr(dctx, 'rrup', numpy.array([0.0, 0.2]))
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rrup', numpy.array([1.0, 0.2]))
     mean_01, stds_01 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_01)
     numpy.testing.assert_array_equal(stds_0, stds_01)
Esempio n. 42
0
    def test_dist_not_in_increasing_order(self):
        ctx = RuptureContext()
        ctx.mag = 5.
        ctx.sids = [0, 1]
        ctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            ctx, ctx, ctx, SA(0.1, 5), [StdDev.TOTAL])

        ctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            ctx, ctx, ctx, SA(0.1, 5), [StdDev.TOTAL])
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
Esempio n. 43
0
 def test_zero_distance(self):
     # test the calculation in case of zero rrup distance (for rrup=0
     # the equations have a singularity). In this case the
     # method should return values equal to the ones obtained by
     # replacing 0 values with 1
     ctx = RuptureContext()
     ctx.sids = [0, 1]
     ctx.vs30 = numpy.array([500.0, 2500.0])
     ctx.mag = 5.0
     ctx.rrup = numpy.array([0.0, 0.2])
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     ctx.rrup = numpy.array([1.0, 0.2])
     mean_01, stds_01 = self.GSIM_CLASS().get_mean_and_stddevs(
         ctx, ctx, ctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_01)
     numpy.testing.assert_array_equal(stds_0, stds_01)
Esempio n. 44
0
def trim_multiple_events(
    st,
    origin,
    catalog,
    travel_time_df,
    pga_factor,
    pct_window_reject,
    gmpe,
    site_parameters,
    rupture_parameters,
):
    """
    Uses a catalog (list of ScalarEvents) to handle cases where a trace might
    contain signals from multiple events. The catalog should contain events
    down to a low enough magnitude in relation to the events of interest.
    Overall, the algorithm is as follows:

    1) For each earthquake in the catalog, get the P-wave travel time
       and estimated PGA at this station.

    2) Compute the PGA (of the as-recorded horizontal channels).

    3) Select the P-wave arrival times across all events for this record
       that are (a) within the signal window, and (b) the predicted PGA is
       greater than pga_factor times the PGA from step #1.

    4) If any P-wave arrival times match the above criteria, then if any of
       the arrival times fall within in the first pct_window_reject*100%
       of the signal window, then reject the record. Otherwise, trim the
       record such that the end time does not include any of the arrivals
       selected in step #3.

    Args:
        st (StationStream):
            Stream of data.
        origin (ScalarEvent):
            ScalarEvent object associated with the StationStream.
        catalog (list):
            List of ScalarEvent objects.
        travel_time_df (DataFrame):
            A pandas DataFrame that contains the travel time information
            (obtained from
             gmprocess.waveform_processing.phase.create_travel_time_dataframe).
            The columns in the DataFrame are the station ids and the indices
            are the earthquake ids.
        pga_factor (float):
            A decimal factor used to determine whether the predicted PGA
            from an event arrival is significant enough that it should be
            considered for removal.
        pct_window_reject (float):
           A decimal from 0.0 to 1.0 used to determine if an arrival should
            be trimmed from the record, or if the entire record should be
            rejected. If the arrival falls within the first
            pct_window_reject * 100% of the signal window, then the entire
            record will be rejected. Otherwise, the record will be trimmed
            appropriately.
        gmpe (str):
            Short name of the GMPE to use. Must be defined in the modules file.
        site_parameters (dict):
            Dictionary of site parameters to input to the GMPE.
        rupture_parameters:
            Dictionary of rupture parameters to input to the GMPE.

    Returns:
        StationStream: Processed stream.

    """

    if not st.passed:
        return st

    # Check that we know the signal split for each trace in the stream
    for tr in st:
        if not tr.hasParameter("signal_split"):
            return st

    signal_window_starttime = st[0].getParameter("signal_split")["split_time"]

    arrivals = travel_time_df[st[0].stats.network + "." + st[0].stats.station]
    arrivals = arrivals.sort_values()

    # Filter by any arrival times that appear in the signal window
    arrivals = arrivals[(arrivals > signal_window_starttime)
                        & (arrivals < st[0].stats.endtime)]

    # Make sure we remove the arrival that corresponds to the event of interest
    if origin.id in arrivals.index:
        arrivals.drop(index=origin.id, inplace=True)

    if arrivals.empty:
        return st

    # Calculate the recorded PGA for this record
    stasum = StationSummary.from_stream(st, ["ROTD(50.0)"], ["PGA"])
    recorded_pga = stasum.get_pgm("PGA", "ROTD(50.0)")

    # Load the GMPE model
    gmpe = load_model(gmpe)

    # Generic context
    rctx = RuptureContext()

    # Make sure that site parameter values are converted to numpy arrays
    site_parameters_copy = site_parameters.copy()
    for k, v in site_parameters_copy.items():
        site_parameters_copy[k] = np.array([site_parameters_copy[k]])
    rctx.__dict__.update(site_parameters_copy)

    # Filter by arrivals that have significant expected PGA using GMPE
    is_significant = []
    for eqid, arrival_time in arrivals.items():
        event = next(event for event in catalog if event.id == eqid)

        # Set rupture parameters
        rctx.__dict__.update(rupture_parameters)
        rctx.mag = event.magnitude

        # TODO: distances should be calculated when we refactor to be
        # able to import distance calculations
        rctx.repi = np.array([
            gps2dist_azimuth(
                st[0].stats.coordinates.latitude,
                st[0].stats.coordinates.longitude,
                event.latitude,
                event.longitude,
            )[0] / 1000
        ])
        rctx.rjb = rctx.repi
        rctx.rhypo = np.sqrt(rctx.repi**2 + event.depth_km**2)
        rctx.rrup = rctx.rhypo
        rctx.sids = np.array(range(np.size(rctx.rrup)))
        pga, sd = gmpe.get_mean_and_stddevs(rctx, rctx, rctx, imt.PGA(), [])

        # Convert from ln(g) to %g
        predicted_pga = 100 * np.exp(pga[0])
        if predicted_pga > (pga_factor * recorded_pga):
            is_significant.append(True)
        else:
            is_significant.append(False)

    significant_arrivals = arrivals[is_significant]
    if significant_arrivals.empty:
        return st

    # Check if any of the significant arrivals occur within the
    signal_length = st[0].stats.endtime - signal_window_starttime
    cutoff_time = signal_window_starttime + pct_window_reject * (signal_length)
    if (significant_arrivals < cutoff_time).any():
        for tr in st:
            tr.fail("A significant arrival from another event occurs within "
                    "the first %s percent of the signal window" %
                    (100 * pct_window_reject))

    # Otherwise, trim the stream at the first significant arrival
    else:
        for tr in st:
            signal_end = tr.getParameter("signal_end")
            signal_end["end_time"] = significant_arrivals[0]
            signal_end["method"] = "Trimming before right another event"
            tr.setParameter("signal_end", signal_end)
        cut(st)

    return st
Esempio n. 45
0
from openquake.hazardlib.gsim.base import RuptureContext
from openquake.hazardlib.gsim.base import DistancesContext
from openquake.hazardlib.gsim.base import SitesContext
import numpy as np
import gmpe as gm
import matplotlib.pyplot as plt

fig_dir = '/Users/vsahakian/anza/models/statistics/misc/oq_vs_matlab/'


## This all works..... ##

ASK14 = AbrahamsonEtAl2014()

IMT = imt.PGA()
rctx = RuptureContext()
dctx = DistancesContext()
sctx = SitesContext()
sctx_rock = SitesContext()

rctx.rake = 0.0
rctx.dip = 90.0
rctx.ztor = 7.13
rctx.mag = 3.0
#rctx.mag = np.linspace(0.1,5.)
rctx.width = 10.0
rctx.hypo_depth = 8.0

#dctx.rrup = np.logspace(1,np.log10(200),100)
dctx.rrup = np.logspace(np.log10(10),np.log10(10.0),1)
Esempio n. 46
0
def _parse_csv_line(headers, values):
    """
    Parse a single line from data file.

    :param headers:
        A list of header names, the strings from the first line of csv file.
    :param values:
        A list of values of a single row to parse.
    :returns:
        A tuple of the following values (in specified order):

        sctx
            An instance of :class:`openquake.hazardlib.gsim.base.SitesContext`
            with attributes populated by the information from in row in a form
            of single-element numpy arrays.
        rctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.RuptureContext`.
        dctx
            An instance of
            :class:`openquake.hazardlib.gsim.base.DistancesContext`.
        stddev_types
            An empty list, if the ``result_type`` column says "MEAN"
            for that row, otherwise it is a list with one item --
            a requested standard deviation type.
        expected_results
            A dictionary mapping IMT-objects to one-element arrays of expected
            result values. Those results represent either standard deviation
            or mean value of corresponding IMT depending on ``result_type``.
        result_type
            A string literal, one of ``'STDDEV'`` or ``'MEAN'``. Value
            is taken from column ``result_type``.
    """
    rctx = RuptureContext()
    sctx = SitesContext()
    dctx = DistancesContext()
    expected_results = {}
    stddev_types = result_type = damping = None

    for param, value in zip(headers, values):
        if param == 'result_type':
            value = value.upper()
            if value.endswith('_STDDEV'):
                # the row defines expected stddev results
                result_type = 'STDDEV'
                stddev_types = [getattr(const.StdDev,
                                        value[:-len('_STDDEV')])]
            else:
                # the row defines expected exponents of mean values
                assert value == 'MEAN'
                stddev_types = []
                result_type = 'MEAN'
        elif param == 'damping':
            damping = float(value)
        elif param.startswith('site_'):
            # value is sites context object attribute
            if (param == 'site_vs30measured') or (param == 'site_backarc'):
                value = float(value) != 0
            else:
                value = float(value)
            setattr(sctx, param[len('site_'):], numpy.array([value]))
        elif param.startswith('dist_'):
            # value is a distance measure
            value = float(value)
            setattr(dctx, param[len('dist_'):], numpy.array([value]))
        elif param.startswith('rup_'):
            # value is a rupture context attribute
            value = float(value)
            setattr(rctx, param[len('rup_'):], value)
        elif param == 'component_type':
            pass
        else:
            # value is the expected result (of result_type type)
            value = float(value)
            if param == 'pga':
                imt = PGA()
            elif param == 'pgv':
                imt = PGV()
            elif param == 'pgd':
                imt = PGD()
            elif param == 'cav':
                imt = CAV()
            else:
                period = float(param)
                assert damping is not None
                imt = SA(period, damping)

            expected_results[imt] = numpy.array([value])

    assert result_type is not None
    return sctx, rctx, dctx, stddev_types, expected_results, result_type
def signal_end(st, event_time, event_lon, event_lat, event_mag,
               method=None, vmin=None, floor=None,
               model=None, epsilon=2.0):
    """
    Estimate end of signal by using a model of the 5-95% significant
    duration, and adding this value to the "signal_split" time. This probably
    only works well when the split is estimated with a p-wave picker since
    the velocity method often ends up with split times that are well before
    signal actually starts.

    Args:
        st (StationStream):
            Stream of data.
        event_time (UTCDateTime):
            Event origin time.
        event_mag (float):
            Event magnitude.
        event_lon (float):
            Event longitude.
        event_lat (float):
            Event latitude.
        method (str):
            Method for estimating signal end time. Either 'velocity'
            or 'model'.
        vmin (float):
            Velocity (km/s) for estimating end of signal. Only used if
            method="velocity".
        floor (float):
            Minimum duration (sec) applied along with vmin.
        model (str):
            Short name of duration model to use. Must be defined in the
            gmprocess/data/modules.yml file.
        epsilon (float):
            Number of standard deviations; if epsilon is 1.0, then the signal
            window duration is the mean Ds + 1 standard deviation. Only used
            for method="model".

    Returns:
        trace with stats dict updated to include a
        stats['processing_parameters']['signal_end'] dictionary.

    """
    # Load openquake stuff if method="model"
    if method == "model":
        mod_file = pkg_resources.resource_filename(
            'gmprocess', os.path.join('data', 'modules.yml'))
        with open(mod_file, 'r') as f:
            mods = yaml.load(f)

        # Import module
        cname, mpath = mods['modules'][model]
        dmodel = getattr(import_module(mpath), cname)()

        # Set some "conservative" inputs (in that they will tend to give
        # larger durations).
        sctx = SitesContext()
        sctx.vs30 = np.array([180.0])
        sctx.z1pt0 = np.array([0.51])
        rctx = RuptureContext()
        rctx.mag = event_mag
        rctx.rake = -90.0
        dur_imt = imt.from_string('RSD595')
        stddev_types = [const.StdDev.INTRA_EVENT]

    for tr in st:
        if not tr.hasParameter('signal_split'):
            continue
        if method == "velocity":
            if vmin is None:
                raise ValueError('Must specify vmin if method is "velocity".')
            if floor is None:
                raise ValueError('Must specify floor if method is "velocity".')
            epi_dist = gps2dist_azimuth(
                lat1=event_lat,
                lon1=event_lon,
                lat2=tr.stats['coordinates']['latitude'],
                lon2=tr.stats['coordinates']['longitude'])[0] / 1000.0
            end_time = event_time + max(floor, epi_dist / vmin)
        elif method == "model":
            if model is None:
                raise ValueError('Must specify model if method is "model".')
            epi_dist = gps2dist_azimuth(
                lat1=event_lat,
                lon1=event_lon,
                lat2=tr.stats['coordinates']['latitude'],
                lon2=tr.stats['coordinates']['longitude'])[0] / 1000.0
            dctx = DistancesContext()
            # Repi >= Rrup, so substitution here should be conservative
            # (leading to larger durations).
            dctx.rrup = np.array([epi_dist])
            lnmu, lnstd = dmodel.get_mean_and_stddevs(
                sctx, rctx, dctx, dur_imt, stddev_types)
            duration = np.exp(lnmu + epsilon * lnstd[0])
            # Get split time
            split_time = tr.getParameter('signal_split')['split_time']
            end_time = split_time + float(duration)
        else:
            raise ValueError('method must be either "velocity" or "model".')
        # Update trace params
        end_params = {
            'end_time': end_time,
            'method': method,
            'vsplit': vmin,
            'floor': floor,
            'model': model,
            'epsilon': epsilon
        }
        tr.setParameter('signal_end', end_params)

    return st