Esempio n. 1
0
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

        print(str(program))
Esempio n. 2
0
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

        print(str(program))
Esempio n. 3
0
 def iou_similarity(self):
     program = Program()
     with program_guard(program):
         x = layers.data(name="x", shape=[16], dtype="float32")
         y = layers.data(name="y", shape=[16], dtype="float32")
         out = layers.iou_similarity(x, y, name='iou_similarity')
         self.assertIsNotNone(out)
     print(str(program))
    def __call__(self,
                 location,
                 confidence,
                 gt_box,
                 gt_label,
                 landmark_predict,
                 lmk_label,
                 lmk_ignore_flag,
                 prior_box,
                 prior_box_var=None):
        def _reshape_to_2d(var):
            return layers.flatten(x=var, axis=2)

        helper = LayerHelper('ssd_loss')  #, **locals())
        # Only support mining_type == 'max_negative' now.
        mining_type = 'max_negative'
        # The max `sample_size` of negative box, used only
        # when mining_type is `hard_example`.
        sample_size = None
        num, num_prior, num_class = confidence.shape
        conf_shape = layers.shape(confidence)

        # 1. Find matched boundding box by prior box.
        # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
        iou = iou_similarity(x=gt_box, y=prior_box)
        # 1.2 Compute matched boundding box by bipartite matching algorithm.
        matched_indices, matched_dist = bipartite_match(
            iou, self.match_type, self.overlap_threshold)

        # 2. Compute confidence for mining hard examples
        # 2.1. Get the target label based on matched indices
        gt_label = layers.reshape(x=gt_label,
                                  shape=(len(gt_label.shape) - 1) * (0, ) +
                                  (-1, 1))
        gt_label.stop_gradient = True
        target_label, _ = target_assign(gt_label,
                                        matched_indices,
                                        mismatch_value=self.background_label)
        # 2.2. Compute confidence loss.
        # Reshape confidence to 2D tensor.
        confidence = _reshape_to_2d(confidence)
        target_label = tensor.cast(x=target_label, dtype='int64')
        target_label = _reshape_to_2d(target_label)
        target_label.stop_gradient = True
        conf_loss = layers.softmax_with_cross_entropy(confidence, target_label)
        # 3. Mining hard examples
        actual_shape = layers.slice(conf_shape, axes=[0], starts=[0], ends=[2])
        actual_shape.stop_gradient = True
        conf_loss = layers.reshape(x=conf_loss,
                                   shape=(-1, 0),
                                   actual_shape=actual_shape)
        conf_loss.stop_gradient = True
        neg_indices = helper.create_variable_for_type_inference(dtype='int32')
        updated_matched_indices = helper.create_variable_for_type_inference(
            dtype=matched_indices.dtype)
        helper.append_op(type='mine_hard_examples',
                         inputs={
                             'ClsLoss': conf_loss,
                             'LocLoss': None,
                             'MatchIndices': matched_indices,
                             'MatchDist': matched_dist,
                         },
                         outputs={
                             'NegIndices': neg_indices,
                             'UpdatedMatchIndices': updated_matched_indices
                         },
                         attrs={
                             'neg_pos_ratio': self.neg_pos_ratio,
                             'neg_dist_threshold': self.neg_overlap,
                             'mining_type': mining_type,
                             'sample_size': sample_size,
                         })

        # 4. Assign classification and regression targets
        # 4.1. Encoded bbox according to the prior boxes.
        encoded_bbox = box_coder(prior_box=prior_box,
                                 prior_box_var=prior_box_var,
                                 target_box=gt_box,
                                 code_type='encode_center_size')
        # 4.2. Assign regression targets
        target_bbox, target_loc_weight = target_assign(
            encoded_bbox,
            updated_matched_indices,
            mismatch_value=self.background_label)
        # 4.3. Assign classification targets
        target_label, target_conf_weight = target_assign(
            gt_label,
            updated_matched_indices,
            negative_indices=neg_indices,
            mismatch_value=self.background_label)

        target_loc_weight = target_loc_weight * target_label
        encoded_lmk_label = self.decode_lmk(lmk_label, prior_box,
                                            prior_box_var)

        target_lmk, target_lmk_weight = target_assign(
            encoded_lmk_label,
            updated_matched_indices,
            mismatch_value=self.background_label)
        lmk_ignore_flag = layers.reshape(
            x=lmk_ignore_flag,
            shape=(len(lmk_ignore_flag.shape) - 1) * (0, ) + (-1, 1))
        target_ignore, nouse = target_assign(
            lmk_ignore_flag,
            updated_matched_indices,
            mismatch_value=self.background_label)

        target_lmk_weight = target_lmk_weight * target_ignore
        landmark_predict = _reshape_to_2d(landmark_predict)
        target_lmk = _reshape_to_2d(target_lmk)
        target_lmk_weight = _reshape_to_2d(target_lmk_weight)
        lmk_loss = layers.smooth_l1(landmark_predict, target_lmk)
        lmk_loss = lmk_loss * target_lmk_weight
        target_lmk.stop_gradient = True
        target_lmk_weight.stop_gradient = True
        target_ignore.stop_gradient = True
        nouse.stop_gradient = True

        # 5. Compute loss.
        # 5.1 Compute confidence loss.
        target_label = _reshape_to_2d(target_label)
        target_label = tensor.cast(x=target_label, dtype='int64')

        conf_loss = layers.softmax_with_cross_entropy(confidence, target_label)
        target_conf_weight = _reshape_to_2d(target_conf_weight)
        conf_loss = conf_loss * target_conf_weight

        # the target_label and target_conf_weight do not have gradient.
        target_label.stop_gradient = True
        target_conf_weight.stop_gradient = True

        # 5.2 Compute regression loss.
        location = _reshape_to_2d(location)
        target_bbox = _reshape_to_2d(target_bbox)

        loc_loss = layers.smooth_l1(location, target_bbox)
        target_loc_weight = _reshape_to_2d(target_loc_weight)
        loc_loss = loc_loss * target_loc_weight

        # the target_bbox and target_loc_weight do not have gradient.
        target_bbox.stop_gradient = True
        target_loc_weight.stop_gradient = True

        # 5.3 Compute overall weighted loss.
        loss = self.conf_loss_weight * conf_loss + self.loc_loss_weight * loc_loss + 0.4 * lmk_loss
        # reshape to [N, Np], N is the batch size and Np is the prior box number.
        loss = layers.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
        loss = layers.reduce_sum(loss, dim=1, keep_dim=True)
        if self.normalize:
            normalizer = layers.reduce_sum(target_loc_weight) + 1
            loss = loss / normalizer

        return loss