def test_detection_api(self): program = Program() with program_guard(program): x = layers.data(name='x', shape=[4], dtype='float32') y = layers.data(name='y', shape=[4], dtype='float32') z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1) iou = layers.iou_similarity(x=x, y=y) bcoder = layers.box_coder( prior_box=x, prior_box_var=y, target_box=z, code_type='encode_center_size') self.assertIsNotNone(iou) self.assertIsNotNone(bcoder) matched_indices, matched_dist = layers.bipartite_match(iou) self.assertIsNotNone(matched_indices) self.assertIsNotNone(matched_dist) gt = layers.data( name='gt', shape=[1, 1], dtype='int32', lod_level=1) trg, trg_weight = layers.target_assign( gt, matched_indices, mismatch_value=0) self.assertIsNotNone(trg) self.assertIsNotNone(trg_weight) gt2 = layers.data( name='gt2', shape=[10, 4], dtype='float32', lod_level=1) trg, trg_weight = layers.target_assign( gt2, matched_indices, mismatch_value=0) self.assertIsNotNone(trg) self.assertIsNotNone(trg_weight) print(str(program))
def iou_similarity(self): program = Program() with program_guard(program): x = layers.data(name="x", shape=[16], dtype="float32") y = layers.data(name="y", shape=[16], dtype="float32") out = layers.iou_similarity(x, y, name='iou_similarity') self.assertIsNotNone(out) print(str(program))
def __call__(self, location, confidence, gt_box, gt_label, landmark_predict, lmk_label, lmk_ignore_flag, prior_box, prior_box_var=None): def _reshape_to_2d(var): return layers.flatten(x=var, axis=2) helper = LayerHelper('ssd_loss') #, **locals()) # Only support mining_type == 'max_negative' now. mining_type = 'max_negative' # The max `sample_size` of negative box, used only # when mining_type is `hard_example`. sample_size = None num, num_prior, num_class = confidence.shape conf_shape = layers.shape(confidence) # 1. Find matched boundding box by prior box. # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. iou = iou_similarity(x=gt_box, y=prior_box) # 1.2 Compute matched boundding box by bipartite matching algorithm. matched_indices, matched_dist = bipartite_match( iou, self.match_type, self.overlap_threshold) # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices gt_label = layers.reshape(x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1)) gt_label.stop_gradient = True target_label, _ = target_assign(gt_label, matched_indices, mismatch_value=self.background_label) # 2.2. Compute confidence loss. # Reshape confidence to 2D tensor. confidence = _reshape_to_2d(confidence) target_label = tensor.cast(x=target_label, dtype='int64') target_label = _reshape_to_2d(target_label) target_label.stop_gradient = True conf_loss = layers.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples actual_shape = layers.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape.stop_gradient = True conf_loss = layers.reshape(x=conf_loss, shape=(-1, 0), actual_shape=actual_shape) conf_loss.stop_gradient = True neg_indices = helper.create_variable_for_type_inference(dtype='int32') updated_matched_indices = helper.create_variable_for_type_inference( dtype=matched_indices.dtype) helper.append_op(type='mine_hard_examples', inputs={ 'ClsLoss': conf_loss, 'LocLoss': None, 'MatchIndices': matched_indices, 'MatchDist': matched_dist, }, outputs={ 'NegIndices': neg_indices, 'UpdatedMatchIndices': updated_matched_indices }, attrs={ 'neg_pos_ratio': self.neg_pos_ratio, 'neg_dist_threshold': self.neg_overlap, 'mining_type': mining_type, 'sample_size': sample_size, }) # 4. Assign classification and regression targets # 4.1. Encoded bbox according to the prior boxes. encoded_bbox = box_coder(prior_box=prior_box, prior_box_var=prior_box_var, target_box=gt_box, code_type='encode_center_size') # 4.2. Assign regression targets target_bbox, target_loc_weight = target_assign( encoded_bbox, updated_matched_indices, mismatch_value=self.background_label) # 4.3. Assign classification targets target_label, target_conf_weight = target_assign( gt_label, updated_matched_indices, negative_indices=neg_indices, mismatch_value=self.background_label) target_loc_weight = target_loc_weight * target_label encoded_lmk_label = self.decode_lmk(lmk_label, prior_box, prior_box_var) target_lmk, target_lmk_weight = target_assign( encoded_lmk_label, updated_matched_indices, mismatch_value=self.background_label) lmk_ignore_flag = layers.reshape( x=lmk_ignore_flag, shape=(len(lmk_ignore_flag.shape) - 1) * (0, ) + (-1, 1)) target_ignore, nouse = target_assign( lmk_ignore_flag, updated_matched_indices, mismatch_value=self.background_label) target_lmk_weight = target_lmk_weight * target_ignore landmark_predict = _reshape_to_2d(landmark_predict) target_lmk = _reshape_to_2d(target_lmk) target_lmk_weight = _reshape_to_2d(target_lmk_weight) lmk_loss = layers.smooth_l1(landmark_predict, target_lmk) lmk_loss = lmk_loss * target_lmk_weight target_lmk.stop_gradient = True target_lmk_weight.stop_gradient = True target_ignore.stop_gradient = True nouse.stop_gradient = True # 5. Compute loss. # 5.1 Compute confidence loss. target_label = _reshape_to_2d(target_label) target_label = tensor.cast(x=target_label, dtype='int64') conf_loss = layers.softmax_with_cross_entropy(confidence, target_label) target_conf_weight = _reshape_to_2d(target_conf_weight) conf_loss = conf_loss * target_conf_weight # the target_label and target_conf_weight do not have gradient. target_label.stop_gradient = True target_conf_weight.stop_gradient = True # 5.2 Compute regression loss. location = _reshape_to_2d(location) target_bbox = _reshape_to_2d(target_bbox) loc_loss = layers.smooth_l1(location, target_bbox) target_loc_weight = _reshape_to_2d(target_loc_weight) loc_loss = loc_loss * target_loc_weight # the target_bbox and target_loc_weight do not have gradient. target_bbox.stop_gradient = True target_loc_weight.stop_gradient = True # 5.3 Compute overall weighted loss. loss = self.conf_loss_weight * conf_loss + self.loc_loss_weight * loc_loss + 0.4 * lmk_loss # reshape to [N, Np], N is the batch size and Np is the prior box number. loss = layers.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape) loss = layers.reduce_sum(loss, dim=1, keep_dim=True) if self.normalize: normalizer = layers.reduce_sum(target_loc_weight) + 1 loss = loss / normalizer return loss