Esempio n. 1
0
  def __init__(self, world = None, mesh = None, animation = None,
      startFrame = 0, endFrame = None, loop = True, parent = None, **kargs):
    self.world = world
    if not parent and mesh:
      parent = mesh.model
        
    super(Animation, self).__init__(parent = parent, **kargs)

    self.mesh = mesh
    self.animation = animation
    self.startFrame = startFrame
    self.endFrame = endFrame
    self.loop = loop

    if self.mesh:
      for layer in self.mesh.layers:
        actor = Actor(self.mesh.getModel(layer))
        self.setActor(actor, layer)
        if not self.animation:
          self.setAnimation(actor.getAnimNames()[0])
      
    if not self.endFrame:
      self.endFrame = self.actor.getNumFrames(self.animation)-1
    self.numFrames = (self.endFrame-self.startFrame)+1
    self.duration = self.actor.getDuration(self.animation)
    
    if self.world:
      self.world.addAnimation(self)
Esempio n. 2
0
    def __init__(self):
        base.disableMouse()
        camera.setPos(0, -50, 0)

        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle(
                "Toon Shader: Video driver reports that shaders are not supported."
            )
            return

        # Post the instructions.
        self.title = addTitle(
            "Panda3D: Tutorial - Toon Shading with Normals-Based Inking")
        self.inst1 = addInstructions(0.95, "ESC: Quit")
        self.inst2 = addInstructions(
            0.90, "Up/Down: Increase/Decrease Line Thickness")
        self.inst3 = addInstructions(
            0.85, "Left/Right: Decrease/Increase Line Darkness")
        self.inst4 = addInstructions(0.80,
                                     "V: View the render-to-texture results")

        # This shader's job is to render the model with discrete lighting
        # levels.  The lighting calculations built into the shader assume
        # a single nonattenuating point light.

        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_lighting.sha")))
        base.cam.node().setInitialState(tempnode.getState())

        # This is the object that represents the single "light", as far
        # the shader is concerned.  It's not a real Panda3D LightNode, but
        # the shader doesn't care about that.

        light = render.attachNewNode("light")
        light.setPos(30, -50, 0)

        # this call puts the light's nodepath into the render state.
        # this enables the shader to access this light by name.

        render.setShaderInput("light", light)

        # The "normals buffer" will contain a picture of the model colorized
        # so that the color of the model is a representation of the model's
        # normal at that point.

        normalsBuffer = base.win.makeTextureBuffer("normalsBuffer", 0, 0)
        normalsBuffer.setClearColor(Vec4(0.5, 0.5, 0.5, 1))
        self.normalsBuffer = normalsBuffer
        normalsCamera = base.makeCamera(normalsBuffer,
                                        lens=base.cam.node().getLens())
        normalsCamera.node().setScene(render)
        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_normal.sha")))
        normalsCamera.node().setInitialState(tempnode.getState())

        #what we actually do to put edges on screen is apply them as a texture to
        #a transparent screen-fitted card

        drawnScene = normalsBuffer.getTextureCard()
        drawnScene.setTransparency(1)
        drawnScene.setColor(1, 1, 1, 0)
        drawnScene.reparentTo(render2d)
        self.drawnScene = drawnScene

        # this shader accepts, as input, the picture from the normals buffer.
        # it compares each adjacent pixel, looking for discontinuities.
        # wherever a discontinuity exists, it emits black ink.

        self.separation = 0.001
        self.cutoff = 0.3
        inkGen=Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_ink.sha"))
        drawnScene.setShader(inkGen)
        drawnScene.setShaderInput("separation",
                                  Vec4(self.separation, 0, self.separation, 0))
        drawnScene.setShaderInput(
            "cutoff", Vec4(self.cutoff, self.cutoff, self.cutoff, self.cutoff))

        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")

        # Load a dragon model and animate it.

        self.character = Actor()
        self.character.loadModel('models/samples/cartoon/nik_dragon')
        self.character.reparentTo(render)
        self.character.loadAnims({'win': 'models/samples/cartoon/nik_dragon'})
        self.character.loop('win')
        self.character.hprInterval(15, Point3(360, 0, 0)).loop()

        # these allow you to change cartooning parameters in realtime

        self.accept("escape", sys.exit, [0])
        self.accept("arrow_up", self.increaseSeparation)
        self.accept("arrow_down", self.decreaseSeparation)
        self.accept("arrow_left", self.increaseCutoff)
        self.accept("arrow_right", self.decreaseCutoff)
Esempio n. 3
0
    def __init__(self):
        base.disableMouse()
        base.cam.node().getLens().setNear(10.0)
        base.cam.node().getLens().setFar(200.0)
        camera.setPos(0, -50, 0)
        
        # Check video card capabilities.
        
        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle("Toon Shader: Video driver reports that shaders are not supported.")
            return
        
        # Enable a 'light ramp' - this discretizes the lighting,
        # which is half of what makes a model look like a cartoon.
        # Light ramps only work if shader generation is enabled,
        # so we call 'setShaderAuto'.

        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setAttrib(LightRampAttrib.makeSingleThreshold(0.5, 0.4))
        tempnode.setShaderAuto()
        base.cam.node().setInitialState(tempnode.getState())
        
        # Use class 'CommonFilters' to enable a cartoon inking filter.
        # This can fail if the video card is not powerful enough, if so,
        # display an error and exit.
        
        self.separation = 1 # Pixels
        self.filters = CommonFilters(base.win, base.cam)
        filterok = self.filters.setCartoonInk(separation=self.separation)
        if (filterok == False):
            addTitle("Toon Shader: Video card not powerful enough to do image postprocessing")
            return
        
        # Post the instructions.
        
        self.title = addTitle("Panda3D: Tutorial - Toon Shading with Normals-Based Inking")
        self.inst1 = addInstructions(0.95,"ESC: Quit")
        self.inst2 = addInstructions(0.90,"Up/Down: Increase/Decrease Line Thickness")
        self.inst3 = addInstructions(0.85,"V: View the render-to-texture results")
        
        # Load a dragon model and animate it.
        
        self.character = Actor()
        self.character.loadModel('models/samples/cartoon/nik_dragon')
        self.character.reparentTo(render)
        self.character.loadAnims({'win': 'models/samples/cartoon/nik_dragon'})
        self.character.loop('win')
        self.character.hprInterval(15, Point3(360, 0,0)).loop()
        
        # Create a non-attenuating point light and an ambient light.
        
        plightnode = PointLight("point light")
        plightnode.setAttenuation(Vec3(1,0,0))
        plight = render.attachNewNode(plightnode)
        plight.setPos(30,-50,0)
        alightnode = AmbientLight("ambient light")
        alightnode.setColor(Vec4(0.8,0.8,0.8,1))
        alight = render.attachNewNode(alightnode)
        render.setLight(alight)
        render.setLight(plight)
        
        # Panda contains a built-in viewer that lets you view the 
        # results of all render-to-texture operations.  This lets you
        # see what class CommonFilters is doing behind the scenes.
        
        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        self.accept("s", self.filters.manager.resizeBuffers)
        
        # These allow you to change cartooning parameters in realtime
        
        self.accept("escape", sys.exit, [0])
        self.accept("arrow_up", self.increaseSeparation)
        self.accept("arrow_down", self.decreaseSeparation)
Esempio n. 4
0
    def __init__(self):
        
        self.keyMap = {"left":0, "right":0, "forward":0, "cam-left":0, "cam-right":0}
        base.win.setClearColor(Vec4(0,0,0,1))

        # Post the instructions

        self.title = addTitle("Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")
        
        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.  

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0,0,0)
        
        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor("models/samples/roaming_ralph/ralph",
            {"run":"models/samples/roaming_ralph/ralph_run",
             "walk":"models/samples/roaming_ralph/ralph_walk"})
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.
        
        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left",1])
        self.accept("arrow_right", self.setKey, ["right",1])
        self.accept("arrow_up", self.setKey, ["forward",1])
        self.accept("a", self.setKey, ["cam-left",1])
        self.accept("s", self.setKey, ["cam-right",1])
        self.accept("arrow_left-up", self.setKey, ["left",0])
        self.accept("arrow_right-up", self.setKey, ["right",0])
        self.accept("arrow_up-up", self.setKey, ["forward",0])
        self.accept("a-up", self.setKey, ["cam-left",0])
        self.accept("s-up", self.setKey, ["cam-right",0])

        taskMgr.add(self.move,"moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera
        
        base.disableMouse()
        base.camera.setPos(self.ralph.getX(),self.ralph.getY()+10,2)
        
        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0,0,1000)
        self.ralphGroundRay.setDirection(0,0,-1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0,0,1000)
        self.camGroundRay.setDirection(0,0,-1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)
Esempio n. 5
0
class World(DirectObject):

    def __init__(self):
        
        self.keyMap = {"left":0, "right":0, "forward":0, "cam-left":0, "cam-right":0}
        base.win.setClearColor(Vec4(0,0,0,1))

        # Post the instructions

        self.title = addTitle("Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")
        
        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.  

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0,0,0)
        
        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor("models/samples/roaming_ralph/ralph",
            {"run":"models/samples/roaming_ralph/ralph_run",
             "walk":"models/samples/roaming_ralph/ralph_walk"})
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.
        
        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left",1])
        self.accept("arrow_right", self.setKey, ["right",1])
        self.accept("arrow_up", self.setKey, ["forward",1])
        self.accept("a", self.setKey, ["cam-left",1])
        self.accept("s", self.setKey, ["cam-right",1])
        self.accept("arrow_left-up", self.setKey, ["left",0])
        self.accept("arrow_right-up", self.setKey, ["right",0])
        self.accept("arrow_up-up", self.setKey, ["forward",0])
        self.accept("a-up", self.setKey, ["cam-left",0])
        self.accept("s-up", self.setKey, ["cam-right",0])

        taskMgr.add(self.move,"moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera
        
        base.disableMouse()
        base.camera.setPos(self.ralph.getX(),self.ralph.getY()+10,2)
        
        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0,0,1000)
        self.ralphGroundRay.setDirection(0,0,-1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0,0,1000)
        self.camGroundRay.setDirection(0,0,-1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)

        # Uncomment this line to see the collision rays
        #self.ralphGroundColNp.show()
        #self.camGroundColNp.show()
       
        #Uncomment this line to show a visual representation of the 
        #collisions occuring
        #self.cTrav.showCollisions(render)
       

    
    #Records the state of the arrow keys
    def setKey(self, key, value):
        self.keyMap[key] = value
    

    # Accepts arrow keys to move either the player or the menu cursor,
    # Also deals with grid checking and collision detection
    def move(self, task):

        # Get the time elapsed since last frame. We need this
        # for framerate-independent movement.
        elapsed = globalClock.getDt()

        # If the camera-left key is pressed, move camera left.
        # If the camera-right key is pressed, move camera right.

        base.camera.lookAt(self.ralph)
        if (self.keyMap["cam-left"]!=0):
            base.camera.setX(base.camera, -(elapsed*20))
        if (self.keyMap["cam-right"]!=0):
            base.camera.setX(base.camera, +(elapsed*20))

        # save ralph's initial position so that we can restore it,
        # in case he falls off the map or runs into something.

        startpos = self.ralph.getPos()

        # If a move-key is pressed, move ralph in the specified direction.

        if (self.keyMap["left"]!=0):
            self.ralph.setH(self.ralph.getH() + elapsed*300)
        if (self.keyMap["right"]!=0):
            self.ralph.setH(self.ralph.getH() - elapsed*300)
        if (self.keyMap["forward"]!=0):
            self.ralph.setY(self.ralph, -(elapsed*25))

        # If ralph is moving, loop the run animation.
        # If he is standing still, stop the animation.

        if (self.keyMap["forward"]!=0) or (self.keyMap["left"]!=0) or (self.keyMap["right"]!=0):
            if self.isMoving is False:
                self.ralph.loop("run")
                self.isMoving = True
        else:
            if self.isMoving:
                self.ralph.stop()
                self.ralph.pose("walk",5)
                self.isMoving = False

        # If the camera is too far from ralph, move it closer.
        # If the camera is too close to ralph, move it farther.

        camvec = self.ralph.getPos() - base.camera.getPos()
        camvec.setZ(0)
        camdist = camvec.length()
        camvec.normalize()
        if (camdist > 10.0):
            base.camera.setPos(base.camera.getPos() + camvec*(camdist-10))
            camdist = 10.0
        if (camdist < 5.0):
            base.camera.setPos(base.camera.getPos() - camvec*(5-camdist))
            camdist = 5.0

        # Now check for collisions.

        self.cTrav.traverse(render)

        # Adjust ralph's Z coordinate.  If ralph's ray hit terrain,
        # update his Z. If it hit anything else, or didn't hit anything, put
        # him back where he was last frame.

        entries = []
        for i in range(self.ralphGroundHandler.getNumEntries()):
            entry = self.ralphGroundHandler.getEntry(i)
            entries.append(entry)
        entries.sort(lambda x,y: cmp(y.getSurfacePoint(render).getZ(),
                                     x.getSurfacePoint(render).getZ()))
        if (len(entries)>0) and (entries[0].getIntoNode().getName() == "terrain"):
            self.ralph.setZ(entries[0].getSurfacePoint(render).getZ())
        else:
            self.ralph.setPos(startpos)

        # Keep the camera at one foot above the terrain,
        # or two feet above ralph, whichever is greater.
        
        entries = []
        for i in range(self.camGroundHandler.getNumEntries()):
            entry = self.camGroundHandler.getEntry(i)
            entries.append(entry)
        entries.sort(lambda x,y: cmp(y.getSurfacePoint(render).getZ(),
                                     x.getSurfacePoint(render).getZ()))
        if (len(entries)>0) and (entries[0].getIntoNode().getName() == "terrain"):
            base.camera.setZ(entries[0].getSurfacePoint(render).getZ()+1.0)
        if (base.camera.getZ() < self.ralph.getZ() + 2.0):
            base.camera.setZ(self.ralph.getZ() + 2.0)
            
        # The camera should look in ralph's direction,
        # but it should also try to stay horizontal, so look at
        # a floater which hovers above ralph's head.
        
        self.floater.setPos(self.ralph.getPos())
        self.floater.setZ(self.ralph.getZ() + 2.0)
        base.camera.lookAt(self.floater)

        return Task.cont
Esempio n. 6
0
 def makeTvMan(self,x,y,z,tex,playrate):
     man = Actor()
     man.loadModel('models/samples/teapot_on_tv/mechman_idle')
     man.setPos(x,y,z)
     man.reparentTo(render)
     fp = man.find("**/faceplate")
     fp.setTexture(tex,1)
     man.setPlayRate(playrate, "mechman_anim")
     man.loop("mechman_anim")
     self.tvMen.append(man)
Esempio n. 7
0
class World(DirectObject):
    def __init__(self):

        self.keyMap = {
            "left": 0,
            "right": 0,
            "forward": 0,
            "cam-left": 0,
            "cam-right": 0
        }
        base.win.setClearColor(Vec4(0, 0, 0, 1))

        # Post the instructions

        self.title = addTitle(
            "Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")

        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0, 0, 0)

        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor(
            "models/samples/roaming_ralph/ralph", {
                "run": "models/samples/roaming_ralph/ralph_run",
                "walk": "models/samples/roaming_ralph/ralph_walk"
            })
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.

        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left", 1])
        self.accept("arrow_right", self.setKey, ["right", 1])
        self.accept("arrow_up", self.setKey, ["forward", 1])
        self.accept("a", self.setKey, ["cam-left", 1])
        self.accept("s", self.setKey, ["cam-right", 1])
        self.accept("arrow_left-up", self.setKey, ["left", 0])
        self.accept("arrow_right-up", self.setKey, ["right", 0])
        self.accept("arrow_up-up", self.setKey, ["forward", 0])
        self.accept("a-up", self.setKey, ["cam-left", 0])
        self.accept("s-up", self.setKey, ["cam-right", 0])

        taskMgr.add(self.move, "moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera

        base.disableMouse()
        base.camera.setPos(self.ralph.getX(), self.ralph.getY() + 10, 2)

        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0, 0, 1000)
        self.ralphGroundRay.setDirection(0, 0, -1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0, 0, 1000)
        self.camGroundRay.setDirection(0, 0, -1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)

        # Uncomment this line to see the collision rays
        #self.ralphGroundColNp.show()
        #self.camGroundColNp.show()

        #Uncomment this line to show a visual representation of the
        #collisions occuring
        #self.cTrav.showCollisions(render)

    #Records the state of the arrow keys
    def setKey(self, key, value):
        self.keyMap[key] = value

    # Accepts arrow keys to move either the player or the menu cursor,
    # Also deals with grid checking and collision detection
    def move(self, task):

        # Get the time elapsed since last frame. We need this
        # for framerate-independent movement.
        elapsed = globalClock.getDt()

        # If the camera-left key is pressed, move camera left.
        # If the camera-right key is pressed, move camera right.

        base.camera.lookAt(self.ralph)
        if (self.keyMap["cam-left"] != 0):
            base.camera.setX(base.camera, -(elapsed * 20))
        if (self.keyMap["cam-right"] != 0):
            base.camera.setX(base.camera, +(elapsed * 20))

        # save ralph's initial position so that we can restore it,
        # in case he falls off the map or runs into something.

        startpos = self.ralph.getPos()

        # If a move-key is pressed, move ralph in the specified direction.

        if (self.keyMap["left"] != 0):
            self.ralph.setH(self.ralph.getH() + elapsed * 300)
        if (self.keyMap["right"] != 0):
            self.ralph.setH(self.ralph.getH() - elapsed * 300)
        if (self.keyMap["forward"] != 0):
            self.ralph.setY(self.ralph, -(elapsed * 25))

        # If ralph is moving, loop the run animation.
        # If he is standing still, stop the animation.

        if (self.keyMap["forward"] != 0) or (self.keyMap["left"] !=
                                             0) or (self.keyMap["right"] != 0):
            if self.isMoving is False:
                self.ralph.loop("run")
                self.isMoving = True
        else:
            if self.isMoving:
                self.ralph.stop()
                self.ralph.pose("walk", 5)
                self.isMoving = False

        # If the camera is too far from ralph, move it closer.
        # If the camera is too close to ralph, move it farther.

        camvec = self.ralph.getPos() - base.camera.getPos()
        camvec.setZ(0)
        camdist = camvec.length()
        camvec.normalize()
        if (camdist > 10.0):
            base.camera.setPos(base.camera.getPos() + camvec * (camdist - 10))
            camdist = 10.0
        if (camdist < 5.0):
            base.camera.setPos(base.camera.getPos() - camvec * (5 - camdist))
            camdist = 5.0

        # Now check for collisions.

        self.cTrav.traverse(render)

        # Adjust ralph's Z coordinate.  If ralph's ray hit terrain,
        # update his Z. If it hit anything else, or didn't hit anything, put
        # him back where he was last frame.

        entries = []
        for i in range(self.ralphGroundHandler.getNumEntries()):
            entry = self.ralphGroundHandler.getEntry(i)
            entries.append(entry)
        entries.sort(lambda x, y: cmp(
            y.getSurfacePoint(render).getZ(),
            x.getSurfacePoint(render).getZ()))
        if (len(entries) > 0) and (entries[0].getIntoNode().getName()
                                   == "terrain"):
            self.ralph.setZ(entries[0].getSurfacePoint(render).getZ())
        else:
            self.ralph.setPos(startpos)

        # Keep the camera at one foot above the terrain,
        # or two feet above ralph, whichever is greater.

        entries = []
        for i in range(self.camGroundHandler.getNumEntries()):
            entry = self.camGroundHandler.getEntry(i)
            entries.append(entry)
        entries.sort(lambda x, y: cmp(
            y.getSurfacePoint(render).getZ(),
            x.getSurfacePoint(render).getZ()))
        if (len(entries) > 0) and (entries[0].getIntoNode().getName()
                                   == "terrain"):
            base.camera.setZ(entries[0].getSurfacePoint(render).getZ() + 1.0)
        if (base.camera.getZ() < self.ralph.getZ() + 2.0):
            base.camera.setZ(self.ralph.getZ() + 2.0)

        # The camera should look in ralph's direction,
        # but it should also try to stay horizontal, so look at
        # a floater which hovers above ralph's head.

        self.floater.setPos(self.ralph.getPos())
        self.floater.setZ(self.ralph.getZ() + 2.0)
        base.camera.lookAt(self.floater)

        return Task.cont
Esempio n. 8
0
    def __init__(self):
        base.disableMouse()
        base.setBackgroundColor(0, 0, 0)
        camera.setPos(0, -50, 0)

        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle(
                "Glow Filter: Video driver reports that shaders are not supported."
            )
            return

        # Post the instructions
        self.title = addTitle("Panda3D: Tutorial - Glow Filter")
        self.inst1 = addInstructions(0.95, "ESC: Quit")
        self.inst2 = addInstructions(0.90, "Space: Toggle Glow Filter On/Off")
        self.inst3 = addInstructions(0.85, "Enter: Toggle Running/Spinning")
        self.inst4 = addInstructions(0.80,
                                     "V: View the render-to-texture results")

        #create the shader that will determime what parts of the scene will glow
        glowShader=Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/glow/glow_shader.sha"))

        # load our model
        self.tron = Actor()
        self.tron.loadModel("models/samples/glow/tron")
        self.tron.loadAnims({"running": "models/samples/glow/tron_anim"})
        self.tron.reparentTo(render)
        self.interval = self.tron.hprInterval(60, Point3(360, 0, 0))
        self.interval.loop()
        self.isRunning = False

        #put some lighting on the tron model
        dlight = DirectionalLight('dlight')
        alight = AmbientLight('alight')
        dlnp = render.attachNewNode(dlight)
        alnp = render.attachNewNode(alight)
        dlight.setColor(Vec4(1.0, 0.7, 0.2, 1))
        alight.setColor(Vec4(0.2, 0.2, 0.2, 1))
        dlnp.setHpr(0, -60, 0)
        render.setLight(dlnp)
        render.setLight(alnp)

        # create the glow buffer. This buffer renders like a normal scene,
        # except that only the glowing materials should show up nonblack.
        glowBuffer = base.win.makeTextureBuffer("Glow scene", 512, 512)
        glowBuffer.setSort(-3)
        glowBuffer.setClearColor(Vec4(0, 0, 0, 1))

        # We have to attach a camera to the glow buffer. The glow camera
        # must have the same frustum as the main camera. As long as the aspect
        # ratios match, the rest will take care of itself.
        glowCamera = base.makeCamera(glowBuffer,
                                     lens=base.cam.node().getLens())

        # Tell the glow camera to use the glow shader
        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(glowShader)
        glowCamera.node().setInitialState(tempnode.getState())

        # set up the pipeline: from glow scene to blur x to blur y to main window.
        blurXBuffer=makeFilterBuffer(glowBuffer,  "Blur X", -2, \
          os.path.join(PANDA_SHADER_PATH, "samples/glow/glow_xblur.sha"))
        blurYBuffer=makeFilterBuffer(blurXBuffer, "Blur Y", -1, \
          os.path.join(PANDA_SHADER_PATH, "samples/glow/glow_yblur.sha"))
        self.finalcard = blurYBuffer.getTextureCard()
        self.finalcard.reparentTo(render2d)
        self.finalcard.setAttrib(ColorBlendAttrib.make(ColorBlendAttrib.MAdd))

        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        base.bufferViewer.setLayout("hline")
        base.bufferViewer.setCardSize(0.652, 0)

        # event handling
        self.accept("space", self.toggleGlow)
        self.accept("enter", self.toggleDisplay)
        self.accept("escape", sys.exit, [0])

        self.glowOn = True
Esempio n. 9
0
  def __init__(self):
    #This code puts the standard title and instruction text on screen
    self.title = OnscreenText(text="Panda3D: Tutorial - Joint Manipulation",
                              style=1, fg=(1,1,1,1), font = font,
                              pos=(0.7,-0.95), scale = .07)
    self.onekeyText   = genLabelText("ESC: Quit", 0)
    self.onekeyText   = genLabelText("[1]: Teapot", 1)
    self.twokeyText   = genLabelText("[2]: Candy cane", 2)
    self.threekeyText = genLabelText("[3]: Banana", 3)
    self.fourkeyText  = genLabelText("[4]: Sword", 4)
      
    #setup key input
    self.accept('escape', sys.exit)
    self.accept('1', self.setObject, [0])
    self.accept('2', self.setObject, [1])
    self.accept('3', self.setObject, [2])
    self.accept('4', self.setObject, [3])

    base.disableMouse()                  #Disable mouse-based camera-control
    camera.setPos(0,-15, 2)              #Position the camera

    self.eve = Actor("models/samples/looking_and_gripping/eve",
                                         #Load our animated charachter
          {'walk' : "models/samples/looking_and_gripping/eve_walk"})
    self.eve.reparentTo(render)          #Put it in the scene

    #Now we use controlJoint to get a NodePath that's in control of her neck
    #This must be done before any animations are played
    self.eveNeck = self.eve.controlJoint(None, 'modelRoot', 'Neck')

    #We now play an animation. An animation must be played, or at least posed
    #for the nodepath we just got from controlJoint to actually effect the model
    self.eve.actorInterval("walk", playRate = 2).loop()

    #Now we add a task that will take care of turning the head
    taskMgr.add(self.turnHead, "turnHead")

    #Now we will expose the joint the hand joint. ExposeJoint allows us to
    #get the position of a joint while it is animating. This is different than
    #controlJonit which stops that joint from animating but lets us move it.
    #This is particularly usefull for putting an object (like a weapon) in an
    #actor's hand
    self.rightHand = self.eve.exposeJoint(None, 'modelRoot', 'RightHand')

    #This is a table with models, positions, rotations, and scales of objects to
    #be attached to our exposed joint. These are stock models and so they needed
    #to be repositioned to look right.
    positions = [("models/samples/looking_and_gripping/teapot", \
                    (0,-.66,-.95), (90,0,90), .4),
                 ("models/samples/looking_and_gripping/candycane", \
                    (.15,-.99,-.22), (90,0,90), 1),
                 ("models/samples/looking_and_gripping/banana", \
                    (.08,-.1,.09), (0,-90,0), 1.75),
                 ("models/samples/looking_and_gripping/sword", \
                    (.11,.19,.06), (0,0,90), 1)]
    self.models = []                 #A list that will store our models objects
    for row in positions:
      np = loader.loadModel(row[0])              #Load the model
      np.setPos(row[1][0], row[1][1], row[1][2]) #Position it
      np.setHpr(row[2][0], row[2][1], row[2][2]) #Rotate it
      np.setScale(row[3])                        #Scale it
      #Reparent the model to the exposed joint. That way when the joint moves,
      #the model we just loaded will move with it.
      np.reparentTo(self.rightHand)
      self.models.append(np)                     #Add it to our models list

    self.setObject(0)                            #Make object 0 the first shown
    self.setupLights()                           #Put in some default lighting
Esempio n. 10
0
class World(DirectObject):
  def __init__(self):
    #This code puts the standard title and instruction text on screen
    self.title = OnscreenText(text="Panda3D: Tutorial - Joint Manipulation",
                              style=1, fg=(1,1,1,1), font = font,
                              pos=(0.7,-0.95), scale = .07)
    self.onekeyText   = genLabelText("ESC: Quit", 0)
    self.onekeyText   = genLabelText("[1]: Teapot", 1)
    self.twokeyText   = genLabelText("[2]: Candy cane", 2)
    self.threekeyText = genLabelText("[3]: Banana", 3)
    self.fourkeyText  = genLabelText("[4]: Sword", 4)
      
    #setup key input
    self.accept('escape', sys.exit)
    self.accept('1', self.setObject, [0])
    self.accept('2', self.setObject, [1])
    self.accept('3', self.setObject, [2])
    self.accept('4', self.setObject, [3])

    base.disableMouse()                  #Disable mouse-based camera-control
    camera.setPos(0,-15, 2)              #Position the camera

    self.eve = Actor("models/samples/looking_and_gripping/eve",
                                         #Load our animated charachter
          {'walk' : "models/samples/looking_and_gripping/eve_walk"})
    self.eve.reparentTo(render)          #Put it in the scene

    #Now we use controlJoint to get a NodePath that's in control of her neck
    #This must be done before any animations are played
    self.eveNeck = self.eve.controlJoint(None, 'modelRoot', 'Neck')

    #We now play an animation. An animation must be played, or at least posed
    #for the nodepath we just got from controlJoint to actually effect the model
    self.eve.actorInterval("walk", playRate = 2).loop()

    #Now we add a task that will take care of turning the head
    taskMgr.add(self.turnHead, "turnHead")

    #Now we will expose the joint the hand joint. ExposeJoint allows us to
    #get the position of a joint while it is animating. This is different than
    #controlJonit which stops that joint from animating but lets us move it.
    #This is particularly usefull for putting an object (like a weapon) in an
    #actor's hand
    self.rightHand = self.eve.exposeJoint(None, 'modelRoot', 'RightHand')

    #This is a table with models, positions, rotations, and scales of objects to
    #be attached to our exposed joint. These are stock models and so they needed
    #to be repositioned to look right.
    positions = [("models/samples/looking_and_gripping/teapot", \
                    (0,-.66,-.95), (90,0,90), .4),
                 ("models/samples/looking_and_gripping/candycane", \
                    (.15,-.99,-.22), (90,0,90), 1),
                 ("models/samples/looking_and_gripping/banana", \
                    (.08,-.1,.09), (0,-90,0), 1.75),
                 ("models/samples/looking_and_gripping/sword", \
                    (.11,.19,.06), (0,0,90), 1)]
    self.models = []                 #A list that will store our models objects
    for row in positions:
      np = loader.loadModel(row[0])              #Load the model
      np.setPos(row[1][0], row[1][1], row[1][2]) #Position it
      np.setHpr(row[2][0], row[2][1], row[2][2]) #Rotate it
      np.setScale(row[3])                        #Scale it
      #Reparent the model to the exposed joint. That way when the joint moves,
      #the model we just loaded will move with it.
      np.reparentTo(self.rightHand)
      self.models.append(np)                     #Add it to our models list

    self.setObject(0)                            #Make object 0 the first shown
    self.setupLights()                           #Put in some default lighting

  #This is what we use to change which object it being held. It just hides all of
  #the objects and then unhides the one that was selected
  def setObject(self, i):
    for np in self.models: np.hide()
    self.models[i].show()

  #This task gets the position of mouse each frame, and rotates the neck based
  #on it.
  def turnHead(self, task):
    #Check to make sure the mouse is readable
    if base.mouseWatcherNode.hasMouse():
      #get the mouse position as a Vec2. The values for each axis are from -1 to
      #1. The top-left is (-1,-1), the bottom right is (1,1)
      mpos = base.mouseWatcherNode.getMouse()
      #Here we multiply the values to get the amount of degrees to turn
      #Restrain is used to make sure the values returned by getMouse are in the
      #valid range. If this particular model were to turn more than this,
      #significant tearing would be visable
      self.eveNeck.setP(restrain(mpos.getX()) * 50)
      self.eveNeck.setH(restrain(mpos.getY()) * 20)

    return Task.cont                        #Task continues infinitely

  def setupLights(self):                    #Sets up some default lighting
    lAttrib = LightAttrib.makeAllOff()
    ambientLight = AmbientLight( "ambientLight" )
    ambientLight.setColor( Vec4(.4, .4, .35, 1) )
    lAttrib = lAttrib.addLight( ambientLight )
    directionalLight = DirectionalLight( "directionalLight" )
    directionalLight.setDirection( Vec3( 0, 8, -2.5 ) )
    directionalLight.setColor( Vec4( 0.9, 0.8, 0.9, 1 ) )
    lAttrib = lAttrib.addLight( directionalLight )
    render.attachNewNode( directionalLight ) 
    render.attachNewNode( ambientLight ) 
    render.node().setAttrib( lAttrib )
Esempio n. 11
0
    def __init__(self):
        base.disableMouse()
        camera.setPos(0, -50, 0)
        
        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle("Toon Shader: Video driver reports that shaders are not supported.")
            return

        # Post the instructions.
        self.title = addTitle("Panda3D: Tutorial - Toon Shading with Normals-Based Inking")
        self.inst1 = addInstructions(0.95,"ESC: Quit")
        self.inst2 = addInstructions(0.90,"Up/Down: Increase/Decrease Line Thickness")
        self.inst3 = addInstructions(0.85,"Left/Right: Decrease/Increase Line Darkness")
        self.inst4 = addInstructions(0.80,"V: View the render-to-texture results")

        # This shader's job is to render the model with discrete lighting
        # levels.  The lighting calculations built into the shader assume
        # a single nonattenuating point light.

        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_lighting.sha")))
        base.cam.node().setInitialState(tempnode.getState())
        
        # This is the object that represents the single "light", as far
        # the shader is concerned.  It's not a real Panda3D LightNode, but
        # the shader doesn't care about that.

        light = render.attachNewNode("light")
        light.setPos(30,-50,0)
                
        # this call puts the light's nodepath into the render state.
        # this enables the shader to access this light by name.

        render.setShaderInput("light", light)

        # The "normals buffer" will contain a picture of the model colorized
        # so that the color of the model is a representation of the model's
        # normal at that point.

        normalsBuffer=base.win.makeTextureBuffer("normalsBuffer", 0, 0)
        normalsBuffer.setClearColor(Vec4(0.5,0.5,0.5,1))
        self.normalsBuffer=normalsBuffer
        normalsCamera=base.makeCamera(normalsBuffer, lens=base.cam.node().getLens())
        normalsCamera.node().setScene(render)
        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_normal.sha")))
        normalsCamera.node().setInitialState(tempnode.getState())

        #what we actually do to put edges on screen is apply them as a texture to 
        #a transparent screen-fitted card

        drawnScene=normalsBuffer.getTextureCard()
        drawnScene.setTransparency(1)
        drawnScene.setColor(1,1,1,0)
        drawnScene.reparentTo(render2d)
        self.drawnScene = drawnScene

        # this shader accepts, as input, the picture from the normals buffer.
        # it compares each adjacent pixel, looking for discontinuities.
        # wherever a discontinuity exists, it emits black ink.
                
        self.separation = 0.001
        self.cutoff = 0.3
        inkGen=Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/cartoon/cartoon_ink.sha"))
        drawnScene.setShader(inkGen)
        drawnScene.setShaderInput("separation", Vec4(self.separation,0,self.separation,0));
        drawnScene.setShaderInput("cutoff", Vec4(self.cutoff,self.cutoff,self.cutoff,self.cutoff));
        
        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")

        # Load a dragon model and animate it.

        self.character=Actor()
        self.character.loadModel('models/samples/cartoon/nik_dragon')
        self.character.reparentTo(render)
        self.character.loadAnims({'win': 'models/samples/cartoon/nik_dragon'})
        self.character.loop('win')
        self.character.hprInterval(15, Point3(360, 0,0)).loop()

        # these allow you to change cartooning parameters in realtime

        self.accept("escape", sys.exit, [0])
        self.accept("arrow_up", self.increaseSeparation)
        self.accept("arrow_down", self.decreaseSeparation)
        self.accept("arrow_left", self.increaseCutoff)
        self.accept("arrow_right", self.decreaseCutoff)
Esempio n. 12
0
    def __init__(self):
        base.disableMouse()
        base.setBackgroundColor(0,0,0)
        camera.setPos(0,-50,0)
        
        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle("Glow Filter: Video driver reports that shaders are not supported.")
            return

        # Post the instructions
        self.title = addTitle("Panda3D: Tutorial - Glow Filter")
        self.inst1 = addInstructions(0.95,"ESC: Quit")
        self.inst2 = addInstructions(0.90,"Space: Toggle Glow Filter On/Off")
        self.inst3 = addInstructions(0.85,"Enter: Toggle Running/Spinning")
        self.inst4 = addInstructions(0.80,"V: View the render-to-texture results")

        #create the shader that will determime what parts of the scene will glow
        glowShader=Shader.load(os.path.join(PANDA_SHADER_PATH, \
          "samples/glow/glow_shader.sha"))

        # load our model
        self.tron=Actor()
        self.tron.loadModel("models/samples/glow/tron")
        self.tron.loadAnims({"running":"models/samples/glow/tron_anim"})
        self.tron.reparentTo(render)
        self.interval = self.tron.hprInterval(60,Point3(360,0,0))
        self.interval.loop()
        self.isRunning=False

        #put some lighting on the tron model
        dlight = DirectionalLight('dlight')
        alight = AmbientLight('alight')
        dlnp = render.attachNewNode(dlight) 
        alnp = render.attachNewNode(alight)
        dlight.setColor(Vec4(1.0, 0.7, 0.2, 1))
        alight.setColor(Vec4(0.2, 0.2, 0.2, 1))
        dlnp.setHpr(0, -60, 0) 
        render.setLight(dlnp)
        render.setLight(alnp)

        # create the glow buffer. This buffer renders like a normal scene,
        # except that only the glowing materials should show up nonblack.
        glowBuffer=base.win.makeTextureBuffer("Glow scene", 512, 512)
        glowBuffer.setSort(-3)
        glowBuffer.setClearColor(Vec4(0,0,0,1))

        # We have to attach a camera to the glow buffer. The glow camera
        # must have the same frustum as the main camera. As long as the aspect
        # ratios match, the rest will take care of itself.
        glowCamera=base.makeCamera(glowBuffer, lens=base.cam.node().getLens())

        # Tell the glow camera to use the glow shader
        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setShader(glowShader)
        glowCamera.node().setInitialState(tempnode.getState())

        # set up the pipeline: from glow scene to blur x to blur y to main window.
        blurXBuffer=makeFilterBuffer(glowBuffer,  "Blur X", -2, \
          os.path.join(PANDA_SHADER_PATH, "samples/glow/glow_xblur.sha"))
        blurYBuffer=makeFilterBuffer(blurXBuffer, "Blur Y", -1, \
          os.path.join(PANDA_SHADER_PATH, "samples/glow/glow_yblur.sha"))
        self.finalcard = blurYBuffer.getTextureCard()
        self.finalcard.reparentTo(render2d)
        self.finalcard.setAttrib(ColorBlendAttrib.make(ColorBlendAttrib.MAdd))
        
        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        base.bufferViewer.setLayout("hline")
        base.bufferViewer.setCardSize(0.652,0)

        # event handling
        self.accept("space", self.toggleGlow)
        self.accept("enter", self.toggleDisplay)
        self.accept("escape", sys.exit, [0])

        self.glowOn=True;
Esempio n. 13
0
    def __init__(self):
        base.disableMouse()
        base.setBackgroundColor(0, 0, 0)
        camera.setPos(0, -50, 0)

        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle(
                "Glow Filter: Video driver reports that shaders are not supported."
            )
            return

        # Use class 'CommonFilters' to enable a bloom filter.
        # The brightness of a pixel is measured using a weighted average
        # of R,G,B,A.  We put all the weight on Alpha, meaning that for
        # us, the framebuffer's alpha channel alpha controls bloom.

        self.filters = CommonFilters(base.win, base.cam)
        filterok = self.filters.setBloom(blend=(0, 0, 0, 1),
                                         desat=-0.5,
                                         intensity=3.0,
                                         size="small")
        if (filterok == False):
            addTitle(
                "Toon Shader: Video card not powerful enough to do image postprocessing"
            )
            return
        self.glowSize = 1

        # Post the instructions
        self.title = addTitle("Panda3D: Tutorial - Glow Filter")
        self.inst1 = addInstructions(0.95, "ESC: Quit")
        self.inst2 = addInstructions(
            0.90, "Space: Toggle Glow Filter Small/Med/Large/Off")
        self.inst3 = addInstructions(0.85, "Enter: Toggle Running/Spinning")
        self.inst4 = addInstructions(0.80,
                                     "V: View the render-to-texture results")

        # load our model

        self.tron = Actor()
        self.tron.loadModel("samples/glow/tron")
        self.tron.loadAnims({"running": "samples/glow/models/tron_anim"})
        self.tron.reparentTo(render)
        self.interval = self.tron.hprInterval(60, Point3(360, 0, 0))
        self.interval.loop()
        self.isRunning = False

        # put some lighting on the model

        dlight = DirectionalLight('dlight')
        alight = AmbientLight('alight')
        dlnp = render.attachNewNode(dlight)
        alnp = render.attachNewNode(alight)
        dlight.setColor(Vec4(1.0, 0.7, 0.2, 1))
        alight.setColor(Vec4(0.2, 0.2, 0.2, 1))
        dlnp.setHpr(0, -60, 0)
        render.setLight(dlnp)
        render.setLight(alnp)

        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        base.bufferViewer.setLayout("hline")
        #base.camLens.setFov(100)
        # event handling
        self.accept("space", self.toggleGlow)
        self.accept("enter", self.toggleDisplay)
        self.accept("escape", sys.exit, [0])
Esempio n. 14
0
    def __init__(self):

        self.keyMap = {
            "left": 0,
            "right": 0,
            "forward": 0,
            "cam-left": 0,
            "cam-right": 0
        }
        base.win.setClearColor(Vec4(0, 0, 0, 1))

        # Post the instructions

        self.title = addTitle(
            "Panda3D Tutorial: Roaming Ralph (Walking on Uneven Terrain)")
        self.inst1 = addInstructions(0.95, "[ESC]: Quit")
        self.inst2 = addInstructions(0.90, "[Left Arrow]: Rotate Ralph Left")
        self.inst3 = addInstructions(0.85, "[Right Arrow]: Rotate Ralph Right")
        self.inst4 = addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        self.inst6 = addInstructions(0.70, "[A]: Rotate Camera Left")
        self.inst7 = addInstructions(0.65, "[S]: Rotate Camera Right")

        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.

        self.environ = loader.loadModel("models/samples/roaming_ralph/world")
        self.environ.reparentTo(render)
        self.environ.setPos(0, 0, 0)

        # Create the main character, Ralph

        ralphStartPos = self.environ.find("**/start_point").getPos()
        self.ralph = Actor(
            "models/samples/roaming_ralph/ralph", {
                "run": "models/samples/roaming_ralph/ralph_run",
                "walk": "models/samples/roaming_ralph/ralph_walk"
            })
        self.ralph.reparentTo(render)
        self.ralph.setScale(.2)
        self.ralph.setPos(ralphStartPos)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.

        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("arrow_left", self.setKey, ["left", 1])
        self.accept("arrow_right", self.setKey, ["right", 1])
        self.accept("arrow_up", self.setKey, ["forward", 1])
        self.accept("a", self.setKey, ["cam-left", 1])
        self.accept("s", self.setKey, ["cam-right", 1])
        self.accept("arrow_left-up", self.setKey, ["left", 0])
        self.accept("arrow_right-up", self.setKey, ["right", 0])
        self.accept("arrow_up-up", self.setKey, ["forward", 0])
        self.accept("a-up", self.setKey, ["cam-left", 0])
        self.accept("s-up", self.setKey, ["cam-right", 0])

        taskMgr.add(self.move, "moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera

        base.disableMouse()
        base.camera.setPos(self.ralph.getX(), self.ralph.getY() + 10, 2)

        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0, 0, 1000)
        self.ralphGroundRay.setDirection(0, 0, -1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0, 0, 1000)
        self.camGroundRay.setDirection(0, 0, -1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)
Esempio n. 15
0
class World(DirectObject):
    def __init__(self):
        #This code puts the standard title and instruction text on screen
        self.title = OnscreenText(
            text="Panda3D: Tutorial - Joint Manipulation",
            style=1,
            fg=(1, 1, 1, 1),
            font=font,
            pos=(0.7, -0.95),
            scale=.07)
        self.onekeyText = genLabelText("ESC: Quit", 0)
        self.onekeyText = genLabelText("[1]: Teapot", 1)
        self.twokeyText = genLabelText("[2]: Candy cane", 2)
        self.threekeyText = genLabelText("[3]: Banana", 3)
        self.fourkeyText = genLabelText("[4]: Sword", 4)

        #setup key input
        self.accept('escape', sys.exit)
        self.accept('1', self.setObject, [0])
        self.accept('2', self.setObject, [1])
        self.accept('3', self.setObject, [2])
        self.accept('4', self.setObject, [3])

        base.disableMouse()  #Disable mouse-based camera-control
        camera.setPos(0, -15, 2)  #Position the camera

        self.eve = Actor(
            "models/samples/looking_and_gripping/eve",
            #Load our animated charachter
            {'walk': "models/samples/looking_and_gripping/eve_walk"})
        self.eve.reparentTo(render)  #Put it in the scene

        #Now we use controlJoint to get a NodePath that's in control of her neck
        #This must be done before any animations are played
        self.eveNeck = self.eve.controlJoint(None, 'modelRoot', 'Neck')

        #We now play an animation. An animation must be played, or at least posed
        #for the nodepath we just got from controlJoint to actually effect the model
        self.eve.actorInterval("walk", playRate=2).loop()

        #Now we add a task that will take care of turning the head
        taskMgr.add(self.turnHead, "turnHead")

        #Now we will expose the joint the hand joint. ExposeJoint allows us to
        #get the position of a joint while it is animating. This is different than
        #controlJonit which stops that joint from animating but lets us move it.
        #This is particularly usefull for putting an object (like a weapon) in an
        #actor's hand
        self.rightHand = self.eve.exposeJoint(None, 'modelRoot', 'RightHand')

        #This is a table with models, positions, rotations, and scales of objects to
        #be attached to our exposed joint. These are stock models and so they needed
        #to be repositioned to look right.
        positions = [("models/samples/looking_and_gripping/teapot", \
                        (0,-.66,-.95), (90,0,90), .4),
                     ("models/samples/looking_and_gripping/candycane", \
                        (.15,-.99,-.22), (90,0,90), 1),
                     ("models/samples/looking_and_gripping/banana", \
                        (.08,-.1,.09), (0,-90,0), 1.75),
                     ("models/samples/looking_and_gripping/sword", \
                        (.11,.19,.06), (0,0,90), 1)]
        self.models = []  #A list that will store our models objects
        for row in positions:
            np = loader.loadModel(row[0])  #Load the model
            np.setPos(row[1][0], row[1][1], row[1][2])  #Position it
            np.setHpr(row[2][0], row[2][1], row[2][2])  #Rotate it
            np.setScale(row[3])  #Scale it
            #Reparent the model to the exposed joint. That way when the joint moves,
            #the model we just loaded will move with it.
            np.reparentTo(self.rightHand)
            self.models.append(np)  #Add it to our models list

        self.setObject(0)  #Make object 0 the first shown
        self.setupLights()  #Put in some default lighting

    #This is what we use to change which object it being held. It just hides all of
    #the objects and then unhides the one that was selected
    def setObject(self, i):
        for np in self.models:
            np.hide()
        self.models[i].show()

    #This task gets the position of mouse each frame, and rotates the neck based
    #on it.
    def turnHead(self, task):
        #Check to make sure the mouse is readable
        if base.mouseWatcherNode.hasMouse():
            #get the mouse position as a Vec2. The values for each axis are from -1 to
            #1. The top-left is (-1,-1), the bottom right is (1,1)
            mpos = base.mouseWatcherNode.getMouse()
            #Here we multiply the values to get the amount of degrees to turn
            #Restrain is used to make sure the values returned by getMouse are in the
            #valid range. If this particular model were to turn more than this,
            #significant tearing would be visable
            self.eveNeck.setP(restrain(mpos.getX()) * 50)
            self.eveNeck.setH(restrain(mpos.getY()) * 20)

        return Task.cont  #Task continues infinitely

    def setupLights(self):  #Sets up some default lighting
        lAttrib = LightAttrib.makeAllOff()
        ambientLight = AmbientLight("ambientLight")
        ambientLight.setColor(Vec4(.4, .4, .35, 1))
        lAttrib = lAttrib.addLight(ambientLight)
        directionalLight = DirectionalLight("directionalLight")
        directionalLight.setDirection(Vec3(0, 8, -2.5))
        directionalLight.setColor(Vec4(0.9, 0.8, 0.9, 1))
        lAttrib = lAttrib.addLight(directionalLight)
        render.attachNewNode(directionalLight)
        render.attachNewNode(ambientLight)
        render.node().setAttrib(lAttrib)
Esempio n. 16
0
    def chooseEffectWhirlpool(self):
        base.setBackgroundColor(0,0,0,1)
        self.bcard.show()
        self.fcard.hide()
        self.bcard.setColor(1,1,1,1)
        self.bcard.setScale(0.999)
        self.bcard.setPos(0,0,0)
        self.bcard.setR(1)
        self.clickrate = 10000
        self.nextclick = 0

        
t=MotionTrails()

character=Actor()
character.loadModel('models/samples/motion_trails/dancer')
character.reparentTo(render)
character.loadAnims({'win':'models/samples/motion_trails/dancer'})
character.loop('win')
# character.hprInterval(15, Point3(360, 0,0)).loop()

#put some lighting on the model
dlight = DirectionalLight('dlight')
alight = AmbientLight('alight')
dlnp = render.attachNewNode(dlight) 
alnp = render.attachNewNode(alight)
dlight.setColor(Vec4(1.0, 0.9, 0.8, 1))
alight.setColor(Vec4(0.2, 0.3, 0.4, 1))
dlnp.setHpr(0, -60, 0) 
render.setLight(dlnp)
Esempio n. 17
0
    def __init__(self):
        #This code puts the standard title and instruction text on screen
        self.title = OnscreenText(
            text="Panda3D: Tutorial - Joint Manipulation",
            style=1,
            fg=(1, 1, 1, 1),
            font=font,
            pos=(0.7, -0.95),
            scale=.07)
        self.onekeyText = genLabelText("ESC: Quit", 0)
        self.onekeyText = genLabelText("[1]: Teapot", 1)
        self.twokeyText = genLabelText("[2]: Candy cane", 2)
        self.threekeyText = genLabelText("[3]: Banana", 3)
        self.fourkeyText = genLabelText("[4]: Sword", 4)

        #setup key input
        self.accept('escape', sys.exit)
        self.accept('1', self.setObject, [0])
        self.accept('2', self.setObject, [1])
        self.accept('3', self.setObject, [2])
        self.accept('4', self.setObject, [3])

        base.disableMouse()  #Disable mouse-based camera-control
        camera.setPos(0, -15, 2)  #Position the camera

        self.eve = Actor(
            "models/samples/looking_and_gripping/eve",
            #Load our animated charachter
            {'walk': "models/samples/looking_and_gripping/eve_walk"})
        self.eve.reparentTo(render)  #Put it in the scene

        #Now we use controlJoint to get a NodePath that's in control of her neck
        #This must be done before any animations are played
        self.eveNeck = self.eve.controlJoint(None, 'modelRoot', 'Neck')

        #We now play an animation. An animation must be played, or at least posed
        #for the nodepath we just got from controlJoint to actually effect the model
        self.eve.actorInterval("walk", playRate=2).loop()

        #Now we add a task that will take care of turning the head
        taskMgr.add(self.turnHead, "turnHead")

        #Now we will expose the joint the hand joint. ExposeJoint allows us to
        #get the position of a joint while it is animating. This is different than
        #controlJonit which stops that joint from animating but lets us move it.
        #This is particularly usefull for putting an object (like a weapon) in an
        #actor's hand
        self.rightHand = self.eve.exposeJoint(None, 'modelRoot', 'RightHand')

        #This is a table with models, positions, rotations, and scales of objects to
        #be attached to our exposed joint. These are stock models and so they needed
        #to be repositioned to look right.
        positions = [("models/samples/looking_and_gripping/teapot", \
                        (0,-.66,-.95), (90,0,90), .4),
                     ("models/samples/looking_and_gripping/candycane", \
                        (.15,-.99,-.22), (90,0,90), 1),
                     ("models/samples/looking_and_gripping/banana", \
                        (.08,-.1,.09), (0,-90,0), 1.75),
                     ("models/samples/looking_and_gripping/sword", \
                        (.11,.19,.06), (0,0,90), 1)]
        self.models = []  #A list that will store our models objects
        for row in positions:
            np = loader.loadModel(row[0])  #Load the model
            np.setPos(row[1][0], row[1][1], row[1][2])  #Position it
            np.setHpr(row[2][0], row[2][1], row[2][2])  #Rotate it
            np.setScale(row[3])  #Scale it
            #Reparent the model to the exposed joint. That way when the joint moves,
            #the model we just loaded will move with it.
            np.reparentTo(self.rightHand)
            self.models.append(np)  #Add it to our models list

        self.setObject(0)  #Make object 0 the first shown
        self.setupLights()  #Put in some default lighting
Esempio n. 18
0
    def __init__(self):
        base.disableMouse()
        base.setBackgroundColor(0,0,0)
        camera.setPos(0,-50,0)
        
        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle("Glow Filter: Video driver reports that shaders are not supported.")
            return

        # Use class 'CommonFilters' to enable a bloom filter.
        # The brightness of a pixel is measured using a weighted average
        # of R,G,B,A.  We put all the weight on Alpha, meaning that for
        # us, the framebuffer's alpha channel alpha controls bloom.

        self.filters = CommonFilters(base.win, base.cam)
        filterok = self.filters.setBloom(blend=(0,0,0,1), desat=-0.5, intensity=3.0, size="small")
        if (filterok == False):
            addTitle("Toon Shader: Video card not powerful enough to do image postprocessing")
            return
        self.glowSize=1

        # Post the instructions
        self.title = addTitle("Panda3D: Tutorial - Glow Filter")
        self.inst1 = addInstructions(0.95,"ESC: Quit")
        self.inst2 = addInstructions(0.90,"Space: Toggle Glow Filter Small/Med/Large/Off")
        self.inst3 = addInstructions(0.85,"Enter: Toggle Running/Spinning")
        self.inst4 = addInstructions(0.80,"V: View the render-to-texture results")

        # load our model

        self.tron=Actor()
        self.tron.loadModel("samples/glow/tron")
        self.tron.loadAnims({"running":"samples/glow/models/tron_anim"})
        self.tron.reparentTo(render)
        self.interval = self.tron.hprInterval(60,Point3(360,0,0))
        self.interval.loop()
        self.isRunning=False

        # put some lighting on the model

        dlight = DirectionalLight('dlight')
        alight = AmbientLight('alight')
        dlnp = render.attachNewNode(dlight) 
        alnp = render.attachNewNode(alight)
        dlight.setColor(Vec4(1.0, 0.7, 0.2, 1))
        alight.setColor(Vec4(0.2, 0.2, 0.2, 1))
        dlnp.setHpr(0, -60, 0) 
        render.setLight(dlnp)
        render.setLight(alnp)

        # Panda contains a built-in viewer that lets you view the results of
        # your render-to-texture operations.  This code configures the viewer.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        base.bufferViewer.setLayout("hline")
        #base.camLens.setFov(100)
        # event handling
        self.accept("space", self.toggleGlow)
        self.accept("enter", self.toggleDisplay)
        self.accept("escape", sys.exit, [0])
Esempio n. 19
0
    def __init__(self):
        base.disableMouse()
        base.cam.node().getLens().setNear(10.0)
        base.cam.node().getLens().setFar(200.0)
        camera.setPos(0, -50, 0)

        # Check video card capabilities.

        if (base.win.getGsg().getSupportsBasicShaders() == 0):
            addTitle(
                "Toon Shader: Video driver reports that shaders are not supported."
            )
            return

        # Enable a 'light ramp' - this discretizes the lighting,
        # which is half of what makes a model look like a cartoon.
        # Light ramps only work if shader generation is enabled,
        # so we call 'setShaderAuto'.

        tempnode = NodePath(PandaNode("temp node"))
        tempnode.setAttrib(LightRampAttrib.makeSingleThreshold(0.5, 0.4))
        tempnode.setShaderAuto()
        base.cam.node().setInitialState(tempnode.getState())

        # Use class 'CommonFilters' to enable a cartoon inking filter.
        # This can fail if the video card is not powerful enough, if so,
        # display an error and exit.

        self.separation = 1  # Pixels
        self.filters = CommonFilters(base.win, base.cam)
        filterok = self.filters.setCartoonInk(separation=self.separation)
        if (filterok == False):
            addTitle(
                "Toon Shader: Video card not powerful enough to do image postprocessing"
            )
            return

        # Post the instructions.

        self.title = addTitle(
            "Panda3D: Tutorial - Toon Shading with Normals-Based Inking")
        self.inst1 = addInstructions(0.95, "ESC: Quit")
        self.inst2 = addInstructions(
            0.90, "Up/Down: Increase/Decrease Line Thickness")
        self.inst3 = addInstructions(0.85,
                                     "V: View the render-to-texture results")

        # Load a dragon model and animate it.

        self.character = Actor()
        self.character.loadModel('models/samples/cartoon/nik_dragon')
        self.character.reparentTo(render)
        self.character.loadAnims({'win': 'models/samples/cartoon/nik_dragon'})
        self.character.loop('win')
        self.character.hprInterval(15, Point3(360, 0, 0)).loop()

        # Create a non-attenuating point light and an ambient light.

        plightnode = PointLight("point light")
        plightnode.setAttenuation(Vec3(1, 0, 0))
        plight = render.attachNewNode(plightnode)
        plight.setPos(30, -50, 0)
        alightnode = AmbientLight("ambient light")
        alightnode.setColor(Vec4(0.8, 0.8, 0.8, 1))
        alight = render.attachNewNode(alightnode)
        render.setLight(alight)
        render.setLight(plight)

        # Panda contains a built-in viewer that lets you view the
        # results of all render-to-texture operations.  This lets you
        # see what class CommonFilters is doing behind the scenes.

        self.accept("v", base.bufferViewer.toggleEnable)
        self.accept("V", base.bufferViewer.toggleEnable)
        base.bufferViewer.setPosition("llcorner")
        self.accept("s", self.filters.manager.resizeBuffers)

        # These allow you to change cartooning parameters in realtime

        self.accept("escape", sys.exit, [0])
        self.accept("arrow_up", self.increaseSeparation)
        self.accept("arrow_down", self.decreaseSeparation)
Esempio n. 20
0
    def chooseEffectWhirlpool(self):
        base.setBackgroundColor(0, 0, 0, 1)
        self.bcard.show()
        self.fcard.hide()
        self.bcard.setColor(1, 1, 1, 1)
        self.bcard.setScale(0.999)
        self.bcard.setPos(0, 0, 0)
        self.bcard.setR(1)
        self.clickrate = 10000
        self.nextclick = 0


t = MotionTrails()

character = Actor()
character.loadModel('models/samples/motion_trails/dancer')
character.reparentTo(render)
character.loadAnims({'win': 'models/samples/motion_trails/dancer'})
character.loop('win')
# character.hprInterval(15, Point3(360, 0,0)).loop()

#put some lighting on the model
dlight = DirectionalLight('dlight')
alight = AmbientLight('alight')
dlnp = render.attachNewNode(dlight)
alnp = render.attachNewNode(alight)
dlight.setColor(Vec4(1.0, 0.9, 0.8, 1))
alight.setColor(Vec4(0.2, 0.3, 0.4, 1))
dlnp.setHpr(0, -60, 0)
render.setLight(dlnp)