def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp)
def test_take_filling_all_nan(self, kind): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan], kind=kind) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind=kind) tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind=kind) tm.assert_sp_array_equal(result, expected) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), fill_value=True)
class TestSparseArray: def setup_method(self, method): self.arr_data = np.array( [np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype="int") expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype("int64", -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype("int64") def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype="Sparse[int32]") expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype("int32") def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(["A", "A", np.nan, "B"], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(["A", "A", np.nan, "B"], dtype=np.object, fill_value="A") assert arr.dtype == SparseDtype(np.object, "A") assert arr.fill_value == "A" # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind="integer") tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray( data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0, ) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray( data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0, ) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [None, IntIndex(1, [0])]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize( "data, fill_value", [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp("2017-01-01")], pd.NaT), ], ) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize("format", ["coo", "csc", "csr"]) @pytest.mark.parametrize( "size", [ pytest.param( 0, marks=td.skip_if_np_lt("1.16", reason="NumPy-11383")), 10 ], ) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format="csc") with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize( "scalar,dtype", [ (False, SparseDtype(bool, False)), (0.0, SparseDtype("float64", 0)), (1, SparseDtype("int64", 1)), ("z", SparseDtype("object", "z")), ], ) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize("fill_value", [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'." with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind="block") tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind="block") tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 tm.assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1.0, np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype("float32")) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new( np.array([0.0, 2.0], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match="NA"): arr.astype("Sparse[i8]") def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize( "array, dtype, expected", [ ( SparseArray([0, 1]), "float", SparseArray([0.0, 1.0], dtype=SparseDtype(float, 0.0)), ), (SparseArray([0, 1]), bool, SparseArray([False, True])), ( SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True)), ), pytest.param( SparseArray([0, 1]), "datetime64[ns]", SparseArray( np.array([0, 1], dtype="datetime64[ns]"), dtype=SparseDtype("datetime64[ns]", pd.Timestamp("1970")), ), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), ( SparseArray([0, 1, 10]), str, SparseArray(["0", "1", "10"], dtype=SparseDtype(str, "0")), ), (SparseArray(["10", "20"]), float, SparseArray([10.0, 20.0])), ( SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0)), ), ], ) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match="Cannot convert non-finite"): arr.astype(int) def test_set_fill_value(self): arr = SparseArray([1.0, np.nan, 2.0], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) arr.fill_value = True assert arr.fill_value # coerces to bool # msg = "unable to set fill_value 0 to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 0 assert arr.fill_value == 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)]) def test_set_fill_invalid_non_scalar(self, val): arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) msg = "fill_value must be a scalar" with pytest.raises(ValueError, match=msg): arr.fill_value = val def test_copy(self): arr2 = self.arr.copy() assert arr2.sp_values is not self.arr.sp_values assert arr2.sp_index is self.arr.sp_index def test_values_asarray(self): tm.assert_almost_equal(self.arr.to_dense(), self.arr_data) @pytest.mark.parametrize( "data,shape,dtype", [ ([0, 0, 0, 0, 0], (5, ), None), ([], (0, ), None), ([0], (1, ), None), (["A", "A", np.nan, "B"], (4, ), np.object), ], ) def test_shape(self, data, shape, dtype): # GH 21126 out = SparseArray(data, dtype=dtype) assert out.shape == shape @pytest.mark.parametrize( "vals", [ [np.nan, np.nan, np.nan, np.nan, np.nan], [1, np.nan, np.nan, 3, np.nan], [1, np.nan, 0, 3, 0], ], ) @pytest.mark.parametrize("fill_value", [None, 0]) def test_dense_repr(self, vals, fill_value): vals = np.array(vals) arr = SparseArray(vals, fill_value=fill_value) res = arr.to_dense() tm.assert_numpy_array_equal(res, vals) with tm.assert_produces_warning(FutureWarning): res2 = arr.get_values() tm.assert_numpy_array_equal(res2, vals) def test_getitem(self): def _checkit(i): tm.assert_almost_equal(self.arr[i], self.arr.to_dense()[i]) for i in range(len(self.arr)): _checkit(i) _checkit(-i) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) def test_getslice(self): result = self.arr[:-3] exp = SparseArray(self.arr.to_dense()[:-3]) tm.assert_sp_array_equal(result, exp) result = self.arr[-4:] exp = SparseArray(self.arr.to_dense()[-4:]) tm.assert_sp_array_equal(result, exp) # two corner cases from Series result = self.arr[-12:] exp = SparseArray(self.arr) tm.assert_sp_array_equal(result, exp) result = self.arr[:-12] exp = SparseArray(self.arr.to_dense()[:0]) tm.assert_sp_array_equal(result, exp) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[4:, ] # noqa: E231 exp = SparseArray(dense[4:, ]) # noqa: E231 tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[4:, ] # noqa: E231 exp = SparseArray(dense[4:, ], fill_value=0) # noqa: E231 tm.assert_sp_array_equal(res, exp) with pytest.raises(IndexError): sparse[4:, :] with pytest.raises(IndexError): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = pd.SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype @pytest.mark.parametrize( "op", ["add", "sub", "mul", "truediv", "floordiv", "pow"]) def test_binary_operators(self, op): op = getattr(operator, op) data1 = np.random.randn(20) data2 = np.random.randn(20) data1[::2] = np.nan data2[::3] = np.nan arr1 = SparseArray(data1) arr2 = SparseArray(data2) data1[::2] = 3 data2[::3] = 3 farr1 = SparseArray(data1, fill_value=3) farr2 = SparseArray(data2, fill_value=3) def _check_op(op, first, second): res = op(first, second) exp = SparseArray(op(first.to_dense(), second.to_dense()), fill_value=first.fill_value) assert isinstance(res, SparseArray) tm.assert_almost_equal(res.to_dense(), exp.to_dense()) res2 = op(first, second.to_dense()) assert isinstance(res2, SparseArray) tm.assert_sp_array_equal(res, res2) res3 = op(first.to_dense(), second) assert isinstance(res3, SparseArray) tm.assert_sp_array_equal(res, res3) res4 = op(first, 4) assert isinstance(res4, SparseArray) # Ignore this if the actual op raises (e.g. pow). try: exp = op(first.to_dense(), 4) exp_fv = op(first.fill_value, 4) except ValueError: pass else: tm.assert_almost_equal(res4.fill_value, exp_fv) tm.assert_almost_equal(res4.to_dense(), exp) with np.errstate(all="ignore"): for first_arr, second_arr in [(arr1, arr2), (farr1, farr2)]: _check_op(op, first_arr, second_arr) def test_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) tm.assert_sp_array_equal(unpickled, obj) _check_roundtrip(self.arr) _check_roundtrip(self.zarr) def test_generator_warnings(self): sp_arr = SparseArray([1, 2, 3]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings(action="always", category=DeprecationWarning) warnings.filterwarnings(action="always", category=PendingDeprecationWarning) for _ in sp_arr: pass assert len(w) == 0 def test_fillna(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0]) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan]) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) # float dtype's fill_value is np.nan, replaced by -1 s = SparseArray([0.0, 0.0, 0.0, 0.0]) res = s.fillna(-1) exp = SparseArray([0.0, 0.0, 0.0, 0.0], fill_value=-1) tm.assert_sp_array_equal(res, exp) # int dtype shouldn't have missing. No changes. s = SparseArray([0, 0, 0, 0]) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) tm.assert_sp_array_equal(res, s) s = SparseArray([0, 0, 0, 0], fill_value=0) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=0) tm.assert_sp_array_equal(res, exp) # fill_value can be nan if there is no missing hole. # only fill_value will be changed s = SparseArray([0, 0, 0, 0], fill_value=np.nan) assert s.dtype == SparseDtype(np.int64, fill_value=np.nan) assert np.isnan(s.fill_value) res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=-1) tm.assert_sp_array_equal(res, exp) def test_fillna_overlap(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) # filling with existing value doesn't replace existing value with # fill_value, i.e. existing 3 remains in sp_values res = s.fillna(3) exp = np.array([1, 3, 3, 3, 3], dtype=np.float64) tm.assert_numpy_array_equal(res.to_dense(), exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(3) exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) def test_nonzero(self): # Tests regression #21172. sa = pd.SparseArray( [float("nan"), float("nan"), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) expected = np.array([2, 5, 9], dtype=np.int32) (result, ) = sa.nonzero() tm.assert_numpy_array_equal(expected, result) sa = pd.SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) (result, ) = sa.nonzero() tm.assert_numpy_array_equal(expected, result)
def test_take_filling_fill_value(self): # same tests as GH#12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # TODO: actionable? # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'." with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), fill_value=True)
def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # TODO: actionable? # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), allow_fill=True)