Esempio n. 1
0
    def _interpolate_with_fill(self, method='pad', axis=0, inplace=False,
                               limit=None, fill_value=None, coerce=False,
                               downcast=None):
        """ fillna but using the interpolate machinery """

        # if we are coercing, then don't force the conversion
        # if the block can't hold the type
        if coerce:
            if not self._can_hold_na:
                if inplace:
                    return [self]
                else:
                    return [self.copy()]

        fill_value = self._try_fill(fill_value)
        values = self.values if inplace else self.values.copy()
        values = self._try_operate(values)
        values = com.interpolate_2d(values,
                                    method=method,
                                    axis=axis,
                                    limit=limit,
                                    fill_value=fill_value,
                                    dtype=self.dtype)
        values = self._try_coerce_result(values)

        blocks = [make_block(values,
                             ndim=self.ndim, klass=self.__class__,
                             fastpath=True, placement=self.mgr_locs)]
        return self._maybe_downcast(blocks, downcast)
Esempio n. 2
0
    def fillna(self, fill_value=None, method=None, limit=None, **kwargs):
        """ Fill NA/NaN values using the specified method.

        Parameters
        ----------
        method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
            Method to use for filling holes in reindexed Series
            pad / ffill: propagate last valid observation forward to next valid
            backfill / bfill: use NEXT valid observation to fill gap
        value : scalar
            Value to use to fill holes (e.g. 0)
        limit : int, default None
            Maximum size gap to forward or backward fill (not implemented yet!)

        Returns
        -------
        filled : Categorical with NA/NaN filled
        """

        if fill_value is None:
            fill_value = np.nan
        if limit is not None:
            raise NotImplementedError

        values = self._codes

        # Make sure that we also get NA in levels
        if self.levels.dtype.kind in ['S', 'O', 'f']:
            if np.nan in self.levels:
                values = values.copy()
                nan_pos = np.where(isnull(self.levels))[0]
                # we only have one NA in levels
                values[values == nan_pos] = -1

        # pad / bfill
        if method is not None:

            values = self.to_dense().reshape(-1, len(self))
            values = com.interpolate_2d(values, method, 0, None,
                                        fill_value).astype(
                                            self.levels.dtype)[0]
            values = _get_codes_for_values(values, self.levels)

        else:

            if not com.isnull(fill_value) and fill_value not in self.levels:
                raise ValueError("fill value must be in levels")

            mask = values == -1
            if mask.any():
                values = values.copy()
                values[mask] = self.levels.get_loc(fill_value)

        return Categorical(values,
                           levels=self.levels,
                           ordered=self.ordered,
                           name=self.name,
                           fastpath=True)
Esempio n. 3
0
    def fillna(self, fill_value=None, method=None, limit=None, **kwargs):
        """ Fill NA/NaN values using the specified method.

        Parameters
        ----------
        method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
            Method to use for filling holes in reindexed Series
            pad / ffill: propagate last valid observation forward to next valid
            backfill / bfill: use NEXT valid observation to fill gap
        value : scalar
            Value to use to fill holes (e.g. 0)
        limit : int, default None
            Maximum size gap to forward or backward fill (not implemented yet!)

        Returns
        -------
        filled : Categorical with NA/NaN filled
        """

        if fill_value is None:
            fill_value = np.nan
        if limit is not None:
            raise NotImplementedError

        values = self._codes

        # Make sure that we also get NA in categories
        if self.categories.dtype.kind in ['S', 'O', 'f']:
            if np.nan in self.categories:
                values = values.copy()
                nan_pos = np.where(isnull(self.categories))[0]
                # we only have one NA in categories
                values[values == nan_pos] = -1


        # pad / bfill
        if method is not None:

            values = self.to_dense().reshape(-1,len(self))
            values = com.interpolate_2d(
                values, method, 0, None, fill_value).astype(self.categories.dtype)[0]
            values = _get_codes_for_values(values, self.categories)

        else:

            if not com.isnull(fill_value) and fill_value not in self.categories:
                raise ValueError("fill value must be in categories")

            mask = values==-1
            if mask.any():
                values = values.copy()
                values[mask] = self.categories.get_loc(fill_value)

        return Categorical(values, categories=self.categories, ordered=self.ordered,
                           name=self.name, fastpath=True)