Esempio n. 1
0
    def V_sampchan(self, chan, gain, data_rate=RATE):
        '''
        This routine returns a single reading of the voltage for the channel.

        Returns a tuple of the following 5 objects:
            V -- float, the measured voltage

            time_stamp -- float, the time of the measurement in seconds since
            the beginning of the epoch (OS dependent begin time)

            ref -- float, the reference voltage (Vdd) collected
            simultaneously.

        :param int chan: the channel number (0, 1, 2, 3, 4, 5, 6, 7,
         8). NOTE: channel 8 returns a measurement of Vdd.

        :param gain: ignored by board. Defaults to 1.

        :param int data_rate: ignored by board.

        :returns: V_avg, stdev, stdev_avg, time_stamp, Vdd_avg
        :return float V:
        :return float time_stamp:
        :return float ref:
        '''
        start = time.time()
        value = DAQC2plate.getADC(self.addr, chan)
        ref = DAQC2plate.getADC(self.addr, 8)
        end = time.time()
        time_stamp = (start + end) / 2
        return value, time_stamp, ref
Esempio n. 2
0
    def V_oversampchan_stats(self, chan, gain, avg_sec, data_rate=RATE):
        '''
        This routine returns the average voltage for the channel
        averaged at the maximum rate for the board. The standard
        deviation and the estimated deviation of the mean are also
        returned.

        Returns a tuple of the following 5 objects:
            V_avg -- float, the averaged voltage

            stdev -- float, the standard deviation of the measured values
            during the averaging interval

            stdev_avg -- float, the estimated standard deviation of the
            returned average

            time_stamp -- float, the time at halfway through the averaging
            interval in seconds since the beginning of the epoch (OS
            dependent begin time)

            Vdd_avg -- float, the reference voltage (Vdd) collected
            simultaneously.

        :param int chan: the channel number (0, 1, 2, 3, 4, 5, 6, 7,
         8). NOTE: channel 8 returns a measurement of Vdd.

        :param gain: ignored by board. Defaults to 1.

        :param int data_rate: ignored by board.

        :param float avg_sec: seconds to average for, actual
         averaging interval will be as close as possible for an integer
         number of samples

        :returns: V_avg, stdev, stdev_avg, time_stamp, Vdd_avg
        :return float V_avg: description
        :return float stdev:
        :return float stdev_avg:
        :return float time_stamp:
        :return float Vdd_avg:
        '''
        value = []
        ref = []
        starttime = time.time()
        endtime = starttime + avg_sec
        while time.time() < endtime:
            value.append(DAQC2plate.getADC(self.addr, chan))
            ref.append(DAQC2plate.getADC(self.addr, 8))
        time_stamp = (starttime + endtime) / 2
        ndata = len(value)
        logging.debug('channel:' + str(chan) + ', starttime:' +
                      str(starttime) + ', '
                      'endtime:' + str(endtime) + ', ndata:' + str(ndata) +
                      '.')
        V_avg = sum(value) / ndata
        Vdd_avg = sum(ref) / ndata
        stdev = np.std(value, ddof=1, dtype=np.float64)
        stdev_avg = stdev / np.sqrt(float(ndata))
        return V_avg, stdev, stdev_avg, time_stamp, Vdd_avg
Esempio n. 3
0
    def V_oversampchan(self, chan, gain, avg_sec, data_rate=RATE):
        """
        This routine returns the average voltage for the channel
        averaged at the default rate for the board and returns an
        average and observed range.

        Returns a tuple of the following 5 objects:
            V_avg -- float, the averaged voltage

            V_min -- float, the minimum voltage read during
            the interval

            V_max -- float, the maximum voltage read during the
            interval

            time_stamp -- float, the time at halfway through the averaging
            interval in seconds since the beginning of the epoch (OS
            dependent begin time)

            Vdd_avg -- float, the reference voltage (Vdd) collected
            simultaneously.

        :param int chan: the channel number (0, 1, 2, 3, 4, 5, 6, 7,
         8). NOTE: channel 8 returns a measurement of Vdd.

        :param gain: ignored by board. Defaults to 1.

        :param int data_rate: ignored by board.

        :param float avg_sec: seconds to average for, actual
         averaging interval will be as close as possible for an integer
         number of samples

        :returns: V_avg, V_min, V_max, time_stamp, Vdd_avg
        :return float V_avg: description
        :return float V_min:
        :return float V_max:
        :return float time_stamp:
        :return float Vdd_avg:
        """
        value = []
        ref = []
        starttime = time.time()
        endtime = starttime + avg_sec
        while time.time() < endtime:
            value.append(DAQC2plate.getADC(self.addr, chan))
            ref.append(DAQC2plate.getADC(self.addr, 8))
        time_stamp = (endtime + endtime) / 2
        ndata = len(value)
        V_avg = sum(value) / ndata
        Vdd_avg = sum(ref) / ndata
        V_min = min(value)
        V_max = max(value)
        return V_avg, V_min, V_max, time_stamp, Vdd_avg
Esempio n. 4
0
def exposeAndCollectData():

    GPIO.output(methane_valve, GPIO.LOW)
    GPIO.output(ethane_valve, GPIO.LOW)
    GPIO.output(compressed_air_valve, GPIO.LOW)
    GPIO.output(chamber_venting_valve, GPIO.LOW)
    GPIO.output(mfc1_output_to_chamber_valve, GPIO.LOW)
    GPIO.output(mfc2_output_to_chamber_valve, GPIO.LOW)
    GPIO.output(mfc1_venting_valve, GPIO.LOW)
    GPIO.output(mfc2_venting_valve, GPIO.LOW)

    start_time = time.time() # capture the time at which the test began. All time values can use start_time as a reference
    dataVector1 = [] # data values to be returned from sensor 1
    dataVector2 = [] # data values to be returned from sensor 2
    tempDataVector = []
    humidityDataVector = []
    timeVector = [] # time values associated with data values
    sampling_time_index = 1 #sampling_time_index is used to ensure that sampling takes place every interval of sampling_time, without drifting.
    data_date_and_time = time.asctime( time.localtime(time.time()) )
    print("Starting data capture")

    while (time.time() < (start_time + duration_of_signal)): # While time is less than duration of logged file


        if (time.time() > (start_time + (sampling_time * sampling_time_index))): # if time since last sample is more than the sampling time, take another sample
            dataVector1.append( DAQC.getADC(daqc_address, sensor_input_channel_1) ) # Perform analog to digital function, reading voltage from first sensor channel
            dataVector2.append( DAQC.getADC(daqc_address, sensor_input_channel_2) ) #  Perform analog to digital function, reading voltage from second sensor channel

            timeVector.append( time.time() - start_time )
            sampling_time_index += 1 # increment sampling_time_index to set awaited time for next data sample
            if ((sampling_time_index - 1) % 10 == 0):
                print(int(time.time() - start_time))

                print(DAQC.getADC(daqc_address, linear_actuator_position_channel))

        # If time is between 10-50 seconds and the Linear Actuator position sensor signal from DAQCplate indicates a retracted state, extend the sensor
##        elif (time.time() >= (start_time + sensing_delay_time) and time.time() <= (sensing_retract_time + start_time) and DAQC.getADC(daqc_address, linear_actuator_position_channel) < extended_state ):
        elif (time.time() >= (start_time + sensing_delay_time) and time.time() <= (start_time + sensing_delay_time + 10) ):

                GPIO.output(linear_actuator_extend, GPIO.HIGH) # Actuate linear actuator to extended position
                GPIO.output(linear_actuator_unlock_retract, GPIO.LOW)# Energizing both control wires causes linear actuator to extend

        # If time is less than 10 seconds or greater than 50 seconds and linear actuator position sensor signal from DAQCplate indicates an extended state, retract the sensor
        elif ( ((time.time() < (sensing_delay_time + start_time)) or (time.time() > (sensing_retract_time + start_time)) ) and DAQC.getADC(daqc_address, linear_actuator_position_channel) > retracted_state):
##        elif ( ((time.time() < (sensing_retract_time + start_time + 10)) and (time.time() > (sensing_retract_time + start_time)) )):
                GPIO.output(linear_actuator_unlock_retract, GPIO.HIGH) # Retract linear actuator to initial position. Energizing only the linear_actuator_unlock_retract wire causes the lineaer actuator to retract
                GPIO.output(linear_actuator_extend, GPIO.LOW)

        # Otherwise, keep outputs off        else:
                GPIO.output(linear_actuator_unlock_retract, GPIO.LOW)
                GPIO.output(linear_actuator_extend, GPIO.LOW)
##                print("blep")

    return dataVector1, dataVector2, timeVector
    def sample_data(self):

        heading_indices = self.args['preferences']['headingString'].split(",")
        data_string = ""

        for idx in heading_indices:
            if idx[:2] == "ch":

                # Read the normal input pins
                if self.args['preferences']['headerIndices'][
                        idx] == "Anemometer(km/h)":  # 1 tick per second = 2.4km/h
                    data_string += "{:.1f},".format(self.args['anemometer'])
                elif self.args['preferences']['headerIndices'][
                        idx] == "RainGauge(mm)":  # 1 tick = 0.2794mm rain
                    data_string += "{:.4f},".format(self.args['rainGauge'])
                # Relative humidity is calculated using the formula:
                # RH = 0.0375 * Vout - 37.7
                # Vout needs to be in mV and RH in %
                elif self.args['preferences']['headerIndices'][
                        idx] == "RelativeHumidity(%)":
                    Vout = DAQC2.getADC(
                        int(idx[2]), int(idx[3])
                    ) * 1000  # We have to convert voltage to mV as it is read in V

                    RH = 0.0375 * Vout - 37.7

                    data_string += "{:.4f},".format(RH)

                elif self.args['preferences']['headerIndices'][
                        idx] == "RainGauge(mm)":  # 1 tick = 0.2794mm rain
                    data_string += "{:.4f},".format(self.args['rainGauge'])
                else:
                    data_string += "{:.5f},".format(
                        DAQC2.getADC(int(idx[2]), int(idx[3])))

        data_string += "{},".format(datetime.now(timezone.utc).strftime('%Y'))
        data_string += "{},".format(datetime.now(timezone.utc).strftime('%m'))
        data_string += "{},".format(datetime.now(timezone.utc).strftime('%d'))
        data_string += "{},".format(datetime.now(timezone.utc).strftime('%H'))
        data_string += "{},".format(datetime.now(timezone.utc).strftime('%M'))
        data_string += "{}\n".format(datetime.now(timezone.utc).strftime('%S'))

        print(data_string, end='')

        self.filemanager.save_to_file(self.args['preferences']['savePath'],
                                      self.args['filename'], data_string)

        self.previous_time = self.current_time
Esempio n. 6
0
def animate(i):
    # Left shift data
    data[0:-1] = data[1:]

    # Record current time
    data[-1] = v_to_dbm(DAQC2.getADC(0, 0), laser_cw * 1e-3)

    line.set_ydata(data)

    return [line]
Esempio n. 7
0
def photoTest():
    elapsedTime = 0
    tMax = 25
    startReadTime = time.time()
    onVolt = []
    offVolt = []
    ##    tRead = 0

    while (tMax >= elapsedTime):
        DAQC2.setDOUTbit(0, 7)  #turn laser on
        time.sleep(1)
        tempVolt1 = []
        tEnd1 = time.time() + 1
        while (time.time() < tEnd1):
            tempVolt1.append(DAQC2.getADC(0, 0))
        DAQC2.clrDOUTbit(0, 7)
        anaVolt = sum(tempVolt1) / len(tempVolt1)
        print("number of reads: ", len(tempVolt1))
        print("Voltage('ON'): ", anaVolt)
        onVolt.append(anaVolt)

        tempVolt2 = []
        tEnd2 = time.time() + 1
        while (time.time() < tEnd2):
            tempVolt2.append(DAQC2.getADC(0, 0))
        anaVolt = sum(tempVolt2) / len(tempVolt2)
        print("number of reads: ", len(tempVolt2))
        print("Voltage('OFF'): ", anaVolt)
        offVolt.append(anaVolt)

        elapsedTime = time.time() - startReadTime

    print()
    avgON = sum(onVolt) / len(onVolt)
    avgOFF = sum(offVolt) / len(offVolt)
    print("average ON volt: ", avgON)
    print("avgerage OFF volt: ", avgOFF)
    print()
    def read_rain_gauge(self):

        current_time = time.time()
        elapsed_time = current_time - self.gauges['rainGauge']['previousTime']

        if elapsed_time >= 1:
            self.args['rainGauge'] = (self.gauges['rainGauge']['numberTicks'] *
                                      self.args['preferences']['rainConstant'])
            self.gauges['rainGauge']['numberTicks'] = 0
            self.gauges['rainGauge']['previousTime'] = current_time

        temp_val = DAQC2.getADC(int(self.gauges['rainGauge']['channel'][2]),
                                int(self.gauges['rainGauge']['channel'][3]))

        if temp_val > 4:
            if not self.gauges['rainGauge']['recordedTick']:
                self.gauges['rainGauge']['numberTicks'] += 1
                self.gauges['rainGauge']['recordedTick'] = True
        else:
            self.gauges['rainGauge']['recordedTick'] = False
Esempio n. 9
0
def readOD():
    DAQC2.setDOUTbit(0, 7)
    time.sleep(1)
    rowVolts = []
    j = 0
    k = 0
    num = 1
    while (k <= 5):
        tempVolt = []
        tEnd = time.time() + .5
        while (time.time() < tEnd):
            tempVolt.append(DAQC2.getADC(j, k))
        currAvgVolt = sum(tempVolt) / len(tempVolt)
        rowVolts.append(currAvgVolt)
        print("Avg voltage for ", num, ": ", currAvgVolt)
        k = k + 1
        num = num + 1
        if (k == 6 and j == 0):
            j = 1
            k = 0
        elif (k == 2 and j == 1):
            k = 10
    DAQC2.clrDOUTbit(0, 7)
Esempio n. 10
0
        "Failed to import library from parent folder")

####### zet de LED uit
DAQC.setLED(0, 'off')

####### stuur de analoge output aan
DAQC.setDAC(0, 1, 2.64) # DAQ 0, adres analog-output 1, voltage 2.64 V

###### stuur 0, 1, 2, 3 volt naar analog-output 1
for i in range(10):
    volt = i % 4 # i modulo 4
    DAQC.setDAC(0, 1, volt)
    time.sleep(0.1)


####### Lees data van Analoge Input

val = DAQC.getADC(0, 1) # DAQC 0, adres Analog-Input 1
print(val)
val8 = DAQC.getADCall(0) # lees alle 8 Analog-Inputs
print(val8)

######## Lees meerdere data punten

data = get_data.readPiPlate(DAQC, 3) # kanaal 0, 1000 punten, ADC 0

# maak een (unieke) filenaam aan
filename = 'meting_test1_%s.txt' % (int(time.time()))
write_data.saveArray(data, filename)

Esempio n. 11
0
def readPressureMC():
    voltage = DAQ.getADC(0, 2) - DAQ.getADC(0, 3)
    vadj = 1.004029 * voltage - 0.000386  # Calibrated for Pi Plate Error
    return 10**(1.66666667 * vadj - 11.46)  #Pressure in Torr returned
Esempio n. 12
0
def chemostat(timeL, pumpPeriod):
    elapsedTime = 0
    tMax = timeL + 11
    min = timeL / 60
    pumpTime = pumpPeriod
    startReadTime = time.time()
    tStart = 0
    tPump = time.time()
    volts = np.zeros(shape=(min + 1, 8))
    counter = 0
    currTime = time.time()
    print("\n")

    while (tMax >= elapsedTime):
        if (currTime - tStart >
                60):  #58 b/c lose two seconds with sleep and measure
            tStart = time.time()
            readTimeS = (tStart - startReadTime) / 60
            print("Read ", counter, " at ", readTimeS, " min.")
            ###

            DAQC2.setDOUTbit(0, 7)
            time.sleep(1)
            rowVolts = []
            j = 0
            k = 0
            num = 1
            while (k <= 5):
                tempVolt = []
                tEnd = time.time() + .5
                while (time.time() < tEnd):
                    tempVolt.append(DAQC2.getADC(j, k))
                currAvgVolt = sum(tempVolt) / len(tempVolt)
                rowVolts.append(currAvgVolt)
                print("Avg voltage for ", num, ": ", currAvgVolt)
                k = k + 1
                num = num + 1
                if (k == 6 and j == 0):
                    j = 1
                    k = 0
                elif (k == 2 and j == 1):
                    k = 10
            DAQC2.clrDOUTbit(0, 7)
            print("\n")
            volts[counter] = rowVolts
            counter = counter + 1
            ###
            measureTime = (tStart - startReadTime) / 60.0
            measureDateTime = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

            dateTime.append(measureDateTime)
            readTime.append(measureTime)

        if ((currTime - tPump - 1) > pumpTime * 60):
            print("pump on/valves open")
            tPump = (time.time() - startReadTime) / 60
            print("pump on at: ", tPump)
            j = 0
            i = 0
            while (i <= 5):
                DAQC2.setDOUTbit(j, i)
                DAQC2.setDOUTbit(0, 6)

                time.sleep(2)
                DAQC2.clrDOUTbit(0, 6)
                DAQC2.clrDOUTbit(j, i)
                time.sleep(.5)
                i = i + 1
                if (i == 6 and j == 0):
                    j = 1
                    i = 0
                elif (i == 2 and j == 1):
                    i = 10

            tPump = time.time()
            print("pump off \n")

        currTime = time.time()
        elapsedTime = time.time() - startReadTime

    morbido1 = volts[:, 0].tolist()
    morbido2 = volts[:, 1].tolist()
    morbido3 = volts[:, 2].tolist()
    morbido4 = volts[:, 3].tolist()
    morbido5 = volts[:, 4].tolist()
    morbido6 = volts[:, 5].tolist()
    morbido7 = volts[:, 6].tolist()
    morbido8 = volts[:, 7].tolist()

    OD1 = (((np.log10(morbido1) / logBlankVolts[0]) - .71891) /
           -2.1235).tolist()
    OD2 = (((np.log10(morbido2) / logBlankVolts[1]) - .71891) /
           -2.1235).tolist()
    OD3 = (((np.log10(morbido3) / logBlankVolts[2]) - .71891) /
           -2.1235).tolist()
    OD4 = (((np.log10(morbido4) / logBlankVolts[3]) - .71891) /
           -2.1235).tolist()
    OD5 = (((np.log10(morbido5) / logBlankVolts[4]) - .71891) /
           -2.1235).tolist()
    OD6 = (((np.log10(morbido6) / logBlankVolts[5]) - .71891) /
           -2.1235).tolist()
    OD7 = (((np.log10(morbido7) / logBlankVolts[6]) - .71891) /
           -2.1235).tolist()
    OD8 = (((np.log10(morbido8) / logBlankVolts[7]) - .71891) /
           -2.1235).tolist()

    df = [
        dateTime, readTime, morbido1, morbido2, morbido3, morbido4, morbido5,
        morbido6, morbido7, morbido8, OD1, OD2, OD3, OD4, OD5, OD6, OD7, OD8
    ]
    my_df = pd.DataFrame(df)
    my_df = my_df.T
    global globalDF
    globalDF = my_df
    csvTitle = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '.csv'
    my_df.to_csv(csvTitle,
                 index=True,
                 header=[
                     'DateTime', 'Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6',
                     'V7', 'V8', 'OD1', 'OD2', 'OD3', 'OD4', 'OD5', 'OD6',
                     'OD7', 'OD8'
                 ])
    print(my_df)
    print()
    print("new csv file on Desktop: ", csvTitle)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(readTime, morbido1, s=10, c='b', marker="s", label='Culture#1')
    ax1.scatter(readTime, morbido2, s=10, c='g', marker="o", label='Culture#2')
    ax1.scatter(readTime, morbido3, s=10, c='r', marker="^", label='Culture#3')
    ax1.scatter(readTime, morbido4, s=10, c='c', marker="p", label='Culture#4')
    ax1.scatter(readTime, morbido5, s=10, c='m', marker="D", label='Culture#5')
    ax1.scatter(readTime, morbido6, s=10, c='y', marker="v", label='Culture#6')
    ax1.scatter(readTime, morbido7, s=10, c='k', marker="h", label='Culture#7')
    ax1.scatter(readTime,
                morbido8,
                s=10,
                c='violet',
                marker="8",
                label='Culture#8')
    plt.ylabel('Voltage')
    plt.xlabel('Time (min)')
    Volttitle = datetime.now().strftime('%Y-%m-%d_%H-%M') + ' Voltage plot'
    plt.title(Volttitle)
    plt.legend(loc='upper right')
    plt.show()

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(readTime, OD1, s=10, c='b', marker="s", label='Culture#1')
    ax1.scatter(readTime, OD2, s=10, c='g', marker="o", label='Culture#2')
    ax1.scatter(readTime, OD3, s=10, c='r', marker="^", label='Culture#3')
    ax1.scatter(readTime, OD4, s=10, c='c', marker="p", label='Culture#4')
    ax1.scatter(readTime, OD5, s=10, c='m', marker="D", label='Culture#5')
    ax1.scatter(readTime, OD6, s=10, c='y', marker="v", label='Culture#6')
    ax1.scatter(readTime, OD7, s=10, c='k', marker="h", label='Culture#7')
    ax1.scatter(readTime, OD8, s=10, c='violet', marker="8", label='Culture#8')
    plt.ylabel('OD600')
    plt.xlabel('Time (min)')
    ODtitle = datetime.now().strftime('%Y-%m-%d_%H-%M') + ' OD plot'
    plt.title(ODtitle)
    plt.legend(loc='upper left')
    plt.show()
Esempio n. 13
0
def Turbido(timeL, pumpPeriod, NormVolt):
    elapsedTime = 0
    tMax = timeL + 45
    min = timeL / 60
    pumpTime = pumpPeriod
    startReadTime = time.time()
    tStart = 0
    tPump = time.time()
    volts = np.zeros(shape=(min + 1, 8))
    setVolt = NormVolt
    counter = 0
    currTime = time.time()
    print("\n")

    currVolts = []

    while (tMax >= elapsedTime):

        if (currTime - tStart > 60):
            tStart = time.time()
            readTimeS = (currTime - startReadTime) / 60
            print("Read ", counter, " at ", readTimeS, " min.")
            DAQC2.setDOUTbit(0, 7)
            time.sleep(1)
            rowVolts = []
            j = 0
            k = 0
            num = 1
            while (k <= 5):
                tempVolt = []
                tEnd = time.time() + .5
                while (time.time() < tEnd):
                    tempVolt.append(DAQC2.getADC(j, k))
                currAvgVolt = sum(tempVolt) / len(tempVolt)
                rowVolts.append(currAvgVolt)
                print("Avg voltage for ", num, ": ", currAvgVolt)
                k = k + 1
                num = num + 1
                if (k == 6 and j == 0):
                    j = 1
                    k = 0
                elif (k == 2 and j == 1):
                    k = 10
            DAQC2.clrDOUTbit(0, 7)

            currVolts = rowVolts
            volts[counter] = rowVolts

            counter = counter + 1
            measureTime = (tStart - startReadTime) / 60.0
            measureDateTime = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            dateTime.append(measureDateTime)
            readTime.append(measureTime)
            print("\n")

        if ((currTime - tPump - .05) > pumpTime * 60):
            tPump = time.time()
            timePump = (currTime - startReadTime) / 60
            print("pump check at: ", timePump)
            tempLog = 0
            currLogVolts = []
            f = 0
            while (f < 8):
                print(f)

                tempLog = np.log10(currVolts[f]) / logBlankVolts[f]
                print(tempLog)
                currLogVolts.append(tempLog)
                f = f + 1
            print("CurrLogVolts: ", currLogVolts)
            j = 0
            i = 0
            iter = 0
            currHighVolt = 10
            while (iter < 8):
                print("iter: ", iter)
                currHighVolt = currLogVolts[iter]
                if (currHighVolt < setVolt):

                    count = 0
                    while (currHighVolt < setVolt):
                        DAQC2.setDOUTbit(j, i)
                        DAQC2.setDOUTbit(0, 6)

                        DAQC2.setDOUTbit(0, 7)
                        time.sleep(.25)
                        count = count + 1
                        avgV = 0
                        currHighVolt = 0
                        tVolt = []
                        tEnd = time.time() + .25
                        ##                        print("tmie read:  ", tEnd)
                        while (time.time() < tEnd):
                            tVolt.append(DAQC2.getADC(j, i))
                        avgV = sum(tVolt) / len(tVolt)
                        print("avg. volt: ", avgV)
                        currHighVolt = np.log10(avgV) / logBlankVolts[iter]
                        print("New currHighVolt: ", currHighVolt)

                        print(count)
                        DAQC2.clrDOUTbit(0, 7)
                DAQC2.clrDOUTbit(0, 6)
                DAQC2.clrDOUTbit(j, i)
                iter = iter + 1
                i = i + 1
                if (i == 6 and j == 0):
                    j = 1
                    i = 0
                elif (i == 2 and j == 1):
                    i = 10

            print("pump off \n")

        currTime = time.time()
        elapsedTime = time.time() - startReadTime

    morbido1 = volts[:, 0].tolist()
    morbido2 = volts[:, 1].tolist()
    morbido3 = volts[:, 2].tolist()
    morbido4 = volts[:, 3].tolist()
    morbido5 = volts[:, 4].tolist()
    morbido6 = volts[:, 5].tolist()
    morbido7 = volts[:, 6].tolist()
    morbido8 = volts[:, 7].tolist()

    OD1 = (((np.log10(morbido1) / logBlankVolts[0]) - .71891) /
           -2.1235).tolist()
    OD2 = (((np.log10(morbido2) / logBlankVolts[1]) - .71891) /
           -2.1235).tolist()
    OD3 = (((np.log10(morbido3) / logBlankVolts[2]) - .71891) /
           -2.1235).tolist()
    OD4 = (((np.log10(morbido4) / logBlankVolts[3]) - .71891) /
           -2.1235).tolist()
    OD5 = (((np.log10(morbido5) / logBlankVolts[4]) - .71891) /
           -2.1235).tolist()
    OD6 = (((np.log10(morbido6) / logBlankVolts[5]) - .71891) /
           -2.1235).tolist()
    OD7 = (((np.log10(morbido7) / logBlankVolts[6]) - .71891) /
           -2.1235).tolist()
    OD8 = (((np.log10(morbido8) / logBlankVolts[7]) - .71891) /
           -2.1235).tolist()

    df = [
        dateTime, readTime, morbido1, morbido2, morbido3, morbido4, morbido5,
        morbido6, morbido7, morbido8, OD1, OD2, OD3, OD4, OD5, OD6, OD7, OD8
    ]
    my_df = pd.DataFrame(df)
    my_df = my_df.T
    global globalDF
    globalDF = my_df
    csvTitle = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '.csv'
    my_df.to_csv(csvTitle,
                 index=True,
                 header=[
                     'DateTime', 'Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6',
                     'V7', 'V8', 'OD1', 'OD2', 'OD3', 'OD4', 'OD5', 'OD6',
                     'OD7', 'OD8'
                 ])
    print(my_df)
    print()
    print("new csv file on Desktop: ", csvTitle)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(readTime, morbido1, s=10, c='b', marker="s", label='Culture#1')
    ax1.scatter(readTime, morbido2, s=10, c='g', marker="o", label='Culture#2')
    ax1.scatter(readTime, morbido3, s=10, c='r', marker="^", label='Culture#3')
    ax1.scatter(readTime, morbido4, s=10, c='c', marker="p", label='Culture#4')
    ax1.scatter(readTime, morbido5, s=10, c='m', marker="D", label='Culture#5')
    ax1.scatter(readTime, morbido6, s=10, c='y', marker="v", label='Culture#6')
    ax1.scatter(readTime, morbido7, s=10, c='k', marker="h", label='Culture#7')
    ax1.scatter(readTime,
                morbido8,
                s=10,
                c='violet',
                marker="8",
                label='Culture#8')
    plt.ylabel('Voltage')
    plt.xlabel('Time (min)')
    Volttitle = datetime.now().strftime('%Y-%m-%d_%H-%M') + ' Voltage plot'
    plt.title(Volttitle)
    plt.legend(loc='upper right')
    plt.show()

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.scatter(readTime, OD1, s=10, c='b', marker="s", label='Culture#1')
    ax1.scatter(readTime, OD2, s=10, c='g', marker="o", label='Culture#2')
    ax1.scatter(readTime, OD3, s=10, c='r', marker="^", label='Culture#3')
    ax1.scatter(readTime, OD4, s=10, c='c', marker="p", label='Culture#4')
    ax1.scatter(readTime, OD5, s=10, c='m', marker="D", label='Culture#5')
    ax1.scatter(readTime, OD6, s=10, c='y', marker="v", label='Culture#6')
    ax1.scatter(readTime, OD7, s=10, c='k', marker="h", label='Culture#7')
    ax1.scatter(readTime, OD8, s=10, c='violet', marker="8", label='Culture#8')
    plt.ylabel('OD600')
    plt.xlabel('Time (min)')
    ODtitle = datetime.now().strftime('%Y-%m-%d_%H-%M') + ' OD plot'
    plt.title(ODtitle)
    plt.legend(loc='upper left')
    plt.show()
Esempio n. 14
0
def sysTest():
    print("testing parts")
    i = 0
    while (i < 1):
        print("\n")
        print("quit: 0")
        print("pumps: 1")
        print("valves:2")
        print("Photodiodes: 3")
        print("lasers: 4")
        var = input(": ")
        currInput = int(var)
        print("current input: ", currInput)

        if (currInput == 0):
            print(
                "turning off pump, closing all valves, turning off lasers, quitting"
            )
            DAQC2.clrDOUTbit(0, 6)  #turn off pump1
            DAQC2.clrDOUTbit(1, 6)  #turn off pump2
            DAQC2.clrDOUTbit(0, 0)  #turn off valves
            DAQC2.clrDOUTbit(0, 1)
            DAQC2.clrDOUTbit(0, 2)
            DAQC2.clrDOUTbit(0, 3)
            DAQC2.clrDOUTbit(0, 4)
            DAQC2.clrDOUTbit(0, 5)
            DAQC2.clrDOUTbit(1, 0)
            DAQC2.clrDOUTbit(1, 1)
            DAQC2.clrDOUTbit(1, 2)
            DAQC2.clrDOUTbit(1, 3)
            DAQC2.clrDOUTbit(1, 4)
            DAQC2.clrDOUTbit(1, 5)
            DAQC2.clrDOUTbit(0, 7)  #turn off lasers
            i = 5
            print("quitting")
            break

        elif (currInput == 1):
            print("pumps")
            j = 0
            while (j < 1):
                print("\n")
                print("to go back: 0")
                print("turn on pump#1: 1")
                print("turn on pump#2: 2")
                print("turn off pump#1: 3")
                print("turn off pump#2: 4")
                var = input(": ")
                currInput1 = int(var)
                print("current input: ", currInput1)

                if (currInput1 == 0):
                    print("back to main test menu")
                    j = 5

                elif (currInput1 == 1):
                    print("turning on pump#1")
                    DAQC2.setDOUTbit(0, 6)

                elif (currInput1 == 2):
                    print("turning on pump#2")
                    DAQC2.setDOUTbit(1, 6)

                elif (currInput1 == 3):
                    print("turning off pump#1")
                    DAQC2.clrDOUTbit(0, 6)

                elif (currInput1 == 4):
                    print("turning off pump#1")
                    DAQC2.clrDOUTbit(1, 6)

        elif (currInput == 4):
            print("Lasers")
            j = 0
            while (j < 1):
                print("\n")
                print("turn lasers on: 1")
                print("turn lasers off: 2")
                print("go back to test menu: 0")
                var = input(": ")
                currInput2 = int(var)
                print("current input: ", currInput2)

                if (currInput2 == 0):
                    print("back to main test menu")
                    j = 5

                elif (currInput2 == 1):
                    print("lasers on")
                    DAQC2.setDOUTbit(0, 7)

                elif (currInput2 == 2):
                    print("lasers off")
                    DAQC2.clrDOUTbit(0, 7)

        elif (currInput == 2):
            print("Valves")
            j = 0
            while (j < 1):
                print("\n")
                print("to go back: 0")
                print("to open individual valves: 1-12")
                print("to close individual valves 21-32")
                print("to open all valves: 13")
                print("to close all valves: 14")
                var = input(": ")
                currInput3 = int(var)
                print("current input: ", currInput3)

                if (currInput3 == 0):
                    print("back to main test menu")
                    j = 5

                elif (currInput3 == 13):
                    print("opening all valves")
                    DAQC2.setDOUTbit(0, 0)  #open all valves
                    DAQC2.setDOUTbit(0, 1)
                    DAQC2.setDOUTbit(0, 2)
                    DAQC2.setDOUTbit(0, 3)
                    DAQC2.setDOUTbit(0, 4)
                    DAQC2.setDOUTbit(0, 5)
                    DAQC2.setDOUTbit(1, 0)
                    DAQC2.setDOUTbit(1, 1)
                    DAQC2.setDOUTbit(1, 2)
                    DAQC2.setDOUTbit(1, 3)
                    DAQC2.setDOUTbit(1, 4)
                    DAQC2.setDOUTbit(1, 5)

                elif (currInput3 == 14):
                    print("closing all valves")
                    DAQC2.clrDOUTbit(0, 0)  #close all valves
                    DAQC2.clrDOUTbit(0, 1)
                    DAQC2.clrDOUTbit(0, 2)
                    DAQC2.clrDOUTbit(0, 3)
                    DAQC2.clrDOUTbit(0, 4)
                    DAQC2.clrDOUTbit(0, 5)
                    DAQC2.clrDOUTbit(1, 0)
                    DAQC2.clrDOUTbit(1, 1)
                    DAQC2.clrDOUTbit(1, 2)
                    DAQC2.clrDOUTbit(1, 3)
                    DAQC2.clrDOUTbit(1, 4)
                    DAQC2.clrDOUTbit(1, 5)

                elif (currInput3 == 1):
                    print("opening valve #1")
                    DAQC2.setDOUTbit(0, 0)

                elif (currInput3 == 2):
                    print("opening valve #2")
                    DAQC2.setDOUTbit(0, 1)

                elif (currInput3 == 3):
                    print("opening valve #3")
                    DAQC2.setDOUTbit(0, 2)

                elif (currInput3 == 4):
                    print("opening valve #4")
                    DAQC2.setDOUTbit(0, 3)

                elif (currInput3 == 5):
                    print("opening valve #5")
                    DAQC2.setDOUTbit(0, 4)

                elif (currInput3 == 6):
                    print("opening valve #6")
                    DAQC2.setDOUTbit(0, 5)

                elif (currInput3 == 7):
                    print("opening valve #7")
                    DAQC2.setDOUTbit(1, 0)

                elif (currInput3 == 8):
                    print("opening valve #8")
                    DAQC2.setDOUTbit(1, 1)

                elif (currInput3 == 9):
                    print("opening valve #9")
                    DAQC2.setDOUTbit(1, 2)

                elif (currInput3 == 10):
                    print("opening valve #10")
                    DAQC2.setDOUTbit(1, 3)

                elif (currInput3 == 11):
                    print("opening valve #11")
                    DAQC2.setDOUTbit(1, 4)

                elif (currInput3 == 12):
                    print("opening valve #12")
                    DAQC2.setDOUTbit(1, 5)

                elif (currInput3 == 21):
                    print("closing valve #1")
                    DAQC2.clrDOUTbit(0, 0)

                elif (currInput3 == 22):
                    print("closing valve #2")
                    DAQC2.clrDOUTbit(0, 1)

                elif (currInput3 == 23):
                    print("closing valve #3")
                    DAQC2.clrDOUTbit(0, 2)

                elif (currInput3 == 24):
                    print("closing valve #4")
                    DAQC2.clrDOUTbit(0, 3)

                elif (currInput3 == 25):
                    print("closing valve #5")
                    DAQC2.clrDOUTbit(0, 4)

                elif (currInput3 == 26):
                    print("closing valve #6")
                    DAQC2.clrDOUTbit(0, 5)

                elif (currInput3 == 27):
                    print("closing valve #7")
                    DAQC2.clrDOUTbit(1, 0)

                elif (currInput3 == 28):
                    print("closing valve #8")
                    DAQC2.clrDOUTbit(1, 1)

                elif (currInput3 == 29):
                    print("closing valve #9")
                    DAQC2.clrDOUTbit(1, 2)

                elif (currInput3 == 30):
                    print("closing valve #10")
                    DAQC2.clrDOUTbit(1, 3)

                elif (currInput3 == 31):
                    print("closing valve #11")
                    DAQC2.clrDOUTbit(1, 4)

                elif (currInput3 == 32):
                    print("closing valve #12")
                    DAQC2.clrDOUTbit(1, 5)

        elif (currInput == 3):
            print("Photodiodes")
            j = 0
            while (j < 1):
                print("\n")
                print("to go back: 0")
                print("to take a reading from a single morbidostat: 1-12")
                print("to take a reading from all morbidostats: 13")
                var = input(": ")
                currInput4 = int(var)
                print("current input: ", currInput4)

                if (currInput4 == 0):
                    print("back to main test menu")
                    j = 5

                elif (currInput4 == 13):
                    print("reading from all morbidostats")
                    plate1 = DAQC2.getADCall(0)
                    plate2 = DAQC2.getADCall(1)
                    j = 0
                    k = 0
                    num = 1
                    while (k < 12):
                        if (k <= 5):
                            currVolt = plate1[k]
                            print(num, ": ", currVolt)
                            k = k + 1
                            num = num + 1
                        elif (k > 5):
                            a = k - 6
                            currVolt = plate2[a]
                            print(num, ": ", currVolt)
                            k = k + 1
                            num = num + 1

                elif (currInput4 == 1):
                    currVolt = DAQC2.getADC(0, 0)
                    print("Morbidostat#1: ", currVolt)

                elif (currInput4 == 2):
                    currVolt = DAQC2.getADC(0, 1)
                    print("Morbidostat#2: ", currVolt)

                elif (currInput4 == 3):
                    currVolt = DAQC2.getADC(0, 2)
                    print("Morbidostat#3: ", currVolt)

                elif (currInput4 == 4):
                    currVolt = DAQC2.getADC(0, 3)
                    print("Morbidostat#4: ", currVolt)

                elif (currInput4 == 5):
                    currVolt = DAQC2.getADC(0, 4)
                    print("Morbidostat#4: ", currVolt)

                elif (currInput4 == 6):
                    currVolt = DAQC2.getADC(0, 5)
                    print("Morbidostat#6: ", currVolt)

                elif (currInput4 == 7):
                    currVolt = DAQC2.getADC(1, 0)
                    print("Morbidostat#7: ", currVolt)

                elif (currInput4 == 8):
                    currVolt = DAQC2.getADC(1, 1)
                    print("Morbidostat#8: ", currVolt)

                elif (currInput4 == 9):
                    currVolt = DAQC2.getADC(1, 2)
                    print("Morbidostat#9: ", currVolt)

                elif (currInput4 == 10):
                    currVolt = DAQC2.getADC(1, 3)
                    print("Morbidostat#10: ", currVolt)

                elif (currInput4 == 11):
                    currVolt = DAQC2.getADC(1, 4)
                    print("Morbidostat#11: ", currVolt)

                elif (currInput4 == 12):
                    currVolt = DAQC2.getADC(1, 5)
                    print("Morbidostat#12: ", currVolt)
Esempio n. 15
0
    index = -1
    for i in range(photocurrent.size):
        if (photocurrent[i] >= 0):
            index = i
            break

    V_s = retarding_voltage[index][0]
    print('V_s = {:.4f} V'.format(V_s))
    return V_s


### MAIN ###
voltages = np.arange(0, 0.7, 0.001)
np.random.shuffle(voltages)
led_data = np.zeros((voltages.size, 3))
dark_current = 1.3e-03

for i in range(voltages.size):
    Vr = voltages[i]
    led_data[i, 0] = Vr
    DAQC2.setDAC(0, 0, Vr)
    Vp = DAQC2.getADC(0, 0) - DAQC2.getADC(0, 1)
    led_data[i, 1] = Vp
    led_data[i, 2] = dark_current

wavelength = 654.9
led_df = create_LED_df(led_data)
filename = "data/laser_{λ}nm.csv".format(λ=wavelength)
led_df.to_csv(filename, encoding='utf-8', index=False)
plot_LED_data(led_df, np.array(wavelength))
Esempio n. 16
0
             resp['bit'] = bit
             resp['state'] = 0
         elif (cmd == "toggleDOUTbit"):
             bit = args['bit']
             try:
                 DP.toggleDOUTbit(addr, bit)
             except AssertionError:
                 DP2.toggleDOUTbit(addr, bit)
             resp['bit'] = bit
             resp['state'] = 'UNKNOWN'
         elif (cmd == "getADC"):
             channel = args['channel']
             try:
                 voltage = DP.getADC(addr, channel)
             except AssertionError:
                 voltage = DP2.getADC(addr, channel)
             resp['channel'] = channel
             resp['voltage'] = voltage
         elif (cmd == "getTEMP"):
             bit = args['bit']
             scale = args['scale']
             try:
                 temp = DP.getTEMP(addr, bit, scale)
             except AssertionError:
                 temp = DP2.getTEMP(addr, bit, scale)
             resp['temp'] = temp
             resp['bit'] = bit
         else:
             sys.stderr.write("unknown daqc cmd: " + cmd)
         print(json.dumps(resp))
 elif (plate_type == "MOTOR"):
Esempio n. 17
0
 def get_value(self):
     return DQ.getADC(self.piid, self.tid)
import piplates.DAQC2plate as DAQC2
import time

DAQC2.setDAC(0, 0, 2.5)
time.sleep(0.25)
AIN = DAQC2.getADC(0, 0)
time.sleep(0.25)
DAQC2.setDAC(0, 0, 0)

print("AIN =", AIN, "volts")
Esempio n. 19
0
from tsl200 import laser_init
import numpy as np
import time
from matplotlib import pyplot as plt
import piplates.DAQC2plate as DAQC2
from v_to_dbm import v_to_dbm
from tsl_offset import tsl_offset

sleep = 50e-3

my_laser = laser_init()
my_laser.on()

N = 300
wavelength = np.linspace(1530,1600,N)
data = [None]*N
power = [None]*N
my_laser.set_wavelength(1530)
time.sleep(4)
for wn,w in enumerate(wavelength):
    my_laser.set_wavelength(w)
    time.sleep(sleep)
    data[wn] = v_to_dbm(DAQC2.getADC(0,0),w*1e-3)
    data[wn] = tsl_offset(data[wn],w)
    power[wn] = my_laser.set_power_dBm(0)
    print("Data recorded")
    
plt.figure()
plt.plot(wavelength,data)
plt.show()