Esempio n. 1
0
def main(argv=sys.argv[1:]): 
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :py:func:`main` is called directly.

        Default: sys.argv[1:] (actually command-line arguments)
    """
    ap = AnnotationParser()
    bp = BaseParser()
    annotation_parser = ap.get_parser()
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(description=format_module_docstring(__doc__),
                                     parents=[base_parser,annotation_parser],
                                     formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument("--no_escape",default=True,action="store_false",
                        help="If specified and output format is GTF2, special characters in column 9 will be escaped (default: True)")
    parser.add_argument("--output_format",choices=["BED","GTF2"],default="GTF2",
                        help="Format of output file. (default: GTF2)")
    parser.add_argument("--extra_columns",nargs="+",default=[],type=str,
                        help="Attributes (e.g. 'gene_id' to output as extra columns in extended BED format (BED output only).")
    parser.add_argument("--empty_value",default="na",type=str,
                        help="Value to use of an attribute in `extra_columns` is not defined for a particular record (Default: 'na'")
    parser.add_argument("outfile",metavar="outfile.[ bed | gtf ]",type=str,
                        help="Output file")
    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)

    end_message = ""    
    extra_cols = args.extra_columns
    if extra_cols is not None:
        if args.output_format == "BED":
            
            # avoid name clashes
            names_used = copy.copy(BED12_RESERVED_NAMES)
            asql_names = [fix_name(X,names_used) for X in extra_cols]
            autosql_str = "\n".join(AUTOSQL_ROW_FMT_STR % (X," "*max(15-len(X),2)) for X in asql_names)
            
            file_info = {
                "outbase" : args.outfile.replace(".bed","").replace(".gtf",""),
                "numcols" : len(extra_cols),
                "autosql" : DEFAULT_AUTOSQL_STR % (os.path.basename(args.outfile[:-4]),autosql_str),
                         
            }
            end_message = MAKE_BIGBED_MESSAGE % file_info
        else:
            warn("`--extra_columns` is ignored for %s-formatted output." % (args.output_format),ArgumentWarning)
            
            
    with argsopener(args.outfile,args,"w") as fout:
        c = 0
        transcripts = ap.get_transcripts_from_args(args,printer=printer)
        
        for transcript in transcripts:
            if args.output_format == "GTF2":
                fout.write(transcript.as_gtf(escape=args.no_escape))
            elif args.output_format == "BED":
                fout.write(transcript.as_bed(extra_columns=extra_cols,empty_value=args.empty_value))
            if c % 1000 == 1:
                printer.write("Processed %s transcripts ..." % c)
            c += 1
    
    printer.write("Processed %s transcripts total." % c)
    printer.write("Done.")
    print(end_message)
Esempio n. 2
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    ap = AnnotationParser()
    annotation_file_parser = ap.get_parser(conflict_handler="resolve")
    
    al = AlignmentParser(disabled=_DISABLED)
    alignment_file_parser  = al.get_parser(conflict_handler="resolve")
    
    mp = MaskParser()
    mask_file_parser = mp.get_parser()
    
    bp = BaseParser()
    base_parser = bp.get_parser()
    
    parser = argparse.ArgumentParser(description=format_module_docstring(__doc__),
                                     formatter_class=argparse.RawDescriptionHelpFormatter,
                                     parents=[base_parser,
                                              alignment_file_parser,
                                              annotation_file_parser,
                                              mask_file_parser],
                                     )
    parser.add_argument("outfile",type=str,help="Output filename")
    
    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)

    ga          = al.get_genome_array_from_args(args,printer=printer)
    transcripts = ap.get_transcripts_from_args(args,printer=printer,return_type=SegmentChain)
    crossmap    = mp.get_genome_hash_from_args(args,printer=printer)
    
    ga_sum = ga.sum()
    normconst = 1000.0*1e6 / ga_sum
    
    with argsopener(args.outfile,args,"w") as fout:
        fout.write("## total_dataset_counts: %s\n" % ga_sum)
        fout.write("region_name\tregion\tcounts\tcounts_per_nucleotide\trpkm\tlength\n")
        for n,ivc in enumerate(transcripts):
            name = ivc.get_name()
            masks = crossmap.get_overlapping_features(ivc)
            ivc.add_masks(*itertools.chain.from_iterable((X for X in masks)))
            if n % 1000 == 0:
                printer.write("Processed %s regions..." % n)
                
            counts = numpy.nansum(ivc.get_masked_counts(ga))
            length = ivc.masked_length
            rpnt = numpy.nan if length == 0 else float(counts)/length
            rpkm = numpy.nan if length == 0 else rpnt * normconst 
            ltmp = [name,
                    str(ivc),
                    "%.8e" % counts,
                    "%.8e" % rpnt,
                    "%.8e" % rpkm,
                    "%d" % length]
            fout.write("%s\n" % "\t".join(ltmp))
    
        fout.close()
        
    printer.write("Processed %s regions total." % n)

    printer.write("Done.")
Esempio n. 3
0
def main(args=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    al = AlignmentParser()
    an = AnnotationParser()
    mp = MaskParser()
    bp = BaseParser()

    alignment_file_parser = al.get_parser(conflict_handler="resolve")
    annotation_file_parser = an.get_parser(conflict_handler="resolve")
    mask_file_parser = mp.get_parser()
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(
        description=format_module_docstring(__doc__),
        formatter_class=argparse.RawDescriptionHelpFormatter,
        conflict_handler="resolve",
        parents=[
            base_parser, alignment_file_parser, annotation_file_parser,
            mask_file_parser
        ])

    parser.add_argument("out_folder",
                        type=str,
                        help="Folder in which to save output vectors")
    parser.add_argument(
        "--out_prefix",
        default="",
        type=str,
        help="Prefix to prepend to output files (default: no prefix)")
    parser.add_argument(
        "--format",
        default="%.8f",
        type=str,
        help=r"printf-style format string for output (default: '%%.8f')")
    args = parser.parse_args(args)
    bp.get_base_ops_from_args(args)

    # if output folder doesn't exist, create it
    if not os.path.isdir(args.out_folder):
        os.mkdir(args.out_folder)

    # parse args
    ga = al.get_genome_array_from_args(args, printer=printer)
    transcripts = an.get_segmentchains_from_args(args, printer=printer)
    mask_hash = mp.get_genome_hash_from_args(args, printer=printer)

    # evaluate
    for n, tx in enumerate(transcripts):
        if n % 1000 == 0:
            printer.write("Processed %s regions of interest" % n)
        filename = "%s%s.txt" % (args.out_prefix, tx.get_name())
        full_filename = os.path.join(args.out_folder, filename)

        # mask out overlapping masked regions
        overlapping = mask_hash.get_overlapping_features(tx)
        for feature in overlapping:
            tx.add_masks(*feature.segments)

        count_vec = tx.get_masked_counts(ga)
        numpy.savetxt(full_filename, count_vec, fmt=args.format)
Esempio n. 4
0
def main(args=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    al = AlignmentParser()
    an = AnnotationParser()
    mp = MaskParser()
    bp = BaseParser()

    alignment_file_parser = al.get_parser(conflict_handler="resolve")
    annotation_file_parser = an.get_parser(conflict_handler="resolve")
    mask_file_parser = mp.get_parser()
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(
        description=format_module_docstring(__doc__),
        formatter_class=argparse.RawDescriptionHelpFormatter,
        conflict_handler="resolve",
        parents=[base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser],
    )

    parser.add_argument("out_folder", type=str, help="Folder in which to save output vectors")
    parser.add_argument(
        "--out_prefix", default="", type=str, help="Prefix to prepend to output files (default: no prefix)"
    )
    parser.add_argument(
        "--format", default="%.8f", type=str, help=r"printf-style format string for output (default: '%%.8f')"
    )
    args = parser.parse_args(args)
    bp.get_base_ops_from_args(args)

    # if output folder doesn't exist, create it
    if not os.path.isdir(args.out_folder):
        os.mkdir(args.out_folder)

    # parse args
    ga = al.get_genome_array_from_args(args, printer=printer)
    transcripts = an.get_segmentchains_from_args(args, printer=printer)
    mask_hash = mp.get_genome_hash_from_args(args, printer=printer)

    # evaluate
    for n, tx in enumerate(transcripts):
        if n % 1000 == 0:
            printer.write("Processed %s regions of interest" % n)
        filename = "%s%s.txt" % (args.out_prefix, tx.get_name())
        full_filename = os.path.join(args.out_folder, filename)

        # mask out overlapping masked regions
        overlapping = mask_hash.get_overlapping_features(tx)
        for feature in overlapping:
            tx.add_masks(*feature.segments)

        count_vec = tx.get_masked_counts(ga)
        numpy.savetxt(full_filename, count_vec, fmt=args.format)
Esempio n. 5
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :py:func:`main` is called directly.

        Default: sys.argv[1:] (actually command-line arguments)
    """
    ap = AnnotationParser(input_choices=_ANNOTATION_INPUT_CHOICES)
    annotation_file_parser = ap.get_parser()
    
    bp = BaseParser()
    base_parser = bp.get_parser()
    
    parser = argparse.ArgumentParser(description=format_module_docstring(__doc__),
                                     formatter_class=argparse.RawDescriptionHelpFormatter,
                                     parents=[base_parser,annotation_file_parser])
    parser.add_argument("--export_tophat",default=False,action="store_true",
                         help="Export tophat `.juncs` file in addition to BED output")
    parser.add_argument("outbase",type=str,help="Basename for output files")

    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)
    
    transcripts = ap.get_transcripts_from_args(args,printer=printer,return_type=SegmentChain)
    
    with argsopener("%s.bed" % args.outbase,args,"w") as bed_out:
        if args.export_tophat == True:
            tophat_out = open("%s.juncs" % args.outbase,"w")
    
        printer.write("params: " +" ".join(argv))
        printer.write("Detecting & comparing junctions...")
        ex_pairs = {}
        
        c = 0
        u = 0
        for chain in transcripts:
            if len(chain) > 1: # if multi-exon
                chrom = chain.chrom
                strand = chain.strand
                try:
                    ep = ex_pairs[(chrom,strand)]
                except KeyError:
                    ex_pairs[(chrom,strand)] = []
                    ep = ex_pairs[(chrom,strand)]

                for i in range(0,len(chain)-1):
                    
                    seg1 = chain[i]
                    seg2 = chain[i+1]
                    if c % 1000 == 0 and c > 0:
                        printer.write("Processed %s junctions. Found %s unique..." % (c,u) )
                    c+=1
                    key = (seg1.end,seg2.start)
                        
                    if key not in ep:
                        ep.append(key)
                        u += 1
                        new_chain = SegmentChain(seg1,seg2)
                        bed_out.write(new_chain.as_bed())
                        if args.export_tophat == True:
                            my_junc = (chrom,seg1.end-1,seg2.start,strand)
                            tophat_out.write("%s\t%s\t%s\t%s\n" % my_junc)
                        
                        del new_chain
                    
                    del seg1
                    del seg2
                    
            del chain
    
        printer.write("Processed %s total junctions. Found %s unique." % (c,u) )
    
        bed_out.close()
        if args.export_tophat == True:
            tophat_out.close()

    printer.write("Done.")
Esempio n. 6
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
	argv : list, optional
		A list of command-line arguments, which will be processed
		as if the script were called from the command line if
		:py:func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    al = AlignmentParser(disabled=["normalize","big_genome","spliced_bowtie_files"],
                        input_choices=["BAM"])
    an = AnnotationParser()
    pp = PlottingParser()
    bp = BaseParser()
    plotting_parser = pp.get_parser()
    
    alignment_file_parser = al.get_parser(conflict_handler="resolve")
    annotation_file_parser = an.get_parser(conflict_handler="resolve")
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(description=format_module_docstring(__doc__),
                                     formatter_class=argparse.RawDescriptionHelpFormatter,
                                     conflict_handler="resolve",
                                     parents=[base_parser,
                                              annotation_file_parser,
                                              alignment_file_parser,
                                              plotting_parser])
    
    parser.add_argument("roi_file",type=str,nargs="?",default=None,
                        help="Optional. ROI file of maximal spanning windows surrounding start codons, "+\
                             "from ``metagene generate`` subprogram. Using this instead of `--annotation_files` "+\
                             "prevents double-counting of codons when multiple transcript isoforms exist "+\
                             "for a gene. See the documentation for `metagene` for more info about ROI files."+\
                             "If an ROI file is not given, supply an annotation with ``--annotation_files``")
    parser.add_argument("outbase",type=str,help="Required. Basename for output files")
    parser.add_argument("--codon_buffer",type=int,default=5,
                        help="Codons before and after start codon to ignore (Default: 5)")


    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)
    pp.set_style_from_args(args)
    gnd = al.get_genome_array_from_args(args,printer=printer)

    read_lengths = list(range(args.min_length,args.max_length+1))
    codon_buffer = args.codon_buffer
    
    dtmp = { "read_length"   : numpy.array(read_lengths),
             "reads_counted" : numpy.zeros_like(read_lengths,dtype=int),
            }

    if args.roi_file is not None:
        using_roi = True
        roi_table = read_pl_table(args.roi_file)
        regions = roi_table.iterrows()
        transform_fn = roi_row_to_cds
        back_buffer = -1
        if len(args.annotation_files) > 0:
            warnings.warn("If an ROI file is given, annotation files are ignored. Pulling regions from '%s'. Ignoring '%s'" % (args.roi_file,
                                                                                                                               ", ".join(args.annotation_files)),
                          ArgumentWarning)
    else:
        using_roi = False
        if len(args.annotation_files) == 0:
            printer.write("Either an ROI file or at least annotation file must be given.")
            sys.exit(1)
        else:
            warnings.warn("Using a transcript annotation file instead of an ROI file can lead to double-counting of codons if the annotation contains multiple transcripts per gene.",
                          ArgumentWarning)        
            regions = an.get_transcripts_from_args(args,printer=printer)
            back_buffer  = -codon_buffer
            transform_fn = lambda x: x.get_cds()
    
    phase_sums = {}
    for k in read_lengths:
        phase_sums[k] = numpy.zeros(3)
    
    for n, roi in enumerate(regions):
        if n % 1000 == 1:
            printer.write("Counted %s ROIs ..." % n)
        
        # transformation needed to extract CDS from transcript or from ROI file window
        cds_part = transform_fn(roi)
        
        # only calculate for coding genes
        if len(cds_part) > 0:

            read_dict     = {}
            count_vectors = {}
            for k in read_lengths:
                read_dict[k]     = []
                count_vectors[k] = []
            
            # for each seg, fetch reads, sort them, and create individual count vectors
            for seg in cds_part:
                reads = gnd.get_reads(seg)
                for read in filter(lambda x: len(x.positions) in read_dict,reads):
                    read_dict[len(read.positions)].append(read)
    
                # map and sort by length
                for read_length in read_dict:
                    count_vector = list(gnd.map_fn(read_dict[read_length],seg)[1])
                    count_vectors[read_length].extend(count_vector)
            
            # add each count vector for each length to total
            for k, vec in count_vectors.items():
                counts = numpy.array(vec)
                if cds_part.strand == "-":
                    counts = counts[::-1]
               
                if len(counts) % 3 == 0:
                    counts = counts.reshape((len(counts)/3,3))
                else:
                    if using_roi == False:
                        message = "Length of '%s' coding region (%s nt) is not divisible by 3. Ignoring last partial codon." % (roi.get_name(),len(counts))
                        warnings.warn(message,DataWarning)
                    newlen = len(counts)//3
                    counts = counts[:3*newlen]
                    counts = counts.reshape(newlen,3)
    
                phase_sums[k] += counts[codon_buffer:back_buffer,:].sum(0)

    printer.write("Counted %s ROIs total." % (n+1))
    for k in dtmp:
        dtmp[k] = numpy.array(dtmp[k])
    
    # total reads counted for each size    
    for k in read_lengths:
        dtmp["reads_counted"][dtmp["read_length"] == k] = phase_sums[k].sum() 
    
    # read length distribution
    dtmp["fraction_reads_counted"] = dtmp["reads_counted"].astype(float) / dtmp["reads_counted"].sum() 
    
    # phase vectors
    phase_vectors = { K : V.astype(float)/V.astype(float).sum() for K,V in phase_sums.items() }
    for i in range(3):
        dtmp["phase%s" % i] = numpy.zeros(len(dtmp["read_length"])) 

    for k, vec in phase_vectors.items():
        for i in range(3):
            dtmp["phase%s" % i][dtmp["read_length"] == k] = vec[i]
    
    # phase table
    fn = "%s_phasing.txt" % args.outbase
    printer.write("Saving phasing table to %s ..." % fn)
    dtmp = pd.DataFrame(dtmp)
    with argsopener(fn,args) as fh:
        dtmp.to_csv(fh,columns=["read_length",
                                "reads_counted",
                                "fraction_reads_counted",
                                "phase0",
                                "phase1",
                                "phase2",
                                ],
                       float_format="%.6f",
                       na_rep="nan",
                       sep="\t",
                       index=False,
                       header=True
                      )
        fh.close()
    
    fig = {}
    if args.figsize is not None:
        fig["figsize"] = tuple(args.figsize)

    colors = pp.get_colors_from_args(args,len(read_lengths))

    fn = "%s_phasing.%s" % (args.outbase,args.figformat)
    printer.write("Plotting to %s ..." % fn)
    plot_counts = numpy.vstack([V for (_,V) in sorted(phase_sums.items())])
    fig, (ax1,_) = phase_plot(plot_counts,labels=read_lengths,lighten_by=0.3,
                                cmap=None,color=colors,fig=fig)

    if args.title is not None:
        ax1.set_title(args.title)
    else:
        ax1.set_title("Phasing stats for %s" % args.outbase)

    fig.savefig(fn,dpi=args.dpi,bbox_inches="tight")
Esempio n. 7
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
	argv : list, optional
		A list of command-line arguments, which will be processed
		as if the script were called from the command line if
		:py:func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    al = AlignmentParser(
        disabled=["normalize", "big_genome", "spliced_bowtie_files"],
        input_choices=["BAM"])
    an = AnnotationParser()
    pp = PlottingParser()
    bp = BaseParser()
    plotting_parser = pp.get_parser()

    alignment_file_parser = al.get_parser(conflict_handler="resolve")
    annotation_file_parser = an.get_parser(conflict_handler="resolve")
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(
        description=format_module_docstring(__doc__),
        formatter_class=argparse.RawDescriptionHelpFormatter,
        conflict_handler="resolve",
        parents=[
            base_parser, annotation_file_parser, alignment_file_parser,
            plotting_parser
        ])

    parser.add_argument("roi_file",type=str,nargs="?",default=None,
                        help="Optional. ROI file of maximal spanning windows surrounding start codons, "+\
                             "from ``metagene generate`` subprogram. Using this instead of `--annotation_files` "+\
                             "prevents double-counting of codons when multiple transcript isoforms exist "+\
                             "for a gene. See the documentation for `metagene` for more info about ROI files."+\
                             "If an ROI file is not given, supply an annotation with ``--annotation_files``")
    parser.add_argument("outbase",
                        type=str,
                        help="Required. Basename for output files")
    parser.add_argument(
        "--codon_buffer",
        type=int,
        default=5,
        help="Codons before and after start codon to ignore (Default: 5)")

    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)
    pp.set_style_from_args(args)
    gnd = al.get_genome_array_from_args(args, printer=printer)

    read_lengths = list(range(args.min_length, args.max_length + 1))
    codon_buffer = args.codon_buffer

    dtmp = {
        "read_length": numpy.array(read_lengths),
        "reads_counted": numpy.zeros_like(read_lengths, dtype=int),
    }

    if args.roi_file is not None:
        using_roi = True
        roi_table = read_pl_table(args.roi_file)
        regions = roi_table.iterrows()
        transform_fn = roi_row_to_cds
        back_buffer = -1
        if len(args.annotation_files) > 0:
            warnings.warn(
                "If an ROI file is given, annotation files are ignored. Pulling regions from '%s'. Ignoring '%s'"
                % (args.roi_file, ", ".join(args.annotation_files)),
                ArgumentWarning)
    else:
        using_roi = False
        if len(args.annotation_files) == 0:
            printer.write(
                "Either an ROI file or at least annotation file must be given."
            )
            sys.exit(1)
        else:
            warnings.warn(
                "Using a transcript annotation file instead of an ROI file can lead to double-counting of codons if the annotation contains multiple transcripts per gene.",
                ArgumentWarning)
            regions = an.get_transcripts_from_args(args, printer=printer)
            back_buffer = -codon_buffer
            transform_fn = lambda x: x.get_cds()

    phase_sums = {}
    for k in read_lengths:
        phase_sums[k] = numpy.zeros(3)

    for n, roi in enumerate(regions):
        if n % 1000 == 1:
            printer.write("Counted %s ROIs ..." % n)

        # transformation needed to extract CDS from transcript or from ROI file window
        cds_part = transform_fn(roi)

        # only calculate for coding genes
        if len(cds_part) > 0:

            read_dict = {}
            count_vectors = {}
            for k in read_lengths:
                read_dict[k] = []
                count_vectors[k] = []

            # for each seg, fetch reads, sort them, and create individual count vectors
            for seg in cds_part:
                reads = gnd.get_reads(seg)
                for read in filter(lambda x: len(x.positions) in read_dict,
                                   reads):
                    read_dict[len(read.positions)].append(read)

                # map and sort by length
                for read_length in read_dict:
                    count_vector = list(
                        gnd.map_fn(read_dict[read_length], seg)[1])
                    count_vectors[read_length].extend(count_vector)

            # add each count vector for each length to total
            for k, vec in count_vectors.items():
                counts = numpy.array(vec)
                if cds_part.strand == "-":
                    counts = counts[::-1]

                if len(counts) % 3 == 0:
                    counts = counts.reshape((int(len(counts) / 3), 3))
                else:
                    if using_roi == False:
                        message = "Length of '%s' coding region (%s nt) is not divisible by 3. Ignoring last partial codon." % (
                            roi.get_name(), len(counts))
                        warnings.warn(message, DataWarning)
                    newlen = int(len(counts) // 3)
                    counts = counts[:3 * newlen]
                    counts = counts.reshape(newlen, 3)

                phase_sums[k] += counts[codon_buffer:back_buffer, :].sum(0)

    printer.write("Counted %s ROIs total." % (n + 1))
    for k in dtmp:
        dtmp[k] = numpy.array(dtmp[k])

    # total reads counted for each size
    for k in read_lengths:
        dtmp["reads_counted"][dtmp["read_length"] == k] = phase_sums[k].sum()

    # read length distribution
    dtmp["fraction_reads_counted"] = dtmp["reads_counted"].astype(
        float) / dtmp["reads_counted"].sum()

    # phase vectors
    phase_vectors = {
        K: V.astype(float) / V.astype(float).sum()
        for K, V in phase_sums.items()
    }
    for i in range(3):
        dtmp["phase%s" % i] = numpy.zeros(len(dtmp["read_length"]))

    for k, vec in phase_vectors.items():
        for i in range(3):
            dtmp["phase%s" % i][dtmp["read_length"] == k] = vec[i]

    # phase table
    fn = "%s_phasing.txt" % args.outbase
    printer.write("Saving phasing table to %s ..." % fn)
    dtmp = pd.DataFrame(dtmp)
    with argsopener(fn, args) as fh:
        dtmp.to_csv(fh,
                    columns=[
                        "read_length",
                        "reads_counted",
                        "fraction_reads_counted",
                        "phase0",
                        "phase1",
                        "phase2",
                    ],
                    float_format="%.6f",
                    na_rep="nan",
                    sep="\t",
                    index=False,
                    header=True)
        fh.close()

    fig = {}
    if args.figsize is not None:
        fig["figsize"] = tuple(args.figsize)

    colors = pp.get_colors_from_args(args, len(read_lengths))

    fn = "%s_phasing.%s" % (args.outbase, args.figformat)
    printer.write("Plotting to %s ..." % fn)
    plot_counts = numpy.vstack([V for (_, V) in sorted(phase_sums.items())])
    fig, (ax1, _) = phase_plot(plot_counts,
                               labels=read_lengths,
                               lighten_by=0.3,
                               cmap=None,
                               color=colors,
                               fig=fig)

    if args.title is not None:
        ax1.set_title(args.title)
    else:
        ax1.set_title("Phasing stats for %s" % args.outbase)

    fig.savefig(fn, dpi=args.dpi, bbox_inches="tight")
Esempio n. 8
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    al = AlignmentParser(disabled=["normalize"])
    an = AnnotationParser()
    mp = MaskParser()
    pl = PlottingParser()
    bp = BaseParser()

    alignment_file_parser = al.get_parser()
    annotation_file_parser = an.get_parser()
    mask_file_parser = mp.get_parser()
    plotting_parser = pl.get_parser()
    base_parser = bp.get_parser()

    generator_help = "Create unambiguous position file from GFF3 annotation"
    generator_desc = format_module_docstring(do_generate.__doc__)

    counter_help = "Count reads in unambiguous gene positions"
    counter_desc = format_module_docstring(do_count.__doc__)

    chart_help = "Produce charts comparing reads between samples"
    chart_desc = format_module_docstring(do_chart.__doc__)

    parser = argparse.ArgumentParser(
        description=format_module_docstring(__doc__),
        formatter_class=argparse.RawDescriptionHelpFormatter)
    subparsers = parser.add_subparsers(
        title="subcommands",
        description="choose one of the following",
        dest="program")
    gparser = subparsers.add_parser(
        "generate",
        help=generator_help,
        description=generator_desc,
        formatter_class=argparse.RawDescriptionHelpFormatter,
        parents=[base_parser, annotation_file_parser, mask_file_parser],
    )
    cparser = subparsers.add_parser(
        "count",
        help=counter_help,
        description=counter_desc,
        parents=[base_parser, alignment_file_parser],
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )
    pparser = subparsers.add_parser(
        "chart",
        help=chart_help,
        description=chart_desc,
        parents=[base_parser, plotting_parser],
        formatter_class=argparse.RawDescriptionHelpFormatter)

    gparser.add_argument("outbase",
                         metavar="outbase",
                         type=str,
                         help="Basename for output files")

    cparser.add_argument(
        "position_file",
        type=str,
        metavar="file.positions",
        help=
        "File assigning positions to genes or transcripts (made using 'generate' subcommand)"
    )
    cparser.add_argument("outbase", type=str, help="Basename for output files")

    pparser.add_argument("-i",
                         "--in",
                         nargs="+",
                         type=str,
                         dest="infiles",
                         help="input files, made by 'count' subprogram")
    pparser.add_argument(
        "--bins",
        nargs="+",
        type=int,
        default=(0, 32, 64, 128, 256, 512, 1024, 2048, 4096),
        help="Bins into which features are partitioned based on counts")
    pparser.add_argument(
        "--regions",
        nargs="+",
        type=str,
        default=("exon", "utr5", "cds", "utr3"),
        help="Regions to compare (default: exon, utr5, cds, utr3)")
    pparser.add_argument("--metrics",
                         nargs="+",
                         type=str,
                         default=("rpkm", "reads"),
                         help="Metrics to compare (default: rpkm, reads)")
    pparser.add_argument(
        "list_of_regions",
        type=str,
        metavar='gene_list.txt',
        nargs="?",
        default=None,
        help=
        "Optional. File listing regions (genes or transcripts), one per line, to include in comparisons. If not given, all genes are included."
    )
    pparser.add_argument("outbase", type=str, help="Basename for output files")

    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)

    if args.program == "generate":
        #generate position file
        do_generate(args, an, mp)

    elif args.program == "count":
        #use position file to count gene expression in infiles
        do_count(args, al)

    elif args.program == "chart":
        #use count files to generate a family of charts and tables
        do_chart(args, pl)
Esempio n. 9
0
def main(argv=sys.argv[1:]):
    """Command-line program
    
    Parameters
    ----------
    argv : list, optional
        A list of command-line arguments, which will be processed
        as if the script were called from the command line if
        :func:`main` is called directly.

        Default: `sys.argv[1:]`. The command-line arguments, if the script is
        invoked from the command line
    """
    ap = AnnotationParser()
    annotation_file_parser = ap.get_parser(conflict_handler="resolve")

    al = AlignmentParser(disabled=_DISABLED)
    alignment_file_parser = al.get_parser(conflict_handler="resolve")

    mp = MaskParser()
    mask_file_parser = mp.get_parser()

    bp = BaseParser()
    base_parser = bp.get_parser()

    parser = argparse.ArgumentParser(
        description=format_module_docstring(__doc__),
        formatter_class=argparse.RawDescriptionHelpFormatter,
        parents=[
            base_parser, alignment_file_parser, annotation_file_parser,
            mask_file_parser
        ],
    )
    parser.add_argument("outfile", type=str, help="Output filename")

    args = parser.parse_args(argv)
    bp.get_base_ops_from_args(args)

    ga = al.get_genome_array_from_args(args, printer=printer)
    transcripts = ap.get_transcripts_from_args(args,
                                               printer=printer,
                                               return_type=SegmentChain)
    crossmap = mp.get_genome_hash_from_args(args, printer=printer)

    ga_sum = ga.sum()
    normconst = 1000.0 * 1e6 / ga_sum

    with argsopener(args.outfile, args, "w") as fout:
        fout.write("## total_dataset_counts: %s\n" % ga_sum)
        fout.write(
            "region_name\tregion\tcounts\tcounts_per_nucleotide\trpkm\tlength\n"
        )
        for n, ivc in enumerate(transcripts):
            name = ivc.get_name()
            masks = crossmap.get_overlapping_features(ivc)
            ivc.add_masks(*itertools.chain.from_iterable((X for X in masks)))
            if n % 1000 == 0:
                printer.write("Processed %s regions..." % n)

            counts = numpy.nansum(ivc.get_masked_counts(ga))
            length = ivc.masked_length
            rpnt = numpy.nan if length == 0 else float(counts) / length
            rpkm = numpy.nan if length == 0 else rpnt * normconst
            ltmp = [
                name,
                str(ivc),
                "%.8e" % counts,
                "%.8e" % rpnt,
                "%.8e" % rpkm,
                "%d" % length
            ]
            fout.write("%s\n" % "\t".join(ltmp))

        fout.close()

    printer.write("Processed %s regions total." % n)

    printer.write("Done.")