def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: sys.argv[1:] (actually command-line arguments) """ ap = AnnotationParser() bp = BaseParser() annotation_parser = ap.get_parser() base_parser = bp.get_parser() parser = argparse.ArgumentParser(description=format_module_docstring(__doc__), parents=[base_parser,annotation_parser], formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("--no_escape",default=True,action="store_false", help="If specified and output format is GTF2, special characters in column 9 will be escaped (default: True)") parser.add_argument("--output_format",choices=["BED","GTF2"],default="GTF2", help="Format of output file. (default: GTF2)") parser.add_argument("--extra_columns",nargs="+",default=[],type=str, help="Attributes (e.g. 'gene_id' to output as extra columns in extended BED format (BED output only).") parser.add_argument("--empty_value",default="na",type=str, help="Value to use of an attribute in `extra_columns` is not defined for a particular record (Default: 'na'") parser.add_argument("outfile",metavar="outfile.[ bed | gtf ]",type=str, help="Output file") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) end_message = "" extra_cols = args.extra_columns if extra_cols is not None: if args.output_format == "BED": # avoid name clashes names_used = copy.copy(BED12_RESERVED_NAMES) asql_names = [fix_name(X,names_used) for X in extra_cols] autosql_str = "\n".join(AUTOSQL_ROW_FMT_STR % (X," "*max(15-len(X),2)) for X in asql_names) file_info = { "outbase" : args.outfile.replace(".bed","").replace(".gtf",""), "numcols" : len(extra_cols), "autosql" : DEFAULT_AUTOSQL_STR % (os.path.basename(args.outfile[:-4]),autosql_str), } end_message = MAKE_BIGBED_MESSAGE % file_info else: warn("`--extra_columns` is ignored for %s-formatted output." % (args.output_format),ArgumentWarning) with argsopener(args.outfile,args,"w") as fout: c = 0 transcripts = ap.get_transcripts_from_args(args,printer=printer) for transcript in transcripts: if args.output_format == "GTF2": fout.write(transcript.as_gtf(escape=args.no_escape)) elif args.output_format == "BED": fout.write(transcript.as_bed(extra_columns=extra_cols,empty_value=args.empty_value)) if c % 1000 == 1: printer.write("Processed %s transcripts ..." % c) c += 1 printer.write("Processed %s transcripts total." % c) printer.write("Done.") print(end_message)
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ ap = AnnotationParser() annotation_file_parser = ap.get_parser(conflict_handler="resolve") al = AlignmentParser(disabled=_DISABLED) alignment_file_parser = al.get_parser(conflict_handler="resolve") mp = MaskParser() mask_file_parser = mp.get_parser() bp = BaseParser() base_parser = bp.get_parser() parser = argparse.ArgumentParser(description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, parents=[base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser], ) parser.add_argument("outfile",type=str,help="Output filename") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) ga = al.get_genome_array_from_args(args,printer=printer) transcripts = ap.get_transcripts_from_args(args,printer=printer,return_type=SegmentChain) crossmap = mp.get_genome_hash_from_args(args,printer=printer) ga_sum = ga.sum() normconst = 1000.0*1e6 / ga_sum with argsopener(args.outfile,args,"w") as fout: fout.write("## total_dataset_counts: %s\n" % ga_sum) fout.write("region_name\tregion\tcounts\tcounts_per_nucleotide\trpkm\tlength\n") for n,ivc in enumerate(transcripts): name = ivc.get_name() masks = crossmap.get_overlapping_features(ivc) ivc.add_masks(*itertools.chain.from_iterable((X for X in masks))) if n % 1000 == 0: printer.write("Processed %s regions..." % n) counts = numpy.nansum(ivc.get_masked_counts(ga)) length = ivc.masked_length rpnt = numpy.nan if length == 0 else float(counts)/length rpkm = numpy.nan if length == 0 else rpnt * normconst ltmp = [name, str(ivc), "%.8e" % counts, "%.8e" % rpnt, "%.8e" % rpkm, "%d" % length] fout.write("%s\n" % "\t".join(ltmp)) fout.close() printer.write("Processed %s regions total." % n) printer.write("Done.")
def main(args=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser() an = AnnotationParser() mp = MaskParser() bp = BaseParser() alignment_file_parser = al.get_parser(conflict_handler="resolve") annotation_file_parser = an.get_parser(conflict_handler="resolve") mask_file_parser = mp.get_parser() base_parser = bp.get_parser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler="resolve", parents=[ base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser ]) parser.add_argument("out_folder", type=str, help="Folder in which to save output vectors") parser.add_argument( "--out_prefix", default="", type=str, help="Prefix to prepend to output files (default: no prefix)") parser.add_argument( "--format", default="%.8f", type=str, help=r"printf-style format string for output (default: '%%.8f')") args = parser.parse_args(args) bp.get_base_ops_from_args(args) # if output folder doesn't exist, create it if not os.path.isdir(args.out_folder): os.mkdir(args.out_folder) # parse args ga = al.get_genome_array_from_args(args, printer=printer) transcripts = an.get_segmentchains_from_args(args, printer=printer) mask_hash = mp.get_genome_hash_from_args(args, printer=printer) # evaluate for n, tx in enumerate(transcripts): if n % 1000 == 0: printer.write("Processed %s regions of interest" % n) filename = "%s%s.txt" % (args.out_prefix, tx.get_name()) full_filename = os.path.join(args.out_folder, filename) # mask out overlapping masked regions overlapping = mask_hash.get_overlapping_features(tx) for feature in overlapping: tx.add_masks(*feature.segments) count_vec = tx.get_masked_counts(ga) numpy.savetxt(full_filename, count_vec, fmt=args.format)
def main(args=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser() an = AnnotationParser() mp = MaskParser() bp = BaseParser() alignment_file_parser = al.get_parser(conflict_handler="resolve") annotation_file_parser = an.get_parser(conflict_handler="resolve") mask_file_parser = mp.get_parser() base_parser = bp.get_parser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler="resolve", parents=[base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser], ) parser.add_argument("out_folder", type=str, help="Folder in which to save output vectors") parser.add_argument( "--out_prefix", default="", type=str, help="Prefix to prepend to output files (default: no prefix)" ) parser.add_argument( "--format", default="%.8f", type=str, help=r"printf-style format string for output (default: '%%.8f')" ) args = parser.parse_args(args) bp.get_base_ops_from_args(args) # if output folder doesn't exist, create it if not os.path.isdir(args.out_folder): os.mkdir(args.out_folder) # parse args ga = al.get_genome_array_from_args(args, printer=printer) transcripts = an.get_segmentchains_from_args(args, printer=printer) mask_hash = mp.get_genome_hash_from_args(args, printer=printer) # evaluate for n, tx in enumerate(transcripts): if n % 1000 == 0: printer.write("Processed %s regions of interest" % n) filename = "%s%s.txt" % (args.out_prefix, tx.get_name()) full_filename = os.path.join(args.out_folder, filename) # mask out overlapping masked regions overlapping = mask_hash.get_overlapping_features(tx) for feature in overlapping: tx.add_masks(*feature.segments) count_vec = tx.get_masked_counts(ga) numpy.savetxt(full_filename, count_vec, fmt=args.format)
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: sys.argv[1:] (actually command-line arguments) """ ap = AnnotationParser(input_choices=_ANNOTATION_INPUT_CHOICES) annotation_file_parser = ap.get_parser() bp = BaseParser() base_parser = bp.get_parser() parser = argparse.ArgumentParser(description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, parents=[base_parser,annotation_file_parser]) parser.add_argument("--export_tophat",default=False,action="store_true", help="Export tophat `.juncs` file in addition to BED output") parser.add_argument("outbase",type=str,help="Basename for output files") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) transcripts = ap.get_transcripts_from_args(args,printer=printer,return_type=SegmentChain) with argsopener("%s.bed" % args.outbase,args,"w") as bed_out: if args.export_tophat == True: tophat_out = open("%s.juncs" % args.outbase,"w") printer.write("params: " +" ".join(argv)) printer.write("Detecting & comparing junctions...") ex_pairs = {} c = 0 u = 0 for chain in transcripts: if len(chain) > 1: # if multi-exon chrom = chain.chrom strand = chain.strand try: ep = ex_pairs[(chrom,strand)] except KeyError: ex_pairs[(chrom,strand)] = [] ep = ex_pairs[(chrom,strand)] for i in range(0,len(chain)-1): seg1 = chain[i] seg2 = chain[i+1] if c % 1000 == 0 and c > 0: printer.write("Processed %s junctions. Found %s unique..." % (c,u) ) c+=1 key = (seg1.end,seg2.start) if key not in ep: ep.append(key) u += 1 new_chain = SegmentChain(seg1,seg2) bed_out.write(new_chain.as_bed()) if args.export_tophat == True: my_junc = (chrom,seg1.end-1,seg2.start,strand) tophat_out.write("%s\t%s\t%s\t%s\n" % my_junc) del new_chain del seg1 del seg2 del chain printer.write("Processed %s total junctions. Found %s unique." % (c,u) ) bed_out.close() if args.export_tophat == True: tophat_out.close() printer.write("Done.")
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser(disabled=["normalize","big_genome","spliced_bowtie_files"], input_choices=["BAM"]) an = AnnotationParser() pp = PlottingParser() bp = BaseParser() plotting_parser = pp.get_parser() alignment_file_parser = al.get_parser(conflict_handler="resolve") annotation_file_parser = an.get_parser(conflict_handler="resolve") base_parser = bp.get_parser() parser = argparse.ArgumentParser(description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler="resolve", parents=[base_parser, annotation_file_parser, alignment_file_parser, plotting_parser]) parser.add_argument("roi_file",type=str,nargs="?",default=None, help="Optional. ROI file of maximal spanning windows surrounding start codons, "+\ "from ``metagene generate`` subprogram. Using this instead of `--annotation_files` "+\ "prevents double-counting of codons when multiple transcript isoforms exist "+\ "for a gene. See the documentation for `metagene` for more info about ROI files."+\ "If an ROI file is not given, supply an annotation with ``--annotation_files``") parser.add_argument("outbase",type=str,help="Required. Basename for output files") parser.add_argument("--codon_buffer",type=int,default=5, help="Codons before and after start codon to ignore (Default: 5)") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) pp.set_style_from_args(args) gnd = al.get_genome_array_from_args(args,printer=printer) read_lengths = list(range(args.min_length,args.max_length+1)) codon_buffer = args.codon_buffer dtmp = { "read_length" : numpy.array(read_lengths), "reads_counted" : numpy.zeros_like(read_lengths,dtype=int), } if args.roi_file is not None: using_roi = True roi_table = read_pl_table(args.roi_file) regions = roi_table.iterrows() transform_fn = roi_row_to_cds back_buffer = -1 if len(args.annotation_files) > 0: warnings.warn("If an ROI file is given, annotation files are ignored. Pulling regions from '%s'. Ignoring '%s'" % (args.roi_file, ", ".join(args.annotation_files)), ArgumentWarning) else: using_roi = False if len(args.annotation_files) == 0: printer.write("Either an ROI file or at least annotation file must be given.") sys.exit(1) else: warnings.warn("Using a transcript annotation file instead of an ROI file can lead to double-counting of codons if the annotation contains multiple transcripts per gene.", ArgumentWarning) regions = an.get_transcripts_from_args(args,printer=printer) back_buffer = -codon_buffer transform_fn = lambda x: x.get_cds() phase_sums = {} for k in read_lengths: phase_sums[k] = numpy.zeros(3) for n, roi in enumerate(regions): if n % 1000 == 1: printer.write("Counted %s ROIs ..." % n) # transformation needed to extract CDS from transcript or from ROI file window cds_part = transform_fn(roi) # only calculate for coding genes if len(cds_part) > 0: read_dict = {} count_vectors = {} for k in read_lengths: read_dict[k] = [] count_vectors[k] = [] # for each seg, fetch reads, sort them, and create individual count vectors for seg in cds_part: reads = gnd.get_reads(seg) for read in filter(lambda x: len(x.positions) in read_dict,reads): read_dict[len(read.positions)].append(read) # map and sort by length for read_length in read_dict: count_vector = list(gnd.map_fn(read_dict[read_length],seg)[1]) count_vectors[read_length].extend(count_vector) # add each count vector for each length to total for k, vec in count_vectors.items(): counts = numpy.array(vec) if cds_part.strand == "-": counts = counts[::-1] if len(counts) % 3 == 0: counts = counts.reshape((len(counts)/3,3)) else: if using_roi == False: message = "Length of '%s' coding region (%s nt) is not divisible by 3. Ignoring last partial codon." % (roi.get_name(),len(counts)) warnings.warn(message,DataWarning) newlen = len(counts)//3 counts = counts[:3*newlen] counts = counts.reshape(newlen,3) phase_sums[k] += counts[codon_buffer:back_buffer,:].sum(0) printer.write("Counted %s ROIs total." % (n+1)) for k in dtmp: dtmp[k] = numpy.array(dtmp[k]) # total reads counted for each size for k in read_lengths: dtmp["reads_counted"][dtmp["read_length"] == k] = phase_sums[k].sum() # read length distribution dtmp["fraction_reads_counted"] = dtmp["reads_counted"].astype(float) / dtmp["reads_counted"].sum() # phase vectors phase_vectors = { K : V.astype(float)/V.astype(float).sum() for K,V in phase_sums.items() } for i in range(3): dtmp["phase%s" % i] = numpy.zeros(len(dtmp["read_length"])) for k, vec in phase_vectors.items(): for i in range(3): dtmp["phase%s" % i][dtmp["read_length"] == k] = vec[i] # phase table fn = "%s_phasing.txt" % args.outbase printer.write("Saving phasing table to %s ..." % fn) dtmp = pd.DataFrame(dtmp) with argsopener(fn,args) as fh: dtmp.to_csv(fh,columns=["read_length", "reads_counted", "fraction_reads_counted", "phase0", "phase1", "phase2", ], float_format="%.6f", na_rep="nan", sep="\t", index=False, header=True ) fh.close() fig = {} if args.figsize is not None: fig["figsize"] = tuple(args.figsize) colors = pp.get_colors_from_args(args,len(read_lengths)) fn = "%s_phasing.%s" % (args.outbase,args.figformat) printer.write("Plotting to %s ..." % fn) plot_counts = numpy.vstack([V for (_,V) in sorted(phase_sums.items())]) fig, (ax1,_) = phase_plot(plot_counts,labels=read_lengths,lighten_by=0.3, cmap=None,color=colors,fig=fig) if args.title is not None: ax1.set_title(args.title) else: ax1.set_title("Phasing stats for %s" % args.outbase) fig.savefig(fn,dpi=args.dpi,bbox_inches="tight")
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser( disabled=["normalize", "big_genome", "spliced_bowtie_files"], input_choices=["BAM"]) an = AnnotationParser() pp = PlottingParser() bp = BaseParser() plotting_parser = pp.get_parser() alignment_file_parser = al.get_parser(conflict_handler="resolve") annotation_file_parser = an.get_parser(conflict_handler="resolve") base_parser = bp.get_parser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler="resolve", parents=[ base_parser, annotation_file_parser, alignment_file_parser, plotting_parser ]) parser.add_argument("roi_file",type=str,nargs="?",default=None, help="Optional. ROI file of maximal spanning windows surrounding start codons, "+\ "from ``metagene generate`` subprogram. Using this instead of `--annotation_files` "+\ "prevents double-counting of codons when multiple transcript isoforms exist "+\ "for a gene. See the documentation for `metagene` for more info about ROI files."+\ "If an ROI file is not given, supply an annotation with ``--annotation_files``") parser.add_argument("outbase", type=str, help="Required. Basename for output files") parser.add_argument( "--codon_buffer", type=int, default=5, help="Codons before and after start codon to ignore (Default: 5)") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) pp.set_style_from_args(args) gnd = al.get_genome_array_from_args(args, printer=printer) read_lengths = list(range(args.min_length, args.max_length + 1)) codon_buffer = args.codon_buffer dtmp = { "read_length": numpy.array(read_lengths), "reads_counted": numpy.zeros_like(read_lengths, dtype=int), } if args.roi_file is not None: using_roi = True roi_table = read_pl_table(args.roi_file) regions = roi_table.iterrows() transform_fn = roi_row_to_cds back_buffer = -1 if len(args.annotation_files) > 0: warnings.warn( "If an ROI file is given, annotation files are ignored. Pulling regions from '%s'. Ignoring '%s'" % (args.roi_file, ", ".join(args.annotation_files)), ArgumentWarning) else: using_roi = False if len(args.annotation_files) == 0: printer.write( "Either an ROI file or at least annotation file must be given." ) sys.exit(1) else: warnings.warn( "Using a transcript annotation file instead of an ROI file can lead to double-counting of codons if the annotation contains multiple transcripts per gene.", ArgumentWarning) regions = an.get_transcripts_from_args(args, printer=printer) back_buffer = -codon_buffer transform_fn = lambda x: x.get_cds() phase_sums = {} for k in read_lengths: phase_sums[k] = numpy.zeros(3) for n, roi in enumerate(regions): if n % 1000 == 1: printer.write("Counted %s ROIs ..." % n) # transformation needed to extract CDS from transcript or from ROI file window cds_part = transform_fn(roi) # only calculate for coding genes if len(cds_part) > 0: read_dict = {} count_vectors = {} for k in read_lengths: read_dict[k] = [] count_vectors[k] = [] # for each seg, fetch reads, sort them, and create individual count vectors for seg in cds_part: reads = gnd.get_reads(seg) for read in filter(lambda x: len(x.positions) in read_dict, reads): read_dict[len(read.positions)].append(read) # map and sort by length for read_length in read_dict: count_vector = list( gnd.map_fn(read_dict[read_length], seg)[1]) count_vectors[read_length].extend(count_vector) # add each count vector for each length to total for k, vec in count_vectors.items(): counts = numpy.array(vec) if cds_part.strand == "-": counts = counts[::-1] if len(counts) % 3 == 0: counts = counts.reshape((int(len(counts) / 3), 3)) else: if using_roi == False: message = "Length of '%s' coding region (%s nt) is not divisible by 3. Ignoring last partial codon." % ( roi.get_name(), len(counts)) warnings.warn(message, DataWarning) newlen = int(len(counts) // 3) counts = counts[:3 * newlen] counts = counts.reshape(newlen, 3) phase_sums[k] += counts[codon_buffer:back_buffer, :].sum(0) printer.write("Counted %s ROIs total." % (n + 1)) for k in dtmp: dtmp[k] = numpy.array(dtmp[k]) # total reads counted for each size for k in read_lengths: dtmp["reads_counted"][dtmp["read_length"] == k] = phase_sums[k].sum() # read length distribution dtmp["fraction_reads_counted"] = dtmp["reads_counted"].astype( float) / dtmp["reads_counted"].sum() # phase vectors phase_vectors = { K: V.astype(float) / V.astype(float).sum() for K, V in phase_sums.items() } for i in range(3): dtmp["phase%s" % i] = numpy.zeros(len(dtmp["read_length"])) for k, vec in phase_vectors.items(): for i in range(3): dtmp["phase%s" % i][dtmp["read_length"] == k] = vec[i] # phase table fn = "%s_phasing.txt" % args.outbase printer.write("Saving phasing table to %s ..." % fn) dtmp = pd.DataFrame(dtmp) with argsopener(fn, args) as fh: dtmp.to_csv(fh, columns=[ "read_length", "reads_counted", "fraction_reads_counted", "phase0", "phase1", "phase2", ], float_format="%.6f", na_rep="nan", sep="\t", index=False, header=True) fh.close() fig = {} if args.figsize is not None: fig["figsize"] = tuple(args.figsize) colors = pp.get_colors_from_args(args, len(read_lengths)) fn = "%s_phasing.%s" % (args.outbase, args.figformat) printer.write("Plotting to %s ..." % fn) plot_counts = numpy.vstack([V for (_, V) in sorted(phase_sums.items())]) fig, (ax1, _) = phase_plot(plot_counts, labels=read_lengths, lighten_by=0.3, cmap=None, color=colors, fig=fig) if args.title is not None: ax1.set_title(args.title) else: ax1.set_title("Phasing stats for %s" % args.outbase) fig.savefig(fn, dpi=args.dpi, bbox_inches="tight")
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser(disabled=["normalize"]) an = AnnotationParser() mp = MaskParser() pl = PlottingParser() bp = BaseParser() alignment_file_parser = al.get_parser() annotation_file_parser = an.get_parser() mask_file_parser = mp.get_parser() plotting_parser = pl.get_parser() base_parser = bp.get_parser() generator_help = "Create unambiguous position file from GFF3 annotation" generator_desc = format_module_docstring(do_generate.__doc__) counter_help = "Count reads in unambiguous gene positions" counter_desc = format_module_docstring(do_count.__doc__) chart_help = "Produce charts comparing reads between samples" chart_desc = format_module_docstring(do_chart.__doc__) parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter) subparsers = parser.add_subparsers( title="subcommands", description="choose one of the following", dest="program") gparser = subparsers.add_parser( "generate", help=generator_help, description=generator_desc, formatter_class=argparse.RawDescriptionHelpFormatter, parents=[base_parser, annotation_file_parser, mask_file_parser], ) cparser = subparsers.add_parser( "count", help=counter_help, description=counter_desc, parents=[base_parser, alignment_file_parser], formatter_class=argparse.RawDescriptionHelpFormatter, ) pparser = subparsers.add_parser( "chart", help=chart_help, description=chart_desc, parents=[base_parser, plotting_parser], formatter_class=argparse.RawDescriptionHelpFormatter) gparser.add_argument("outbase", metavar="outbase", type=str, help="Basename for output files") cparser.add_argument( "position_file", type=str, metavar="file.positions", help= "File assigning positions to genes or transcripts (made using 'generate' subcommand)" ) cparser.add_argument("outbase", type=str, help="Basename for output files") pparser.add_argument("-i", "--in", nargs="+", type=str, dest="infiles", help="input files, made by 'count' subprogram") pparser.add_argument( "--bins", nargs="+", type=int, default=(0, 32, 64, 128, 256, 512, 1024, 2048, 4096), help="Bins into which features are partitioned based on counts") pparser.add_argument( "--regions", nargs="+", type=str, default=("exon", "utr5", "cds", "utr3"), help="Regions to compare (default: exon, utr5, cds, utr3)") pparser.add_argument("--metrics", nargs="+", type=str, default=("rpkm", "reads"), help="Metrics to compare (default: rpkm, reads)") pparser.add_argument( "list_of_regions", type=str, metavar='gene_list.txt', nargs="?", default=None, help= "Optional. File listing regions (genes or transcripts), one per line, to include in comparisons. If not given, all genes are included." ) pparser.add_argument("outbase", type=str, help="Basename for output files") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) if args.program == "generate": #generate position file do_generate(args, an, mp) elif args.program == "count": #use position file to count gene expression in infiles do_count(args, al) elif args.program == "chart": #use count files to generate a family of charts and tables do_chart(args, pl)
def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ ap = AnnotationParser() annotation_file_parser = ap.get_parser(conflict_handler="resolve") al = AlignmentParser(disabled=_DISABLED) alignment_file_parser = al.get_parser(conflict_handler="resolve") mp = MaskParser() mask_file_parser = mp.get_parser() bp = BaseParser() base_parser = bp.get_parser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, parents=[ base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser ], ) parser.add_argument("outfile", type=str, help="Output filename") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) ga = al.get_genome_array_from_args(args, printer=printer) transcripts = ap.get_transcripts_from_args(args, printer=printer, return_type=SegmentChain) crossmap = mp.get_genome_hash_from_args(args, printer=printer) ga_sum = ga.sum() normconst = 1000.0 * 1e6 / ga_sum with argsopener(args.outfile, args, "w") as fout: fout.write("## total_dataset_counts: %s\n" % ga_sum) fout.write( "region_name\tregion\tcounts\tcounts_per_nucleotide\trpkm\tlength\n" ) for n, ivc in enumerate(transcripts): name = ivc.get_name() masks = crossmap.get_overlapping_features(ivc) ivc.add_masks(*itertools.chain.from_iterable((X for X in masks))) if n % 1000 == 0: printer.write("Processed %s regions..." % n) counts = numpy.nansum(ivc.get_masked_counts(ga)) length = ivc.masked_length rpnt = numpy.nan if length == 0 else float(counts) / length rpkm = numpy.nan if length == 0 else rpnt * normconst ltmp = [ name, str(ivc), "%.8e" % counts, "%.8e" % rpnt, "%.8e" % rpkm, "%d" % length ] fout.write("%s\n" % "\t".join(ltmp)) fout.close() printer.write("Processed %s regions total." % n) printer.write("Done.")