def write(df, name): fig, axes = plt.subplots(ncols=2, nrows=3, figsize=(20, 10)) draw_series_combined(df, name, axes[0, 0]) axes[0, 1].axis('off') axes[0, 1].legend(*axes[0, 0].get_legend_handles_labels(), loc='upper left', ncol=2) draw_series_seperate(df, axes[2, 0]) if df.centroid.notnull().any() and df.centroid.var() != 0: distances = [] for c in df.columns[1:]: distances.append(_sbd(df.centroid, df[c])[0]) draw_lag(df, axes[2, 1]) draw_sbd_bar_plot(distances, axes[1, 0]) draw_sbd_dist_plot(distances, axes[1, 1]) try: plt.tight_layout() plt.savefig(name, dpi=200) plt.close("all") except Exception as e: import pdb pdb.set_trace() print("graph %s failed %s" % (name, e))
def compare_load_positions(c: Config): """Compare load positions (normal vs. buckets).""" c.il_num_loads = 10 num_times = 1000 # Wagen 1 from the experimental campaign. point = Point(x=c.bridge.x_max / 2, y=0, z=-8.4) end_time = uni_axle_vehicle.time_left_bridge(bridge=c.bridge) vehicle_times = list(np.linspace(0, end_time, num_times)) plt.portrait() pw_loads = [ flatten(uni_axle_vehicle.to_point_load_pw(time=time, bridge=c.bridge), PointLoad) for time in vehicle_times ] pw_load_xs = [[c.bridge.x(l.x_frac) for l in pw_loads[time_ind]] for time_ind in range(len(pw_loads))] plt.subplot(3, 1, 1) # for l in pw_load_xs: # print(l) plt.plot([l[0] for l in pw_load_xs]) plt.plot([l[1] for l in pw_load_xs]) wt_loads = [ flatten(uni_axle_vehicle.to_wheel_track_loads(c=c, time=time), PointLoad) for time in vehicle_times ] wt_load_xs = [[c.bridge.x(l.x_frac) for l in wt_loads[time_ind]] for time_ind in range(len(wt_loads))] plt.subplot(3, 1, 2) plt.scatter(vehicle_times, [l[0] for l in wt_load_xs], label="0") plt.scatter(vehicle_times, [l[1] for l in wt_load_xs], label="1") plt.legend() wt_load_kn = [[l.kn for l in wt_loads[time_ind]] for time_ind in range(len(wt_loads))] plt.subplot(3, 1, 3) for l in wt_load_kn: print(l) plt.scatter(vehicle_times, [l[0] for l in wt_load_kn], label="0") plt.scatter(vehicle_times, [l[1] for l in wt_load_kn], label="1") plt.legend() plt.tight_layout() plt.savefig(c.get_image_path("verification", "compare-load-positions.pdf")) plt.close()
def uls_contour_plot(c: Config, x_i: int, z_i: int, response_type: ResponseType): wheel_xs = c.bridge.wheel_track_xs(c) wheel_x = wheel_xs[x_i] wheel_zs = c.bridge.wheel_track_zs(c) wheel_z = wheel_zs[z_i] print_i(f"Wheel (x, z) = ({wheel_x}, {wheel_z})") plt.landscape() plt.subplot(2, 1, 1) healthy = list( ILMatrix.load_wheel_track( c=c, response_type=response_type, fem_runner=OSRunner(c), load_z_frac=c.bridge.z_frac(wheel_z), run_only=False, indices=[x_i], ))[0].resize() top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_contour_deck(c=c, responses=healthy, sci_format=True, decimals=6) plt.title("Healthy") c = transverse_crack().use(c)[0] cracked = list( ILMatrix.load_wheel_track( c=c, response_type=response_type, fem_runner=OSRunner(c), load_z_frac=c.bridge.z_frac(wheel_z), run_only=False, indices=[x_i], ))[0].resize() plt.subplot(2, 1, 2) top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_contour_deck(c=c, responses=cracked, sci_format=True, decimals=6) plt.title("Cracked") plt.tight_layout() plt.savefig( c.get_image_path( "verification", safe_str( f"uls-contour-x-{wheel_x}-z-{wheel_z}-{response_type.name()}") + ".pdf", ))
def matrix_subplots( c: Config, resp_matrix: ResponsesMatrix, num_subplots: int, num_x: int, z_frac: float, rows: int = 4, save: str = None, plot_func=None, ): """For each subplot plot matrix fem using the given function.""" cols = int(num_subplots / rows) if cols != num_subplots / rows: print_w(f"Rows don't divide number of simulations, cols = {cols}" + f", sims = {num_subplots / rows}" + f", num_subplots = {num_subplots}, rows = {rows}") cols += 1 y_min, y_max = 0, 0 # Plot each IL and bridge deck side. for i, response_frac in enumerate(np.linspace(0, 1, rows * cols)): plt.subplot(rows, cols, i + 1) plot_bridge_deck_side(c.bridge, show=False, equal_axis=False) rs = plot_func(c, resp_matrix, i, response_frac, z_frac=z_frac, num_x=num_x) plt.axvline(x=c.bridge.x(x_frac=response_frac), color="red") # Keep track of min and max on y axis (only when non-zero fem). if any(rs): _y_min, _y_max = plt.gca().get_ylim() y_min, y_max = min(y_min, _y_min), max(y_max, _y_max) # Ensure y_min == -y_max. y_min = min(y_min, -y_max) y_max = max(-y_min, y_max) for i, _ in enumerate(np.linspace(0, 1, rows * cols)): plt.subplot(rows, cols, i + 1) plt.ylim(y_min, y_max) plt.tight_layout() if save: plt.savefig(save) plt.close()
def plot_f(time_index): # Top plot of the moving vehicles. plt.subplot2grid((3, 1), (0, 0), 2, 1) plt.title(f"{response_type.name()} on {bridge.name} {traffic_name}") top_view_bridge(bridge, lane_fill=False) top_view_vehicles( bridge=bridge, mv_vehicles=traffic[time_index], all_vehicles=all_vehicles, time=time_index * time_step + start_time, ) contour_cmap = plot_contour_deck( c=c, responses=traffic_responses[time_index], y=0, norm=response_norm, ) plt.xlim((bridge.x_min, bridge.x_max)) # Bottom plot of the total load on the bridge. plt.subplot2grid((3, 1), (2, 0), 1, 1) plt.plot(times, total_kn) plt.xlabel("time") plt.ylabel("kilo Newton") plt.axvline(x=start_time + time_index * time_step, color="red") plt.tight_layout() # Add a color bar. plt.gcf().subplots_adjust(right=0.75) cbar_ax = plt.gcf().add_axes([0.80, 0.1, 0.01, 0.8]) cbar = plt.gcf().colorbar( cm.ScalarMappable(norm=response_norm, cmap=contour_cmap), cax=cbar_ax, ) cbar.set_label(response_type.units(short=False))
def top_view_plot(c: Config, max_time: int, skip: int, damage_scenario): response_type = ResponseType.YTranslation # Create the traffic. traffic_scenario = normal_traffic(c=c, lam=5, min_d=2) traffic_sequence, traffic, traffic_array = load_traffic( c=c, traffic_scenario=traffic_scenario, max_time=max_time, ) assert len(traffic) == traffic_array.shape[0] # Points on the deck to collect fem. deck_points = [ Point(x=x, y=0, z=z) for x in np.linspace( c.bridge.x_min, c.bridge.x_max, num=int(c.bridge.length * 2)) for z in np.linspace( c.bridge.z_min, c.bridge.z_max, num=int(c.bridge.width * 2)) # for x in np.linspace(c.bridge.x_min, c.bridge.x_max, num=30) # for z in np.linspace(c.bridge.z_min, c.bridge.z_max, num=10) ] point = Point(x=21, y=0, z=-8.4) # Point to plot deck_points.append(point) # Traffic array to fem array. responses_array = responses_to_traffic_array( c=c, traffic_array=traffic_array, damage_scenario=damage_scenario, points=deck_points, response_type=response_type, ) # Temperature effect July 1st. temps_2019 = temperature.load("holly-springs") temps_2019["temp"] = temperature.resize(temps_2019["temp"]) effect_2019 = temperature.effect( c=c, response_type=response_type, points=deck_points, temps=temps_2019["temp"], solar=temps_2019["solar"], len_per_hour=60, ).T # The effect is ordered by time series and then by points. (104910, 301) assert len(effect_2019) == len(temps_2019) july_2019_i, july_2019_j = temperature.from_to_indices( temps_2019, datetime.fromisoformat(f"2019-10-01T00:00"), datetime.fromisoformat(f"2019-10-01T23:59"), ) temp_effect = [] for i in range(len(deck_points)): temp_effect.append( temperature.apply( # Effect for July 1st, for the current point.. effect=effect_2019.T[i][july_2019_i:july_2019_j], # ..for the length of the time series. responses=responses_array, )) temp_effect = np.array(temp_effect) plt.subplot(2, 1, 1) plt.plot(effect_2019.T[-1]) plt.subplot(2, 1, 2) plt.plot(temp_effect[-1]) plt.show() # Determine response due to pier settlement. pd_response_at_point = 0 if isinstance(damage_scenario, PierDispDamage): pd_expt = list( DCMatrix.load(c=c, response_type=response_type, fem_runner=OSRunner(c))) for pier_displacement in damage_scenario.pier_disps: pd_sim_responses = pd_expt[pier_displacement.pier] pd_response_at_point += pd_sim_responses.at_deck( point, interp=False) * (pier_displacement.displacement / c.pd_unit_disp) # Resize fem if applicable to response type. resize_f, units = resize_units(response_type.units()) if resize_f is not None: responses_array = resize_f(responses_array) temp_effect = resize_f(temp_effect.T).T print(np.mean(temp_effect[-1])) pd_response_at_point = resize_f(pd_response_at_point) responses_w_temp = responses_array + temp_effect.T # Determine levels of the colourbar. amin, amax = np.amin(responses_array), np.amax(responses_array) # amin, amax = min(amin, -amax), max(-amin, amax) levels = np.linspace(amin, amax, 25) # All vehicles, for colour reference. all_vehicles = flatten(traffic, Vehicle) # Iterate through each time index and plot results. warmed_up_at = traffic_sequence[0][0].time_left_bridge(c.bridge) # Plot for each time step. for t_ind in range(len(responses_array))[::skip]: plt.landscape() # Plot the bridge top view. plt.subplot2grid((3, 1), (0, 0), rowspan=2) top_view_bridge(c.bridge, compass=False, lane_fill=False, piers=True) top_view_vehicles( bridge=c.bridge, mv_vehicles=flatten(traffic[t_ind], Vehicle), time=warmed_up_at + t_ind * c.sensor_hz, all_vehicles=all_vehicles, ) responses = Responses( response_type=response_type, responses=[(responses_array[t_ind][p_ind], deck_points[p_ind]) for p_ind in range(len(deck_points))], units=units, ) plot_contour_deck(c=c, responses=responses, levels=levels, mm_legend=False) plt.scatter( [point.x], [point.z], label=f"Sensor in bottom plot", marker="o", color="red", zorder=10, ) plt.legend(loc="upper right") plt.title( f"{response_type.name()} after {np.around(t_ind * c.sensor_hz, 4)} seconds" ) # Plot the fem at a point. plt.subplot2grid((3, 1), (2, 0)) time = t_ind * c.sensor_hz plt.axvline(x=time, color="black", label=f"Current time = {np.around(time, 4)} s") plt.plot( np.arange(len(responses_array)) * c.sensor_hz, responses_w_temp.T[-1], color="red", label="Total effect", ) if isinstance(damage_scenario, PierDispDamage): plt.plot( np.arange(len(responses_array)) * c.sensor_hz, np.ones(temp_effect[-1].shape) * pd_response_at_point, color="green", label="Pier settlement effect", ) plt.plot( np.arange(len(responses_array)) * c.sensor_hz, temp_effect[-1], color="blue", label="Temperature effect", ) plt.ylabel(f"{response_type.name()} ({responses.units})") plt.xlabel("Time (s)") plt.title(f"{response_type.name()} at sensor in top plot") plt.legend(loc="upper right", framealpha=1) # Finally save the image. name = f"{damage_scenario.name}-{response_type.name()}-{t_ind}" plt.tight_layout() plt.savefig(c.get_image_path("classify/top-view", f"{name}.pdf")) plt.savefig(c.get_image_path("classify/top-view/png", f"{name}.png")) plt.close()
def wagen_1_contour_plot( c: Config, x: int, crack_x: float, response_type: ResponseType, scatter: bool, run: bool, length: float, outline: bool, wheels: bool, temp: bool, ): original_c = c LOADS = False temp_bottom, temp_top = [17, 25] time = wagen1.time_at(x=x, bridge=c.bridge) def plot_wheels(): if wheels: wagen1.plot_wheels(c=c, time=time, label="Truck 1 wheels", zorder=100) center = c.bridge.x_max / 2 min_x, max_x = center - 20, center + 20 min_z, max_z = c.bridge.z_min, c.bridge.z_max def zoom_in(): plt.ylim(min_z, max_z) plt.xlim(min_x, max_x) loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True) crack_f = lambda: transverse_crack(length=length, at_x=crack_x) c = healthy_damage_w_transverse_crack_nodes(crack_f).use(original_c)[0] deck_shells = get_bridge_shells(c.bridge)[0] healthy_responses = load_fem_responses( c=c, sim_params=SimParams(ploads=loads), response_type=response_type, sim_runner=OSRunner(c), run=run, ).at_shells(deck_shells) # Convert fem to one per shell. if response_type in [ResponseType.Strain, ResponseType.StrainZZB]: # Resize by E-6 from microstrain to strain to match temperature units. healthy_responses = healthy_responses.resize() before_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False) if temp: healthy_deck_points = healthy_responses.deck_points() # Point of fem. temp_effect = temperature.effect( c=c, response_type=response_type, points=healthy_deck_points, temps_bt=([temp_bottom], [temp_top]), ).T[0] # Temperature effect at existing response points. healthy_responses = healthy_responses.add(temp_effect, healthy_deck_points) after_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False) print_i(f"Healthy, before/after = {before_temp}, {after_temp}") if response_type in [ResponseType.Strain, ResponseType.StrainZZB]: healthy_responses = healthy_responses.map(lambda x: x * 1e6) else: healthy_responses = healthy_responses.resize() # Responses in cracked scenario. c = crack_f().use(original_c)[0] crack_responses = load_fem_responses( c=c, sim_params=SimParams(ploads=loads), response_type=response_type, sim_runner=OSRunner(c), run=run, ).at_shells(deck_shells) if response_type in [ResponseType.Strain, ResponseType.StrainZZB]: # Resize by E-6 from microstrain to strain to match temperature units. crack_responses = crack_responses.resize() before_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False) if temp: crack_deck_points = crack_responses.deck_points() # Point of fem. temp_effect = temperature.effect( c=c, response_type=response_type, points=healthy_deck_points, temps_bt=([temp_bottom], [temp_top]), ).T[0] # Temperature effect at existing response points. crack_responses = crack_responses.add(temp_effect, healthy_deck_points) after_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False) print_i(f"Crack, before/after = {before_temp}, {after_temp}") if response_type in [ResponseType.Strain, ResponseType.StrainZZB]: crack_responses = crack_responses.map(lambda x: x * 1e6) else: crack_responses = crack_responses.resize() # Limit to points in crack zone. without_cm = 35 print(f"Avoid {without_cm} cm around crack zone") _without_crack_zone = crack_f().without(c.bridge, without_cm / 100) without_crack_zone = lambda p: not _without_crack_zone(p) if response_type in [ResponseType.Strain, ResponseType.StrainZZB]: healthy_responses = healthy_responses.without(without_crack_zone) crack_responses = crack_responses.without(without_crack_zone) # Norm calculation. vmin = min(healthy_responses.values()) vmax = max(healthy_responses.values()) vmin = min(vmin, min(crack_responses.values())) vmax = max(vmax, max(crack_responses.values())) norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) print(f"Norm min/max = {vmin}, {vmax}") plt.portrait() plt.subplot(3, 1, 1) plot_contour_deck( c=c, responses=healthy_responses, ploads=loads if LOADS else [], scatter=scatter, norm=norm, decimals=2, ) c_x_start, c_z_start, c_x_end, c_z_end = list( map(round_m, crack_f().crack_area(c.bridge))) def plot_outline(label="Crack zone"): if outline: plt.gca().add_patch( mpl.patches.Rectangle( (c_x_start, c_z_start), c_x_end - c_x_start, c_z_end - c_z_start, fill=not scatter, edgecolor="black", facecolor="white", alpha=1, label=label, )) top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_outline(label="Responses not considered") plot_wheels() zoom_in() def legend(): plt.legend( loc="upper right", borderpad=0.2, labelspacing=0.2, borderaxespad=0, handletextpad=0.2, columnspacing=0.2, ) legend() plt.title(f"Healthy bridge") plt.xlabel("") plt.tick_params(bottom=False, labelbottom=False) plt.subplot(3, 1, 2) plot_contour_deck( c=c, responses=crack_responses, ploads=loads if LOADS else [], scatter=scatter, norm=norm, decimals=2, ) top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_outline() plot_wheels() zoom_in() legend() plt.title(f"Cracked bridge") plt.xlabel("") plt.tick_params(bottom=False, labelbottom=False) plt.subplot(3, 1, 3) responses = [] for x in healthy_responses.deck_xs: for z in healthy_responses.zs[x][0]: responses.append(( bridge_sim.sim.responses.responses[0][x][0][z] - crack_responses.at_deck(Point(x=x, z=z), interp=False), Point(x=x, z=z), )) # try: # fem.append(( # healthy_responses.fem[0][x][0][z] # - crack_responses.fem[0][x][0][z], # Point(x=x, z=z) # )) # except KeyError: # pass # diff_responses = responses = Responses( response_type=response_type, responses=responses, units=healthy_responses.units, ) plot_contour_deck( c=c, responses=diff_responses, ploads=loads if LOADS else [], cmap=mpl.cm.get_cmap("PiYG"), scatter=scatter, decimals=2, ) print("********") print("********") print("********") grid_x, grid_z = 600, 200 grid_points = list( filter( lambda p: not without_crack_zone(p), [ Point(x=x, y=0, z=z) for x in np.linspace(c.bridge.x_min, c.bridge.x_max, grid_x) for z in np.linspace(c.bridge.z_min, c.bridge.z_max, grid_z) ], )) print(f"Amount grid points = {len(grid_points)}") grid_x_len = c.bridge.length / grid_x grid_z_len = c.bridge.width / grid_z grid_area = grid_x_len * grid_z_len print(f"Grid area = {grid_area}") print("Interpolating diff fem") interp_diff_responses = diff_responses.at_decks(grid_points) count_interp = len(interp_diff_responses) interp_diff_responses = interp_diff_responses[~np. isnan(interp_diff_responses)] print( f"Removed {count_interp - len(interp_diff_responses)} of {count_interp} fem, remaining = {len(interp_diff_responses)}" ) print("Finished interpolating diff fem") count_min, count_max = 0, 0 d_min, d_max = min(diff_responses.values()), max(diff_responses.values()) print(f"diff min, max = {d_min}, {d_max}") d_min08, d_max08 = d_min * 0.8, d_max * 0.8 for interp_r in interp_diff_responses: if interp_r < d_min08: count_min += 1 if interp_r > d_max08: count_max += 1 print(f"Count = {count_min}, {count_max}") save_path = original_c.get_image_path( "verification", safe_str( f"truck1-contour-x-{x}{crack_x}{length}-{response_type.name()}-{temp}" ), ) with open(save_path + ".txt", "w") as f: f.write(f"{count_min}, {count_max}\n") f.write(f"{count_min * grid_area}, {count_max * grid_area}") print(f"Wrote results to {save_path}.txt") top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_outline() plot_wheels() zoom_in() legend() temp_str = f"\nT_bot = {temp_bottom} °C, T_top = {temp_top} °C" if temp else "" plt.title(f"Difference of healthy & cracked bridge") rt_name = (f"Microstrain {response_type.ss_direction()}" if response_type in [ResponseType.Strain, ResponseType.StrainZZB ] else response_type.name()) plt.suptitle(f"{rt_name}: Truck 1 on healthy & cracked bridge{temp_str}") plt.tight_layout(rect=[0, 0.03, 1, 0.93 if temp else 0.95]) plt.savefig(save_path + ".pdf")
def compare_responses(c: Config): """Compare fem to Truck 1, direct simulation and matmul.""" assert c.il_num_loads == 600 num_times = 50 close_times = 200 # Running time: # responses_to_vehicles_d: num_times * 8 # responses_to_vehicles_d: 4 * il_num_loads # responses_to_loads_m: 0 (4 * il_num_loads) # responses_to_loads_m: 0 (4 * il_num_loads) # Wagen 1 from the experimental campaign. point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4) end_time = wagen1.time_left_bridge(bridge=c.bridge) wagen1_times = list(np.linspace(0, end_time, num_times)) more_wagen1_times = list( np.linspace( wagen1.time_at(x=point.x - 2, bridge=c.bridge), wagen1.time_at(x=point.x + 2, bridge=c.bridge), close_times, )) wagen1_times = sorted(wagen1_times + more_wagen1_times) plt.portrait() # Start with fem from direct simulation. responses_not_binned = responses_to_vehicles_d( c=c, response_type=ResponseType.YTranslation, points=[point], mv_vehicles=[wagen1], times=wagen1_times, sim_runner=OSRunner(c), binned=False, ) plt.subplot(4, 1, 1) plt.title(f"{len(wagen1_times)} fem") plt.plot(wagen1_times, responses_not_binned) # Then fem from direct simulation with binning. c.shorten_paths = True responses_binned = responses_to_vehicles_d( c=c, response_type=ResponseType.YTranslation, points=[point], mv_vehicles=[wagen1], times=wagen1_times, sim_runner=OSRunner(c), binned=True, ) c.shorten_paths = False plt.subplot(4, 1, 2) plt.title(f"{len(wagen1_times)} fem (binned)") plt.plot(wagen1_times, responses_binned) xlim = plt.xlim() num_times = int(end_time / c.sensor_hz) wagen1_times = np.linspace(0, end_time, num_times) # Then from 'TrafficArray' we get fem, without binning. wagen1_loads = [ flatten(wagen1.to_point_load_pw(time=time, bridge=c.bridge), PointLoad) for time in wagen1_times ] responses_ulm = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=[point], sim_runner=OSRunner(c), ) plt.subplot(4, 1, 3) plt.title(f"{num_times} fem with ULS = {c.il_num_loads} traffic_array") plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1)) plt.xlim(xlim) # # Then from 'TrafficArray' we get fem, with binning. wagen1_loads = [ flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad) for time in wagen1_times ] responses_ulm_binned = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=[point], sim_runner=OSRunner(c), ) plt.subplot(4, 1, 4) plt.title( f"{num_times} fem from {c.il_num_loads} il_num_loads\ntraffic_array binned" ) plt.plot(wagen1_times, np.array(responses_ulm_binned).reshape(-1, 1)) plt.xlim(xlim) plt.tight_layout() plt.savefig( c.get_image_path("system-verification", "compare-time-series.pdf"))
def compare_axles(c: Config): """Compare fem between uniaxle vehicles and Truck 1.""" assert c.il_num_loads == 600 point = Point(x=c.bridge.x_max / 2, y=0, z=-8.4) end_time = wagen1.time_left_bridge(bridge=c.bridge) num_times = int(end_time / c.sensor_hz) wagen1_times = np.linspace(0, end_time, num_times) plt.portrait() wagen1_loads = [ flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad) for time in wagen1_times ] responses_ulm = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=[point], sim_runner=OSRunner(c), ) plt.subplot(3, 1, 1) plt.title( f"{num_times} fem with ULS = {c.il_num_loads} (Wagen 1 (4 axles))") plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1)) bi_axle_loads = [ flatten(bi_axle_vehicle.to_wheel_track_loads(c=c, time=time), PointLoad) for time in wagen1_times ] responses_ulm = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=bi_axle_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=[point], sim_runner=OSRunner(c), ) plt.subplot(3, 1, 2) plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (2 axles)") plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1)) uni_axle_loads = [ flatten(uni_axle_vehicle.to_wheel_track_loads(c=c, time=time), PointLoad) for time in wagen1_times ] responses_ulm = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=uni_axle_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=[point], sim_runner=OSRunner(c), ) plt.subplot(3, 1, 3) plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (1 axle)") plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1)) plt.tight_layout() plt.savefig(c.get_image_path("system-verification", "compare-axles.pdf"))
def cluster_damage(c: Config, mins: float): # Create the traffic. traffic_scenario = normal_traffic(c=c, lam=5, min_d=2) traffic_sequence, traffic, traffic_array = load_traffic( c=c, traffic_scenario=traffic_scenario, max_time=mins * 60, ) point = Point(x=21, y=0, z=-8.4) # Point to investigate. # Collect vertical translation and strain for all scenarios scenarios. responses_y = [] responses_s = [] for damage_scenario in [ healthy_damage, pier_disp_damage([(5, 0.5 / 1000)]) ]: responses_y.append( responses_to_traffic_array( c=c, traffic_array=traffic_array, response_type=ResponseType.YTranslation, damage_scenario=damage_scenario, points=[point], sim_runner=OSRunner(c), ).T[0] * 1000) assert len(responses_y[-1]) == len(traffic_array) responses_s.append( responses_to_traffic_array( c=c, traffic_array=traffic_array, response_type=ResponseType.Strain, damage_scenario=damage_scenario, points=[point], sim_runner=OSRunner(c), ).T[0]) assert len(responses_s[-1]) == len(traffic_array) # Calculate features per scenarios. damage_features = [] damage_labels = [] for damage_ind in range(len(responses_y)): y = responses_y[damage_ind] s = responses_s[damage_ind] for response_ind in range(len(y)): damage_features.append([y[response_ind], s[response_ind]]) damage_labels.append(damage_ind) damage_features = np.array(damage_features) damage_labels = np.array(damage_labels) print_i(f"Dimensions of feature array = {damage_features.shape}") # Plot the reference data. plt.landscape() plt.scatter(damage_features[:, 0], damage_features[:, 1], c=damage_labels) plt.title("Reference") plt.tight_layout() plt.savefig(c.get_image_path("classify/cluster", "cluster-ref.pdf")) plt.close() # Plot the gaussian mixture results. gmm = mixture.GaussianMixture(n_components=2).fit(damage_features) labels = flip(l=gmm.predict(damage_features), ref=damage_labels) plt.landscape() plt.scatter(damage_features[:, 0], damage_features[:, 1], c=labels) plt.title("Gaussian mixture n = 2") plt.tight_layout() plt.savefig(c.get_image_path("classify/cluster", "cluster-model.pdf")) plt.close() # Plot and print the accuracy. # https://matplotlib.org/3.1.1/gallery/text_labels_and_annotations/custom_legends.html acc = abs(labels - damage_labels) total = defaultdict(lambda: 0) correct = defaultdict(lambda: 0) for ind, label in enumerate(damage_labels): total[label] += 1 if acc[ind] == 0: correct[label] += 1 for k, t in total.items(): print_i(f"k = {k}: {correct[k]} / {t} = {correct[k] / t}") plt.scatter(damage_features[:, 0], damage_features[:, 1], c=acc) plt.tight_layout() plt.savefig(c.get_image_path("classify/cluster", "cluster-acc.pdf")) plt.close()
def truck_1_time_series(c: Config): """Time series of 3 sensors to Truck 1's movement.""" side_s = 7 side = int(side_s * (1 / c.sensor_hz)) assert wagen1.x_at(time=0, bridge=c.bridge) == 0 # Get times and loads for Truck 1. end_time = wagen1.time_left_bridge(c.bridge) wagen1_times = np.linspace(-end_time, end_time * 2, int((end_time * 3) / c.sensor_hz)) print_i("Calculating Truck 1 loads") wagen1_loads = [ flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad) # flatten(wagen1.to_point_load_pw(time=time, bridge=c.bridge), PointLoad) for time in wagen1_times ] print_i("Calculated Truck 1 loads") def set_labels(ylabel: str, xlabel: str): for i, y, x in [ (1, True, False), (2, False, False), (3, True, False), (4, False, False), (5, True, True), (6, False, True), ]: plt.subplot(3, 2, i) ax = plt.gca() if y: plt.ylabel(ylabel) else: ax.axes.yaxis.set_ticklabels([]) if x: plt.xlabel(xlabel) ax.axes.xaxis.set_ticklabels([]) ymin, ymax = np.inf, -np.inf for i in range(1, 6 + 1): plt.subplot(3, 2, i) ymin = min(ymin, plt.ylim()[0]) ymax = max(ymax, plt.ylim()[1]) for i in range(1, 6 + 1): plt.subplot(3, 2, i) plt.ylim((ymin, ymax)) ################ # Vert. trans. # ################ plt.portrait() # Find points of each sensor. displa_labels = ["U13", "U26", "U29"] displa_points = [ Point(x=sensor_x, y=0, z=sensor_z) for sensor_x, sensor_z in [displa_sensor_xz(displa_label) for displa_label in displa_labels] ] # Ensure points and truck are on the same lane. assert all(p.z < 0 for p in displa_points) # Results from simulation. responses_truck1 = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads), response_type=ResponseType.YTranslation, damage_scenario=healthy_scenario, points=displa_points, ).T for s_i, sensor_responses in enumerate(responses_truck1): plt.subplot(len(displa_points), 2, (s_i * 2) + 1) # Find the center of the plot, minimum point in the data. data_center = 0 for i in range(len(sensor_responses)): if sensor_responses[i] < sensor_responses[data_center]: data_center = i # sensor_responses = add_displa_noise(sensor_responses) * 1000 sensor_responses = sensor_responses * 1000 plt.plot(sensor_responses[data_center - side:data_center + side]) plt.title(f"{displa_labels[s_i]} in simulation") # Results from experiment. side = int(side / ((1 / c.sensor_hz) / 100)) print_i(f"{side} points each side of center") for s_i, displa_label in enumerate(displa_labels): plt.subplot(len(displa_points), 2, (s_i * 2) + 2) with open(f"validation/experiment/D1a-{displa_label}.txt") as f: data = list(map(float, f.readlines())) side_expt = int(side_s * (len(data) / 240)) # Find the center of the plot, minimum point in first 15000 points. data_center = 0 for i in range(15000): if data[i] < data[data_center]: data_center = i plt.plot(data[data_center - side_expt:data_center + side_expt]) plt.title(f"{displa_label} in dynamic test") set_labels("Y translation (mm)", "Time") plt.tight_layout() plt.savefig( c.get_image_path("validation/truck-1", "time-series-vert-trans.pdf")) plt.close() ########## # Strain # ########## plt.portrait() # Find points of each sensor. strain_labels = ["T1", "T10", "T11"] strain_points = [ Point(x=sensor_x, y=0, z=sensor_z) for sensor_x, sensor_z in [strain_sensor_xz(strain_label) for strain_label in strain_labels] ] # Results from simulation. responses_truck1 = responses_to_traffic_array( c=c, traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads), response_type=ResponseType.Strain, damage_scenario=healthy_scenario, points=strain_points, ).T for s_i, sensor_responses in enumerate(responses_truck1): plt.subplot(len(strain_points), 2, (s_i * 2) + 1) # Find the center of the plot, minimum point in the data. data_center = 0 for i in range(len(sensor_responses)): if sensor_responses[i] > sensor_responses[data_center]: data_center = i # sensor_responses = add_strain_noise(sensor_responses) # plt.plot(sensor_responses) plt.plot(sensor_responses[data_center - side:data_center + side]) # plt.plot(sensor_responses[data_center - side : data_center + side]) plt.title(f"{strain_labels[s_i]} in simulation") # Results from experiment. print_i(f"{side} points each side of center") for s_i, strain_label in enumerate(strain_labels): plt.subplot(len(strain_points), 2, (s_i * 2) + 2) with open(f"validation/experiment/D1a-{strain_label}.txt") as f: data = list(map(float, f.readlines())) side_expt = int(side_s * (len(data) / 240)) # Find the center of the plot, minimum point in first 15000 points. data_center = 0 for i in range(15000): if data[i] < data[data_center]: data_center = i # plt.plot(data) plt.plot(data[data_center - side_expt:data_center + side_expt]) # plt.plot(data[data_center - side_expt : data_center + side_expt]) plt.title(f"{strain_label} in dynamic test") set_labels("Microstrain", "Time") plt.tight_layout() plt.savefig( c.get_image_path("validation/truck-1", "time-series-strain.pdf")) plt.close()
def stress_strength_plot(c: Config, top: bool): """Plot the difference of tensile strength and stress under load.""" original_c = c plt.portrait() response_type = ResponseType.StrainT if top else ResponseType.Strain settlement = 3 temp_bottom, temp_top = 21, 30 deck_points = [ Point(x=x, y=0, z=z) for x in np.linspace( # c.bridge.x_min, c.bridge.x_max, num=10 c.bridge.x_min, c.bridge.x_max, num=int(c.bridge.length * 3), ) for z in np.linspace( # c.bridge.z_min, c.bridge.z_max, num=10 c.bridge.z_min, c.bridge.z_max, num=int(c.bridge.width * 3), ) ] # Pier settlement. plt.subplot(3, 1, 1) c, sim_params = pier_disp_damage([(9, settlement / 1000)]).use(original_c) responses = (load_fem_responses( c=c, sim_runner=OSRunner(c), response_type=response_type, sim_params=sim_params, ).resize().to_stress(c.bridge)) top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_contour_deck(c=c, responses=responses, decimals=2) plt.legend(loc="upper right", borderaxespad=0) plt.title(f"{settlement} mm pier settlement") print("Calculated stress from pier settlement") # Temperature effect. plt.subplot(3, 1, 2) c = original_c print(f"deck_points.shape = {np.array(deck_points).shape}") temp_effect = temperature.effect( c=c, response_type=response_type, points=deck_points, temps_bt=([temp_bottom], [temp_top]), ).T[0] print(f"temp_effect.shape = {np.array(temp_effect).shape}") responses = (Responses( response_type=response_type, responses=[(temp_effect[p_ind], deck_points[p_ind]) for p_ind in range(len(deck_points)) if not np.isnan(temp_effect[p_ind])], ).without(remove=without.edges(c=c, radius=2)).to_stress(c.bridge)) top_view_bridge(c.bridge, compass=False, abutments=True, piers=True) plot_contour_deck(c=c, responses=responses, decimals=2) plt.legend(loc="upper right", borderaxespad=0) plt.title(f"T_bot, T_top = {temp_bottom}°C, {temp_top}°C") # plt.title(f"{top_str} stress\nbottom, top = {temp_bottom}, {temp_top}") print("Calculated stress from temperature") # Cracked concrete. plt.subplot(3, 1, 3) time = wagen1.time_at(x=52, bridge=c.bridge) print(f"wagen1.total_kn() = {wagen1.kn}") wagen1.kn = 400 loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True) c, sim_params = transverse_crack().use(original_c) c, sim_params = HealthyDamage().use(original_c) sim_params.ploads = loads responses = (load_fem_responses( c=c, sim_runner=OSRunner(c), response_type=response_type, sim_params=sim_params, ).resize().to_stress(c.bridge)) top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True) plot_contour_deck(c=c, responses=responses, decimals=2) plt.legend(loc="upper right", borderaxespad=0) # plt.title(f"Top stress: cracked concrete\nunder a {int(wagen1.kn)} kN vehicles") plt.title(f"{int(wagen1.total_kn())} kN vehicle") plt.suptitle(f"Stress {response_type.ss_direction()} for 3 scenarios") equal_lims("x", 3, 1) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig( original_c.get_image_path( "validation", f"stress-strength-{response_type.name()}.pdf")) plt.close()