def write(df, name):
    fig, axes = plt.subplots(ncols=2, nrows=3, figsize=(20, 10))
    draw_series_combined(df, name, axes[0, 0])
    axes[0, 1].axis('off')
    axes[0, 1].legend(*axes[0, 0].get_legend_handles_labels(),
                      loc='upper left',
                      ncol=2)

    draw_series_seperate(df, axes[2, 0])

    if df.centroid.notnull().any() and df.centroid.var() != 0:
        distances = []
        for c in df.columns[1:]:
            distances.append(_sbd(df.centroid, df[c])[0])

        draw_lag(df, axes[2, 1])
        draw_sbd_bar_plot(distances, axes[1, 0])
        draw_sbd_dist_plot(distances, axes[1, 1])
    try:
        plt.tight_layout()
        plt.savefig(name, dpi=200)
        plt.close("all")
    except Exception as e:
        import pdb
        pdb.set_trace()
        print("graph %s failed %s" % (name, e))
示例#2
0
def compare_load_positions(c: Config):
    """Compare load positions (normal vs. buckets)."""
    c.il_num_loads = 10
    num_times = 1000

    # Wagen 1 from the experimental campaign.
    point = Point(x=c.bridge.x_max / 2, y=0, z=-8.4)
    end_time = uni_axle_vehicle.time_left_bridge(bridge=c.bridge)
    vehicle_times = list(np.linspace(0, end_time, num_times))
    plt.portrait()

    pw_loads = [
        flatten(uni_axle_vehicle.to_point_load_pw(time=time, bridge=c.bridge),
                PointLoad) for time in vehicle_times
    ]
    pw_load_xs = [[c.bridge.x(l.x_frac) for l in pw_loads[time_ind]]
                  for time_ind in range(len(pw_loads))]
    plt.subplot(3, 1, 1)
    # for l in pw_load_xs:
    #     print(l)
    plt.plot([l[0] for l in pw_load_xs])
    plt.plot([l[1] for l in pw_load_xs])

    wt_loads = [
        flatten(uni_axle_vehicle.to_wheel_track_loads(c=c, time=time),
                PointLoad) for time in vehicle_times
    ]
    wt_load_xs = [[c.bridge.x(l.x_frac) for l in wt_loads[time_ind]]
                  for time_ind in range(len(wt_loads))]
    plt.subplot(3, 1, 2)
    plt.scatter(vehicle_times, [l[0] for l in wt_load_xs], label="0")
    plt.scatter(vehicle_times, [l[1] for l in wt_load_xs], label="1")
    plt.legend()

    wt_load_kn = [[l.kn for l in wt_loads[time_ind]]
                  for time_ind in range(len(wt_loads))]
    plt.subplot(3, 1, 3)
    for l in wt_load_kn:
        print(l)
    plt.scatter(vehicle_times, [l[0] for l in wt_load_kn], label="0")
    plt.scatter(vehicle_times, [l[1] for l in wt_load_kn], label="1")
    plt.legend()

    plt.tight_layout()
    plt.savefig(c.get_image_path("verification", "compare-load-positions.pdf"))
    plt.close()
示例#3
0
def uls_contour_plot(c: Config, x_i: int, z_i: int,
                     response_type: ResponseType):
    wheel_xs = c.bridge.wheel_track_xs(c)
    wheel_x = wheel_xs[x_i]
    wheel_zs = c.bridge.wheel_track_zs(c)
    wheel_z = wheel_zs[z_i]
    print_i(f"Wheel (x, z) = ({wheel_x}, {wheel_z})")
    plt.landscape()
    plt.subplot(2, 1, 1)
    healthy = list(
        ILMatrix.load_wheel_track(
            c=c,
            response_type=response_type,
            fem_runner=OSRunner(c),
            load_z_frac=c.bridge.z_frac(wheel_z),
            run_only=False,
            indices=[x_i],
        ))[0].resize()
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=healthy, sci_format=True, decimals=6)
    plt.title("Healthy")
    c = transverse_crack().use(c)[0]
    cracked = list(
        ILMatrix.load_wheel_track(
            c=c,
            response_type=response_type,
            fem_runner=OSRunner(c),
            load_z_frac=c.bridge.z_frac(wheel_z),
            run_only=False,
            indices=[x_i],
        ))[0].resize()
    plt.subplot(2, 1, 2)
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=cracked, sci_format=True, decimals=6)
    plt.title("Cracked")
    plt.tight_layout()
    plt.savefig(
        c.get_image_path(
            "verification",
            safe_str(
                f"uls-contour-x-{wheel_x}-z-{wheel_z}-{response_type.name()}")
            + ".pdf",
        ))
示例#4
0
def matrix_subplots(
    c: Config,
    resp_matrix: ResponsesMatrix,
    num_subplots: int,
    num_x: int,
    z_frac: float,
    rows: int = 4,
    save: str = None,
    plot_func=None,
):
    """For each subplot plot matrix fem using the given function."""
    cols = int(num_subplots / rows)
    if cols != num_subplots / rows:
        print_w(f"Rows don't divide number of simulations, cols = {cols}" +
                f", sims = {num_subplots / rows}" +
                f", num_subplots = {num_subplots}, rows = {rows}")
        cols += 1
    y_min, y_max = 0, 0
    # Plot each IL and bridge deck side.
    for i, response_frac in enumerate(np.linspace(0, 1, rows * cols)):
        plt.subplot(rows, cols, i + 1)
        plot_bridge_deck_side(c.bridge, show=False, equal_axis=False)
        rs = plot_func(c,
                       resp_matrix,
                       i,
                       response_frac,
                       z_frac=z_frac,
                       num_x=num_x)
        plt.axvline(x=c.bridge.x(x_frac=response_frac), color="red")
        # Keep track of min and max on y axis (only when non-zero fem).
        if any(rs):
            _y_min, _y_max = plt.gca().get_ylim()
            y_min, y_max = min(y_min, _y_min), max(y_max, _y_max)
    # Ensure y_min == -y_max.
    y_min = min(y_min, -y_max)
    y_max = max(-y_min, y_max)
    for i, _ in enumerate(np.linspace(0, 1, rows * cols)):
        plt.subplot(rows, cols, i + 1)
        plt.ylim(y_min, y_max)
    plt.tight_layout()
    if save:
        plt.savefig(save)
        plt.close()
示例#5
0
    def plot_f(time_index):
        # Top plot of the moving vehicles.
        plt.subplot2grid((3, 1), (0, 0), 2, 1)
        plt.title(f"{response_type.name()} on {bridge.name} {traffic_name}")
        top_view_bridge(bridge, lane_fill=False)
        top_view_vehicles(
            bridge=bridge,
            mv_vehicles=traffic[time_index],
            all_vehicles=all_vehicles,
            time=time_index * time_step + start_time,
        )
        contour_cmap = plot_contour_deck(
            c=c,
            responses=traffic_responses[time_index],
            y=0,
            norm=response_norm,
        )
        plt.xlim((bridge.x_min, bridge.x_max))

        # Bottom plot of the total load on the bridge.
        plt.subplot2grid((3, 1), (2, 0), 1, 1)
        plt.plot(times, total_kn)
        plt.xlabel("time")
        plt.ylabel("kilo Newton")
        plt.axvline(x=start_time + time_index * time_step, color="red")

        plt.tight_layout()

        # Add a color bar.
        plt.gcf().subplots_adjust(right=0.75)
        cbar_ax = plt.gcf().add_axes([0.80, 0.1, 0.01, 0.8])
        cbar = plt.gcf().colorbar(
            cm.ScalarMappable(norm=response_norm, cmap=contour_cmap),
            cax=cbar_ax,
        )
        cbar.set_label(response_type.units(short=False))
示例#6
0
def top_view_plot(c: Config, max_time: int, skip: int, damage_scenario):
    response_type = ResponseType.YTranslation
    # Create the traffic.
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=max_time,
    )
    assert len(traffic) == traffic_array.shape[0]
    # Points on the deck to collect fem.
    deck_points = [
        Point(x=x, y=0, z=z) for x in np.linspace(
            c.bridge.x_min, c.bridge.x_max, num=int(c.bridge.length * 2))
        for z in np.linspace(
            c.bridge.z_min, c.bridge.z_max, num=int(c.bridge.width * 2))
        # for x in np.linspace(c.bridge.x_min, c.bridge.x_max, num=30)
        # for z in np.linspace(c.bridge.z_min, c.bridge.z_max, num=10)
    ]
    point = Point(x=21, y=0, z=-8.4)  # Point to plot
    deck_points.append(point)
    # Traffic array to fem array.
    responses_array = responses_to_traffic_array(
        c=c,
        traffic_array=traffic_array,
        damage_scenario=damage_scenario,
        points=deck_points,
        response_type=response_type,
    )
    # Temperature effect July 1st.
    temps_2019 = temperature.load("holly-springs")
    temps_2019["temp"] = temperature.resize(temps_2019["temp"])
    effect_2019 = temperature.effect(
        c=c,
        response_type=response_type,
        points=deck_points,
        temps=temps_2019["temp"],
        solar=temps_2019["solar"],
        len_per_hour=60,
    ).T
    # The effect is ordered by time series and then by points. (104910, 301)
    assert len(effect_2019) == len(temps_2019)
    july_2019_i, july_2019_j = temperature.from_to_indices(
        temps_2019,
        datetime.fromisoformat(f"2019-10-01T00:00"),
        datetime.fromisoformat(f"2019-10-01T23:59"),
    )
    temp_effect = []
    for i in range(len(deck_points)):
        temp_effect.append(
            temperature.apply(
                # Effect for July 1st, for the current point..
                effect=effect_2019.T[i][july_2019_i:july_2019_j],
                # ..for the length of the time series.
                responses=responses_array,
            ))
    temp_effect = np.array(temp_effect)
    plt.subplot(2, 1, 1)
    plt.plot(effect_2019.T[-1])
    plt.subplot(2, 1, 2)
    plt.plot(temp_effect[-1])
    plt.show()
    # Determine response due to pier settlement.
    pd_response_at_point = 0
    if isinstance(damage_scenario, PierDispDamage):
        pd_expt = list(
            DCMatrix.load(c=c,
                          response_type=response_type,
                          fem_runner=OSRunner(c)))
        for pier_displacement in damage_scenario.pier_disps:
            pd_sim_responses = pd_expt[pier_displacement.pier]
            pd_response_at_point += pd_sim_responses.at_deck(
                point, interp=False) * (pier_displacement.displacement /
                                        c.pd_unit_disp)
    # Resize fem if applicable to response type.
    resize_f, units = resize_units(response_type.units())
    if resize_f is not None:
        responses_array = resize_f(responses_array)
        temp_effect = resize_f(temp_effect.T).T
        print(np.mean(temp_effect[-1]))
        pd_response_at_point = resize_f(pd_response_at_point)
    responses_w_temp = responses_array + temp_effect.T
    # Determine levels of the colourbar.
    amin, amax = np.amin(responses_array), np.amax(responses_array)
    # amin, amax = min(amin, -amax), max(-amin, amax)
    levels = np.linspace(amin, amax, 25)
    # All vehicles, for colour reference.
    all_vehicles = flatten(traffic, Vehicle)
    # Iterate through each time index and plot results.
    warmed_up_at = traffic_sequence[0][0].time_left_bridge(c.bridge)
    # Plot for each time step.
    for t_ind in range(len(responses_array))[::skip]:
        plt.landscape()
        # Plot the bridge top view.
        plt.subplot2grid((3, 1), (0, 0), rowspan=2)
        top_view_bridge(c.bridge, compass=False, lane_fill=False, piers=True)
        top_view_vehicles(
            bridge=c.bridge,
            mv_vehicles=flatten(traffic[t_ind], Vehicle),
            time=warmed_up_at + t_ind * c.sensor_hz,
            all_vehicles=all_vehicles,
        )
        responses = Responses(
            response_type=response_type,
            responses=[(responses_array[t_ind][p_ind], deck_points[p_ind])
                       for p_ind in range(len(deck_points))],
            units=units,
        )
        plot_contour_deck(c=c,
                          responses=responses,
                          levels=levels,
                          mm_legend=False)
        plt.scatter(
            [point.x],
            [point.z],
            label=f"Sensor in bottom plot",
            marker="o",
            color="red",
            zorder=10,
        )
        plt.legend(loc="upper right")
        plt.title(
            f"{response_type.name()} after {np.around(t_ind * c.sensor_hz, 4)} seconds"
        )
        # Plot the fem at a point.
        plt.subplot2grid((3, 1), (2, 0))
        time = t_ind * c.sensor_hz
        plt.axvline(x=time,
                    color="black",
                    label=f"Current time = {np.around(time, 4)} s")
        plt.plot(
            np.arange(len(responses_array)) * c.sensor_hz,
            responses_w_temp.T[-1],
            color="red",
            label="Total effect",
        )
        if isinstance(damage_scenario, PierDispDamage):
            plt.plot(
                np.arange(len(responses_array)) * c.sensor_hz,
                np.ones(temp_effect[-1].shape) * pd_response_at_point,
                color="green",
                label="Pier settlement effect",
            )
        plt.plot(
            np.arange(len(responses_array)) * c.sensor_hz,
            temp_effect[-1],
            color="blue",
            label="Temperature effect",
        )
        plt.ylabel(f"{response_type.name()} ({responses.units})")
        plt.xlabel("Time (s)")
        plt.title(f"{response_type.name()} at sensor in top plot")
        plt.legend(loc="upper right", framealpha=1)
        # Finally save the image.
        name = f"{damage_scenario.name}-{response_type.name()}-{t_ind}"
        plt.tight_layout()
        plt.savefig(c.get_image_path("classify/top-view", f"{name}.pdf"))
        plt.savefig(c.get_image_path("classify/top-view/png", f"{name}.png"))
        plt.close()
示例#7
0
def wagen_1_contour_plot(
    c: Config,
    x: int,
    crack_x: float,
    response_type: ResponseType,
    scatter: bool,
    run: bool,
    length: float,
    outline: bool,
    wheels: bool,
    temp: bool,
):
    original_c = c
    LOADS = False
    temp_bottom, temp_top = [17, 25]
    time = wagen1.time_at(x=x, bridge=c.bridge)

    def plot_wheels():
        if wheels:
            wagen1.plot_wheels(c=c,
                               time=time,
                               label="Truck 1 wheels",
                               zorder=100)

    center = c.bridge.x_max / 2
    min_x, max_x = center - 20, center + 20
    min_z, max_z = c.bridge.z_min, c.bridge.z_max

    def zoom_in():
        plt.ylim(min_z, max_z)
        plt.xlim(min_x, max_x)

    loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True)

    crack_f = lambda: transverse_crack(length=length, at_x=crack_x)
    c = healthy_damage_w_transverse_crack_nodes(crack_f).use(original_c)[0]
    deck_shells = get_bridge_shells(c.bridge)[0]
    healthy_responses = load_fem_responses(
        c=c,
        sim_params=SimParams(ploads=loads),
        response_type=response_type,
        sim_runner=OSRunner(c),
        run=run,
    ).at_shells(deck_shells)  # Convert fem to one per shell.
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        # Resize by E-6 from microstrain to strain to match temperature units.
        healthy_responses = healthy_responses.resize()
    before_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    if temp:
        healthy_deck_points = healthy_responses.deck_points()  # Point of fem.
        temp_effect = temperature.effect(
            c=c,
            response_type=response_type,
            points=healthy_deck_points,
            temps_bt=([temp_bottom], [temp_top]),
        ).T[0]  # Temperature effect at existing response points.
        healthy_responses = healthy_responses.add(temp_effect,
                                                  healthy_deck_points)
    after_temp = healthy_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    print_i(f"Healthy, before/after = {before_temp}, {after_temp}")
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        healthy_responses = healthy_responses.map(lambda x: x * 1e6)
    else:
        healthy_responses = healthy_responses.resize()

    # Responses in cracked scenario.
    c = crack_f().use(original_c)[0]
    crack_responses = load_fem_responses(
        c=c,
        sim_params=SimParams(ploads=loads),
        response_type=response_type,
        sim_runner=OSRunner(c),
        run=run,
    ).at_shells(deck_shells)
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        # Resize by E-6 from microstrain to strain to match temperature units.
        crack_responses = crack_responses.resize()
    before_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    if temp:
        crack_deck_points = crack_responses.deck_points()  # Point of fem.
        temp_effect = temperature.effect(
            c=c,
            response_type=response_type,
            points=healthy_deck_points,
            temps_bt=([temp_bottom], [temp_top]),
        ).T[0]  # Temperature effect at existing response points.
        crack_responses = crack_responses.add(temp_effect, healthy_deck_points)
    after_temp = crack_responses.at_deck(Point(x=51, z=-8.4), interp=False)
    print_i(f"Crack, before/after = {before_temp}, {after_temp}")
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        crack_responses = crack_responses.map(lambda x: x * 1e6)
    else:
        crack_responses = crack_responses.resize()

    # Limit to points in crack zone.
    without_cm = 35
    print(f"Avoid {without_cm} cm around crack zone")
    _without_crack_zone = crack_f().without(c.bridge, without_cm / 100)
    without_crack_zone = lambda p: not _without_crack_zone(p)
    if response_type in [ResponseType.Strain, ResponseType.StrainZZB]:
        healthy_responses = healthy_responses.without(without_crack_zone)
        crack_responses = crack_responses.without(without_crack_zone)

    # Norm calculation.
    vmin = min(healthy_responses.values())
    vmax = max(healthy_responses.values())
    vmin = min(vmin, min(crack_responses.values()))
    vmax = max(vmax, max(crack_responses.values()))
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    print(f"Norm min/max = {vmin}, {vmax}")

    plt.portrait()
    plt.subplot(3, 1, 1)
    plot_contour_deck(
        c=c,
        responses=healthy_responses,
        ploads=loads if LOADS else [],
        scatter=scatter,
        norm=norm,
        decimals=2,
    )

    c_x_start, c_z_start, c_x_end, c_z_end = list(
        map(round_m,
            crack_f().crack_area(c.bridge)))

    def plot_outline(label="Crack zone"):
        if outline:
            plt.gca().add_patch(
                mpl.patches.Rectangle(
                    (c_x_start, c_z_start),
                    c_x_end - c_x_start,
                    c_z_end - c_z_start,
                    fill=not scatter,
                    edgecolor="black",
                    facecolor="white",
                    alpha=1,
                    label=label,
                ))

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline(label="Responses not considered")
    plot_wheels()
    zoom_in()

    def legend():
        plt.legend(
            loc="upper right",
            borderpad=0.2,
            labelspacing=0.2,
            borderaxespad=0,
            handletextpad=0.2,
            columnspacing=0.2,
        )

    legend()
    plt.title(f"Healthy bridge")
    plt.xlabel("")
    plt.tick_params(bottom=False, labelbottom=False)

    plt.subplot(3, 1, 2)
    plot_contour_deck(
        c=c,
        responses=crack_responses,
        ploads=loads if LOADS else [],
        scatter=scatter,
        norm=norm,
        decimals=2,
    )

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline()
    plot_wheels()
    zoom_in()

    legend()
    plt.title(f"Cracked bridge")
    plt.xlabel("")
    plt.tick_params(bottom=False, labelbottom=False)

    plt.subplot(3, 1, 3)
    responses = []
    for x in healthy_responses.deck_xs:
        for z in healthy_responses.zs[x][0]:
            responses.append((
                bridge_sim.sim.responses.responses[0][x][0][z] -
                crack_responses.at_deck(Point(x=x, z=z), interp=False),
                Point(x=x, z=z),
            ))
            # try:
            #     fem.append((
            #         healthy_responses.fem[0][x][0][z]
            #         - crack_responses.fem[0][x][0][z],
            #         Point(x=x, z=z)
            #     ))
            # except KeyError:
            #     pass
            #
    diff_responses = responses = Responses(
        response_type=response_type,
        responses=responses,
        units=healthy_responses.units,
    )
    plot_contour_deck(
        c=c,
        responses=diff_responses,
        ploads=loads if LOADS else [],
        cmap=mpl.cm.get_cmap("PiYG"),
        scatter=scatter,
        decimals=2,
    )

    print("********")
    print("********")
    print("********")
    grid_x, grid_z = 600, 200
    grid_points = list(
        filter(
            lambda p: not without_crack_zone(p),
            [
                Point(x=x, y=0, z=z)
                for x in np.linspace(c.bridge.x_min, c.bridge.x_max, grid_x)
                for z in np.linspace(c.bridge.z_min, c.bridge.z_max, grid_z)
            ],
        ))
    print(f"Amount grid points = {len(grid_points)}")
    grid_x_len = c.bridge.length / grid_x
    grid_z_len = c.bridge.width / grid_z
    grid_area = grid_x_len * grid_z_len
    print(f"Grid area = {grid_area}")
    print("Interpolating diff fem")
    interp_diff_responses = diff_responses.at_decks(grid_points)
    count_interp = len(interp_diff_responses)
    interp_diff_responses = interp_diff_responses[~np.
                                                  isnan(interp_diff_responses)]
    print(
        f"Removed {count_interp - len(interp_diff_responses)} of {count_interp} fem, remaining = {len(interp_diff_responses)}"
    )
    print("Finished interpolating diff fem")
    count_min, count_max = 0, 0
    d_min, d_max = min(diff_responses.values()), max(diff_responses.values())
    print(f"diff min, max = {d_min}, {d_max}")
    d_min08, d_max08 = d_min * 0.8, d_max * 0.8
    for interp_r in interp_diff_responses:
        if interp_r < d_min08:
            count_min += 1
        if interp_r > d_max08:
            count_max += 1
    print(f"Count = {count_min}, {count_max}")
    save_path = original_c.get_image_path(
        "verification",
        safe_str(
            f"truck1-contour-x-{x}{crack_x}{length}-{response_type.name()}-{temp}"
        ),
    )
    with open(save_path + ".txt", "w") as f:
        f.write(f"{count_min}, {count_max}\n")
        f.write(f"{count_min * grid_area}, {count_max * grid_area}")
    print(f"Wrote results to {save_path}.txt")

    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_outline()
    plot_wheels()
    zoom_in()

    legend()
    temp_str = f"\nT_bot = {temp_bottom} °C, T_top = {temp_top} °C" if temp else ""
    plt.title(f"Difference of healthy & cracked bridge")
    rt_name = (f"Microstrain {response_type.ss_direction()}" if response_type
               in [ResponseType.Strain, ResponseType.StrainZZB
                   ] else response_type.name())

    plt.suptitle(f"{rt_name}: Truck 1 on healthy & cracked bridge{temp_str}")
    plt.tight_layout(rect=[0, 0.03, 1, 0.93 if temp else 0.95])
    plt.savefig(save_path + ".pdf")
示例#8
0
def compare_responses(c: Config):
    """Compare fem to Truck 1, direct simulation and matmul."""
    assert c.il_num_loads == 600
    num_times = 50
    close_times = 200
    # Running time:
    # responses_to_vehicles_d: num_times * 8
    # responses_to_vehicles_d: 4 * il_num_loads
    # responses_to_loads_m: 0 (4 * il_num_loads)
    # responses_to_loads_m: 0 (4 * il_num_loads)
    # Wagen 1 from the experimental campaign.

    point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4)
    end_time = wagen1.time_left_bridge(bridge=c.bridge)
    wagen1_times = list(np.linspace(0, end_time, num_times))
    more_wagen1_times = list(
        np.linspace(
            wagen1.time_at(x=point.x - 2, bridge=c.bridge),
            wagen1.time_at(x=point.x + 2, bridge=c.bridge),
            close_times,
        ))
    wagen1_times = sorted(wagen1_times + more_wagen1_times)
    plt.portrait()

    # Start with fem from direct simulation.
    responses_not_binned = responses_to_vehicles_d(
        c=c,
        response_type=ResponseType.YTranslation,
        points=[point],
        mv_vehicles=[wagen1],
        times=wagen1_times,
        sim_runner=OSRunner(c),
        binned=False,
    )
    plt.subplot(4, 1, 1)
    plt.title(f"{len(wagen1_times)} fem")
    plt.plot(wagen1_times, responses_not_binned)

    # Then fem from direct simulation with binning.
    c.shorten_paths = True
    responses_binned = responses_to_vehicles_d(
        c=c,
        response_type=ResponseType.YTranslation,
        points=[point],
        mv_vehicles=[wagen1],
        times=wagen1_times,
        sim_runner=OSRunner(c),
        binned=True,
    )
    c.shorten_paths = False
    plt.subplot(4, 1, 2)
    plt.title(f"{len(wagen1_times)} fem (binned)")
    plt.plot(wagen1_times, responses_binned)
    xlim = plt.xlim()

    num_times = int(end_time / c.sensor_hz)
    wagen1_times = np.linspace(0, end_time, num_times)

    # Then from 'TrafficArray' we get fem, without binning.
    wagen1_loads = [
        flatten(wagen1.to_point_load_pw(time=time, bridge=c.bridge), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(4, 1, 3)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} traffic_array")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))
    plt.xlim(xlim)

    # # Then from 'TrafficArray' we get fem, with binning.
    wagen1_loads = [
        flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm_binned = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(4, 1, 4)
    plt.title(
        f"{num_times} fem from {c.il_num_loads} il_num_loads\ntraffic_array binned"
    )
    plt.plot(wagen1_times, np.array(responses_ulm_binned).reshape(-1, 1))
    plt.xlim(xlim)

    plt.tight_layout()
    plt.savefig(
        c.get_image_path("system-verification", "compare-time-series.pdf"))
示例#9
0
def compare_axles(c: Config):
    """Compare fem between uniaxle vehicles and Truck 1."""
    assert c.il_num_loads == 600

    point = Point(x=c.bridge.x_max / 2, y=0, z=-8.4)
    end_time = wagen1.time_left_bridge(bridge=c.bridge)
    num_times = int(end_time / c.sensor_hz)
    wagen1_times = np.linspace(0, end_time, num_times)
    plt.portrait()

    wagen1_loads = [
        flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad)
        for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 1)
    plt.title(
        f"{num_times} fem with ULS = {c.il_num_loads} (Wagen 1 (4 axles))")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    bi_axle_loads = [
        flatten(bi_axle_vehicle.to_wheel_track_loads(c=c, time=time),
                PointLoad) for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=bi_axle_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 2)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (2 axles)")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    uni_axle_loads = [
        flatten(uni_axle_vehicle.to_wheel_track_loads(c=c, time=time),
                PointLoad) for time in wagen1_times
    ]
    responses_ulm = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=uni_axle_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=[point],
        sim_runner=OSRunner(c),
    )
    plt.subplot(3, 1, 3)
    plt.title(f"{num_times} fem with ULS = {c.il_num_loads} (1 axle)")
    plt.plot(wagen1_times, np.array(responses_ulm).reshape(-1, 1))

    plt.tight_layout()
    plt.savefig(c.get_image_path("system-verification", "compare-axles.pdf"))
示例#10
0
def cluster_damage(c: Config, mins: float):
    # Create the traffic.
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=mins * 60,
    )
    point = Point(x=21, y=0, z=-8.4)  # Point to investigate.
    # Collect vertical translation and strain for all scenarios scenarios.
    responses_y = []
    responses_s = []
    for damage_scenario in [
            healthy_damage,
            pier_disp_damage([(5, 0.5 / 1000)])
    ]:
        responses_y.append(
            responses_to_traffic_array(
                c=c,
                traffic_array=traffic_array,
                response_type=ResponseType.YTranslation,
                damage_scenario=damage_scenario,
                points=[point],
                sim_runner=OSRunner(c),
            ).T[0] * 1000)
        assert len(responses_y[-1]) == len(traffic_array)
        responses_s.append(
            responses_to_traffic_array(
                c=c,
                traffic_array=traffic_array,
                response_type=ResponseType.Strain,
                damage_scenario=damage_scenario,
                points=[point],
                sim_runner=OSRunner(c),
            ).T[0])
        assert len(responses_s[-1]) == len(traffic_array)
    # Calculate features per scenarios.
    damage_features = []
    damage_labels = []
    for damage_ind in range(len(responses_y)):
        y = responses_y[damage_ind]
        s = responses_s[damage_ind]
        for response_ind in range(len(y)):
            damage_features.append([y[response_ind], s[response_ind]])
            damage_labels.append(damage_ind)
    damage_features = np.array(damage_features)
    damage_labels = np.array(damage_labels)
    print_i(f"Dimensions of feature array = {damage_features.shape}")
    # Plot the reference data.
    plt.landscape()
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=damage_labels)
    plt.title("Reference")
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-ref.pdf"))
    plt.close()
    # Plot the gaussian mixture results.
    gmm = mixture.GaussianMixture(n_components=2).fit(damage_features)
    labels = flip(l=gmm.predict(damage_features), ref=damage_labels)
    plt.landscape()
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=labels)
    plt.title("Gaussian mixture n = 2")
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-model.pdf"))
    plt.close()
    # Plot and print the accuracy.
    # https://matplotlib.org/3.1.1/gallery/text_labels_and_annotations/custom_legends.html
    acc = abs(labels - damage_labels)
    total = defaultdict(lambda: 0)
    correct = defaultdict(lambda: 0)
    for ind, label in enumerate(damage_labels):
        total[label] += 1
        if acc[ind] == 0:
            correct[label] += 1
    for k, t in total.items():
        print_i(f"k = {k}: {correct[k]} / {t} = {correct[k] / t}")
    plt.scatter(damage_features[:, 0], damage_features[:, 1], c=acc)
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/cluster", "cluster-acc.pdf"))
    plt.close()
示例#11
0
def truck_1_time_series(c: Config):
    """Time series of 3 sensors to Truck 1's movement."""
    side_s = 7
    side = int(side_s * (1 / c.sensor_hz))
    assert wagen1.x_at(time=0, bridge=c.bridge) == 0
    # Get times and loads for Truck 1.
    end_time = wagen1.time_left_bridge(c.bridge)
    wagen1_times = np.linspace(-end_time, end_time * 2,
                               int((end_time * 3) / c.sensor_hz))
    print_i("Calculating Truck 1 loads")
    wagen1_loads = [
        flatten(wagen1.to_wheel_track_loads(c=c, time=time), PointLoad)
        # flatten(wagen1.to_point_load_pw(time=time, bridge=c.bridge), PointLoad)
        for time in wagen1_times
    ]
    print_i("Calculated Truck 1 loads")

    def set_labels(ylabel: str, xlabel: str):
        for i, y, x in [
            (1, True, False),
            (2, False, False),
            (3, True, False),
            (4, False, False),
            (5, True, True),
            (6, False, True),
        ]:
            plt.subplot(3, 2, i)
            ax = plt.gca()
            if y:
                plt.ylabel(ylabel)
            else:
                ax.axes.yaxis.set_ticklabels([])
            if x:
                plt.xlabel(xlabel)
            ax.axes.xaxis.set_ticklabels([])
        ymin, ymax = np.inf, -np.inf
        for i in range(1, 6 + 1):
            plt.subplot(3, 2, i)
            ymin = min(ymin, plt.ylim()[0])
            ymax = max(ymax, plt.ylim()[1])
        for i in range(1, 6 + 1):
            plt.subplot(3, 2, i)
            plt.ylim((ymin, ymax))

    ################
    # Vert. trans. #
    ################

    plt.portrait()
    # Find points of each sensor.
    displa_labels = ["U13", "U26", "U29"]
    displa_points = [
        Point(x=sensor_x, y=0, z=sensor_z) for sensor_x, sensor_z in
        [displa_sensor_xz(displa_label) for displa_label in displa_labels]
    ]
    # Ensure points and truck are on the same lane.
    assert all(p.z < 0 for p in displa_points)
    # Results from simulation.
    responses_truck1 = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.YTranslation,
        damage_scenario=healthy_scenario,
        points=displa_points,
    ).T
    for s_i, sensor_responses in enumerate(responses_truck1):
        plt.subplot(len(displa_points), 2, (s_i * 2) + 1)
        # Find the center of the plot, minimum point in the data.
        data_center = 0
        for i in range(len(sensor_responses)):
            if sensor_responses[i] < sensor_responses[data_center]:
                data_center = i
        # sensor_responses = add_displa_noise(sensor_responses) * 1000
        sensor_responses = sensor_responses * 1000
        plt.plot(sensor_responses[data_center - side:data_center + side])
        plt.title(f"{displa_labels[s_i]} in simulation")
    # Results from experiment.
    side = int(side / ((1 / c.sensor_hz) / 100))
    print_i(f"{side} points each side of center")
    for s_i, displa_label in enumerate(displa_labels):
        plt.subplot(len(displa_points), 2, (s_i * 2) + 2)
        with open(f"validation/experiment/D1a-{displa_label}.txt") as f:
            data = list(map(float, f.readlines()))
        side_expt = int(side_s * (len(data) / 240))
        # Find the center of the plot, minimum point in first 15000 points.
        data_center = 0
        for i in range(15000):
            if data[i] < data[data_center]:
                data_center = i
        plt.plot(data[data_center - side_expt:data_center + side_expt])
        plt.title(f"{displa_label} in dynamic test")
    set_labels("Y translation (mm)", "Time")
    plt.tight_layout()
    plt.savefig(
        c.get_image_path("validation/truck-1", "time-series-vert-trans.pdf"))
    plt.close()

    ##########
    # Strain #
    ##########

    plt.portrait()
    # Find points of each sensor.
    strain_labels = ["T1", "T10", "T11"]
    strain_points = [
        Point(x=sensor_x, y=0, z=sensor_z) for sensor_x, sensor_z in
        [strain_sensor_xz(strain_label) for strain_label in strain_labels]
    ]
    # Results from simulation.
    responses_truck1 = responses_to_traffic_array(
        c=c,
        traffic_array=loads_to_traffic_array(c=c, loads=wagen1_loads),
        response_type=ResponseType.Strain,
        damage_scenario=healthy_scenario,
        points=strain_points,
    ).T
    for s_i, sensor_responses in enumerate(responses_truck1):
        plt.subplot(len(strain_points), 2, (s_i * 2) + 1)
        # Find the center of the plot, minimum point in the data.
        data_center = 0
        for i in range(len(sensor_responses)):
            if sensor_responses[i] > sensor_responses[data_center]:
                data_center = i
        # sensor_responses = add_strain_noise(sensor_responses)
        # plt.plot(sensor_responses)
        plt.plot(sensor_responses[data_center - side:data_center + side])
        # plt.plot(sensor_responses[data_center - side : data_center + side])
        plt.title(f"{strain_labels[s_i]} in simulation")
    # Results from experiment.
    print_i(f"{side} points each side of center")
    for s_i, strain_label in enumerate(strain_labels):
        plt.subplot(len(strain_points), 2, (s_i * 2) + 2)
        with open(f"validation/experiment/D1a-{strain_label}.txt") as f:
            data = list(map(float, f.readlines()))
        side_expt = int(side_s * (len(data) / 240))
        # Find the center of the plot, minimum point in first 15000 points.
        data_center = 0
        for i in range(15000):
            if data[i] < data[data_center]:
                data_center = i
        # plt.plot(data)
        plt.plot(data[data_center - side_expt:data_center + side_expt])
        # plt.plot(data[data_center - side_expt : data_center + side_expt])
        plt.title(f"{strain_label} in dynamic test")
    set_labels("Microstrain", "Time")
    plt.tight_layout()
    plt.savefig(
        c.get_image_path("validation/truck-1", "time-series-strain.pdf"))
    plt.close()
示例#12
0
def stress_strength_plot(c: Config, top: bool):
    """Plot the difference of tensile strength and stress under load."""
    original_c = c
    plt.portrait()
    response_type = ResponseType.StrainT if top else ResponseType.Strain
    settlement = 3
    temp_bottom, temp_top = 21, 30
    deck_points = [
        Point(x=x, y=0, z=z) for x in np.linspace(
            # c.bridge.x_min, c.bridge.x_max, num=10
            c.bridge.x_min,
            c.bridge.x_max,
            num=int(c.bridge.length * 3),
        ) for z in np.linspace(
            # c.bridge.z_min, c.bridge.z_max, num=10
            c.bridge.z_min,
            c.bridge.z_max,
            num=int(c.bridge.width * 3),
        )
    ]

    # Pier settlement.
    plt.subplot(3, 1, 1)
    c, sim_params = pier_disp_damage([(9, settlement / 1000)]).use(original_c)
    responses = (load_fem_responses(
        c=c,
        sim_runner=OSRunner(c),
        response_type=response_type,
        sim_params=sim_params,
    ).resize().to_stress(c.bridge))
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    plt.title(f"{settlement} mm pier settlement")
    print("Calculated stress from pier settlement")

    # Temperature effect.
    plt.subplot(3, 1, 2)
    c = original_c
    print(f"deck_points.shape = {np.array(deck_points).shape}")
    temp_effect = temperature.effect(
        c=c,
        response_type=response_type,
        points=deck_points,
        temps_bt=([temp_bottom], [temp_top]),
    ).T[0]
    print(f"temp_effect.shape = {np.array(temp_effect).shape}")
    responses = (Responses(
        response_type=response_type,
        responses=[(temp_effect[p_ind], deck_points[p_ind])
                   for p_ind in range(len(deck_points))
                   if not np.isnan(temp_effect[p_ind])],
    ).without(remove=without.edges(c=c, radius=2)).to_stress(c.bridge))
    top_view_bridge(c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    plt.title(f"T_bot, T_top = {temp_bottom}°C, {temp_top}°C")
    # plt.title(f"{top_str} stress\nbottom, top = {temp_bottom}, {temp_top}")
    print("Calculated stress from temperature")

    # Cracked concrete.
    plt.subplot(3, 1, 3)
    time = wagen1.time_at(x=52, bridge=c.bridge)
    print(f"wagen1.total_kn() = {wagen1.kn}")
    wagen1.kn = 400
    loads = wagen1.to_wheel_track_loads(c=c, time=time, flat=True)
    c, sim_params = transverse_crack().use(original_c)

    c, sim_params = HealthyDamage().use(original_c)
    sim_params.ploads = loads
    responses = (load_fem_responses(
        c=c,
        sim_runner=OSRunner(c),
        response_type=response_type,
        sim_params=sim_params,
    ).resize().to_stress(c.bridge))
    top_view_bridge(bridge=c.bridge, compass=False, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses, decimals=2)
    plt.legend(loc="upper right", borderaxespad=0)
    # plt.title(f"Top stress: cracked concrete\nunder a {int(wagen1.kn)} kN vehicles")
    plt.title(f"{int(wagen1.total_kn())} kN vehicle")

    plt.suptitle(f"Stress {response_type.ss_direction()} for 3 scenarios")
    equal_lims("x", 3, 1)
    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    plt.savefig(
        original_c.get_image_path(
            "validation", f"stress-strength-{response_type.name()}.pdf"))
    plt.close()