def __init__(
     self,
     init_state=[start_walk_lane[0], start_walk_lane[1], -np.pi / 2,
                 0],  # (x, y, theta, gait)
     number_of_gaits=6,
     gait_length=4,
     gait_progress=0,
     film_dim=(1, 6),
     prim_queue=None,  # primitive queue
     pedestrian_type='3',
 ):
     # init_state: initial state by default
     self.name = 'Pedestrian {}'.format(id(self))
     self.state = np.array(init_state, dtype="float")
     self.alive_time = 0
     self.is_dead = False
     self.number_of_gaits = film_dim[0] * film_dim[1]
     self.gait_length = gait_length
     self.gait_progress = gait_progress
     self.film_dim = film_dim
     self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6'])
     if prim_queue == None:
         self.prim_queue = Queue()
     else:
         prim_queue = prim_queue
     self.fig = '../imglib/pedestrians/walking' + pedestrian_type + '.png'
     self.medic = '../imglib/pedestrians/medic' + '.png'
     self.all_pedestrian_types = {'1', '2', '3', '4', '5', '6'}
     self.dt = 0.1
Esempio n. 2
0
 def __init__(
         self,
         init_state=[0, 0, 0, 0],  # (x, y, theta, gait)
         number_of_gaits=6,
         gait_length=4,
         gait_progress=0,
         film_dim=(1, 6),
         prim_queue=None,  # primitive queue
         pedestrian_type='3',
         name=None,
         age=20):
     """
     Pedestrian class
     """
     # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0)
     self.vee_max = 50
     self.alive_time = 0
     self.is_dead = False
     self.id = 0
     self.destination = (-1, -1)
     self.state = np.array(init_state, dtype="float")
     self.monitor_state = 0
     self.number_of_gaits = film_dim[0] * film_dim[1]
     self.gait_length = gait_length
     self.gait_progress = gait_progress
     self.film_dim = film_dim
     self.name = name
     self.age = age
     self.pedestrian_type = pedestrian_type
     if prim_queue == None:
         self.prim_queue = Queue()
     else:
         prim_queue = prim_queue
     self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
Esempio n. 3
0
 def __init__(
     self,
     init_state=[0, 0, 0, 0],
     L=50,  # length of vehicle
     a_max=9.81,  # maximum acceleration of vehicle
     a_min=-9.81,  # maximum deceleration of vehicle
     nu_max=0.5,  # maximum steering input in radians/sec
     nu_min=-0.5,  # minimum steering input in radians/sec)
     vee_max=100,  # maximum velocity
     is_honking=False,  # the car is honking
     color='blue',  # color of the car
     # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive)
     prim_queue=None,
     fuel_level=float('inf')
 ):  # TODO: fuel level of the car - FUTURE FEATURE)
     if color != 'blue' and color != 'gray':
         raise Exception("Color must either be blue or gray!")
     self.color = color
     self.fig = Image.open(car_figs[color])
     self.params = (L, a_max, a_min, nu_max, nu_min, vee_max)
     self.alive_time = 0
     self.state = np.array(init_state, dtype='float')
     # extended state required for Bastian's primitive computation
     self.extended_state = None
     self.is_honking = is_honking
     self.prim_queue = Queue() if prim_queue is None else prim_queue
     self.fuel_level = fuel_level
 def __init__(
     self,
     init_state=[2908, 665, -pi / 2, 0],  # (x, y, theta, gait)
     number_of_gaits=6,
     gait_length=4,
     gait_progress=0,
     film_dim=(1, 6),
     prim_queue=None,  # primitive queue
     pedestrian_type='3',
 ):
     # init_state: initial state by default
     #self.vee_max = 50
     self.alive_time = 0
     self.is_dead = False
     self.state = np.array(init_state, dtype="float")
     self.number_of_gaits = film_dim[0] * film_dim[1]
     self.gait_length = gait_length
     self.gait_progress = gait_progress
     self.film_dim = film_dim
     self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6'])
     if prim_queue == None:
         self.prim_queue = Queue()
     else:
         prim_queue = prim_queue
     self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
    def __init__(self, 
                 init_state=[0, 0, 0, 0],
                 length = 50,  # length of vehicle in pixels
                 acc_max = 9.81,  # maximum acceleration of vehicle
                 acc_min = -9.81,  # maximum deceleration of vehicle
                 steer_max = 0.5,  # maximum steering input in radians
                 steer_min = -0.5,  # minimum steering input in radians
                 vee_max = 100,  # maximum velocity
                 is_honking = False,  # the car is honking
                 color = 'blue',  # color of the car
                 plate_number = None,  # license plate number
                 # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive)
                 prim_queue = None,
                 fuel_level = float('inf')):  # TODO: fuel level of the car
        if color not in car_colors:
            raise Exception("This car color doesn't exist!")
        self._length = length
        self._vee_max = vee_max
        self.id = 0
        self.destination = None # to check whether the car is arrived for monitoring
        self.acc_range = (acc_min, acc_max)
        self.steer_range = (steer_min, steer_max)
        self.alive_time = 0
        self.plate_number = plate_number
        #self.init_state = np.array(init_state, dtype='float')
        self.state = np.array(init_state, dtype='float')
        self.color = color
#        self.new_unpause = False
#        self.new_pause = False
        # extended state required for Bastian's primitive computation
        self.extended_state = None
        self.is_honking = is_honking
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            self.prim_queue = prim_queue
        self.fuel_level = fuel_level
        self.fig = Image.open(car_figs[color])
 def __init__(
         self,
         init_state=[0, 0, 0, 0],  # (x, y, theta, gait)
         number_of_gaits=6,
         gait_length=4,
         gait_progress=0,
         film_dim=(1, 6),
         prim_queue=None,  # primitive queue
         pedestrian_type='3'):  # three types 1 or 2 or 3
     """
     Pedestrian class
     """
     # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0)
     self.alive_time = 0
     self.state = np.array(init_state, dtype="float")
     self.number_of_gaits = film_dim[0] * film_dim[1]
     self.gait_length = gait_length
     self.gait_progress = gait_progress
     self.film_dim = film_dim
     if prim_queue == None:
         self.prim_queue = Queue()
     else:
         prim_queue = prim_queue
     self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
class Pedestrian(BoxComponent):
    def __init__(
        self,
        init_state=[start_walk_lane[0], start_walk_lane[1], -np.pi / 2,
                    0],  # (x, y, theta, gait)
        number_of_gaits=6,
        gait_length=4,
        gait_progress=0,
        film_dim=(1, 6),
        prim_queue=None,  # primitive queue
        pedestrian_type='3',
    ):
        # init_state: initial state by default
        self.name = 'Pedestrian {}'.format(id(self))
        self.state = np.array(init_state, dtype="float")
        self.alive_time = 0
        self.is_dead = False
        self.number_of_gaits = film_dim[0] * film_dim[1]
        self.gait_length = gait_length
        self.gait_progress = gait_progress
        self.film_dim = film_dim
        self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6'])
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            prim_queue = prim_queue
        self.fig = '../imglib/pedestrians/walking' + pedestrian_type + '.png'
        self.medic = '../imglib/pedestrians/medic' + '.png'
        self.all_pedestrian_types = {'1', '2', '3', '4', '5', '6'}
        self.dt = 0.1

    async def next(self, inputs, dt):
        """
        The pedestrian advances forward
        """
        #await trio.sleep(0)
        if self.is_dead:
            if self.fig != self.medic:
                self.fig = self.medic
        else:
            dee_theta, vee = inputs
            self.state[2] += dee_theta  # update heading of pedestrian
            self.state[0] += vee * np.cos(
                self.state[2]) * self.dt  # update x coordinate of pedestrian
            self.state[1] += vee * np.sin(
                self.state[2]) * self.dt  # update y coordinate of pedestrian
            distance_travelled = vee * self.dt  # compute distance travelled during dt
            gait_change = (self.gait_progress +
                           distance_travelled / self.gait_length
                           ) // 1  # compute number of gait change
            self.gait_progress = (self.gait_progress +
                                  distance_travelled / self.gait_length) % 1
            self.state[3] = int(
                (self.state[3] + gait_change) % self.number_of_gaits)
            self.alive_time += self.dt

    async def extract_primitive(self):
        #TODO: rewrite the comment below
        """
       This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
       return False

       """
        while self.prim_queue.len() > 0:
            if self.prim_queue.top(
            )[1] < 1:  # if the top primitive hasn't been exhausted
                prim_data, prim_progress = self.prim_queue.top()  # extract it
                return prim_data, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    async def prim_next(self):
        #await trio.sleep(0)
        if await self.extract_primitive(
        ) == False:  # if there is no primitive to use
            await self.next((0, 0), self.dt)
        else:
            prim_data, prim_progress = await self.extract_primitive(
            )  # extract primitive data and primitive progress from prim
            start, finish, vee = prim_data  # extract data from primitive
            total_distance, _ = await self.get_walking_displacement(
                start, finish)
            if prim_progress == 0:  # ensure that starting position is correct at start of primitive
                self.state[0] = start[0]
                self.state[1] = start[1]
            if start == finish:  #waiting mode
                remaining_distance = 0
                self.state[3] = 0  # reset gait
                if self.prim_queue.len(
                ) > 1:  # if current not at last primitive
                    last_prim_data, last_prim_progress = self.prim_queue.bottom(
                    )  # extract last primitive
                    _, last_finish, vee = last_prim_data
                    _, heading = await self.get_walking_displacement(
                        self.state, last_finish)
                    if self.state[2] != heading:
                        self.state[2] = heading
            else:  # if in walking mode
                remaining_distance, heading = await self.get_walking_displacement(
                    self.state, finish)
                if self.state[2] != heading:
                    self.state[2] = heading
            if vee * self.dt > remaining_distance and remaining_distance != 0:
                await self.next((0, remaining_distance / self.dt), self.dt)
            else:
                await self.next((0, vee), self.dt)
            if total_distance != 0:
                prim_progress += self.dt / (total_distance / vee)
            self.prim_queue.replace_top(
                (prim_data, prim_progress))  # update primitive queue

    async def get_walking_displacement(self, start, finish):
        dx = finish[0] - start[0]
        dy = finish[1] - start[1]
        distance = np.linalg.norm(np.array([dx, dy]))
        heading = np.arctan2(dy, dx)
        return distance, heading

    async def start_ped(self, start_walk, end_walk):
        print('Start Pedestrian')
        self.start_walk_lane = start_walk
        self.end_walk_lane = end_walk
        self.prim_queue.enqueue(
            ((self.start_walk_lane, self.end_walk_lane, 60), 0))

    async def ped_walk(self):
        while (self.state[0] <
               self.end_walk_lane[0]):  # if not at the destination
            #print('Pedestrian is walking')
            #print(self.state)
            await self.prim_next()
            await trio.sleep(0)

    async def run(self, start_walk, end_walk):
        await self.start_ped(start_walk, end_walk)
        async with trio.open_nursery() as nursery:
            nursery.start_soon(self.ped_walk)
            await trio.sleep(0)
Esempio n. 8
0
class KinematicCar():
    '''Kinematic car class

    init_state is [vee, theta, x, y], where vee, theta, x, y are the velocity, orientation, and
    coordinates of the car respectively
    '''
    def __init__(
        self,
        init_state=[0, 0, 0, 0],
        length=50,  # length of vehicle in pixels
        acc_max=9.81,  # maximum acceleration of vehicle
        acc_min=-9.81,  # maximum deceleration of vehicle
        steer_max=0.5,  # maximum steering input in radians
        steer_min=-0.5,  # minimum steering input in radians
        vee_max=100,  # maximum velocity
        is_honking=False,  # the car is honking
        color='blue',  # color of the car
        plate_number=None,  # license plate number
        # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive)
        prim_queue=None,
        fuel_level=float('inf')):  # TODO: fuel level of the car
        if color not in car_colors:
            raise Exception("This car color doesn't exist!")
        self._length = length
        self._vee_max = vee_max
        self.acc_range = (acc_min, acc_max)
        self.steer_range = (steer_min, steer_max)
        self.alive_time = 0
        self.plate_number = plate_number
        #self.init_state = np.array(init_state, dtype='float')
        self.state = np.array(init_state, dtype='float')
        self.color = color
        #        self.new_unpause = False
        #        self.new_pause = False
        # extended state required for Bastian's primitive computation
        self.extended_state = None
        self.is_honking = is_honking
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            self.prim_queue = prim_queue
        self.fuel_level = fuel_level
        self.fig = Image.open(car_figs[color])

    def state_dot(self, state, time, acc, steer):
        """
        This function defines the system dynamics
        
        Inputs
        acc: acceleration input
        steer: steering input
        """
        # if already at maximum speed, can't no longer accelerate
        if abs(state[0]) >= self._vee_max and sign(acc) == sign(state[0]):
            vee_dot = 0
        else:
            vee_dot = saturation_filter(acc, self.acc_range[0],
                                        self.acc_range[1])
        theta_dot = state[0] / self._length * tan(
            saturation_filter(steer, self.steer_range[0], self.steer_range[1]))
        x_dot = state[0] * cos(state[1])
        y_dot = state[0] * sin(state[1])
        dstate = [vee_dot, theta_dot, x_dot, y_dot]
        return dstate

    def toggle_honk(self):
        self.is_honking = not self.is_honking

    def next(self, inputs, dt):
        """
        next is a function that updates the current position of the car when inputs are applied for a duration of dt
        
        Inputs:
        inputs: acceleration and steering inputs
        dt: integration time

        Outputs:
        None - the states of the car will get updated
        """
        acc, steer = inputs
        # take only the real part of the solution
        self.state = odeint(self.state_dot,
                            self.state,
                            t=(0, dt),
                            args=(acc, steer))[1]
        self.fuel_level -= abs(
            acc) * dt  # fuel decreases linearly with acceleration
        self.alive_time += dt

        # fix floating
        if abs(acc) < 0.1:
            self.state[0] = 0

    def extract_primitive(self):
        """
        This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
        return False

        """
        while self.prim_queue.len() > 0:
            # if the top primitive hasn't been exhausted
            if self.prim_queue.top()[1] < 1:
                prim_id, prim_progress = self.prim_queue.top()  # extract it
                return prim_id, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    def prim_next(self, dt):
        """
        updates with primitive, if no primitive available, update with next with zero inputs
        Inputs:
        dt: integration time

        Outputs:
        None - the states of the car will get updated
        """
        if self.extract_primitive(
        ) == False:  # if there is no primitive to use
            self.next((0, 0), dt)
        else:
            prim_id, prim_progress = self.extract_primitive()
            # TODO: make this portion of the code more automated
            if prim_id > -1:
                # load primitive data
                list_of_key = ['x0', 'x_ref', 'u_ref', 'alpha', 'K']
                x0, x_ref, u_ref, alpha, K = get_bunch_prim_data(
                    prim_id, list_of_key)

                if prim_progress == 0:  # compute initial extended state
                    x_real = self.state.reshape((-1, 1))
                    x1 = x_real - x0
                    x2 = np.matmul(np.linalg.inv(diag([4, 0.02, 4, 4])), x1)
                    # initial state, consisting of actual and virtual states for the controller
                    self.extended_state = (np.vstack((x_real, x0, x1, x2)))[:,
                                                                            0]

                num_of_inputs = 2
                G_u = np.diag(
                    [175, 1.29]
                )  # this diagonal matrix encodes the size of input set (a constraint)
                dist = get_disturbance()
                k = int(prim_progress *
                        params.num_subprims)  # calculate primitive waypoint
                q1 = K[k, 0].reshape((-1, 1), order='F')
                q2 = 0.5 * (x_ref[:, k + 1] + x_ref[:, k]).reshape(-1, 1)
                q3 = u_ref[:, k].reshape(-1, 1)
                q4 = u_ref[:, k].reshape(-1, 1)
                q5 = np.matmul(
                    G_u,
                    alpha[k * num_of_inputs:(k + 1) * num_of_inputs]).reshape(
                        (-1, 1), order='F')
                # parameters for the controller
                q = np.vstack((q1, q2, q3, q4, q5))

                self.extended_state = odeint(func=prim_state_dot,
                                             y0=self.extended_state,
                                             t=[0, dt],
                                             args=(dist, q))[-1, :]
                self.state = self.extended_state[0:len(self.state)]
                self.alive_time += dt
                prim_progress = prim_progress + dt / get_prim_data(
                    prim_id, 't_end')[0]
                self.prim_queue.replace_top((prim_id, prim_progress))
            else:  # if is stopping primitive
                self.next((0, 0), dt)
Esempio n. 9
0
class KinematicCar:
    """Kinematic Car Class

    init_state is [vee, theta, x, y], where vee, theta, x, y are the velocity, orientation, and
    coordinates of the car respectively
    """
    def __init__(
        self,
        init_state=[0, 0, 0, 0],
        L=50,  # length of vehicle
        a_max=9.81,  # maximum acceleration of vehicle
        a_min=-9.81,  # maximum deceleration of vehicle
        nu_max=0.5,  # maximum steering input in radians/sec
        nu_min=-0.5,  # minimum steering input in radians/sec)
        vee_max=100,  # maximum velocity
        is_honking=False,  # the car is honking
        color='blue',  # color of the car
        # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive)
        prim_queue=None,
        fuel_level=float('inf')
    ):  # TODO: fuel level of the car - FUTURE FEATURE)
        if color != 'blue' and color != 'gray':
            raise Exception("Color must either be blue or gray!")
        self.color = color
        self.fig = Image.open(car_figs[color])
        self.params = (L, a_max, a_min, nu_max, nu_min, vee_max)
        self.alive_time = 0
        self.state = np.array(init_state, dtype='float')
        # extended state required for Bastian's primitive computation
        self.extended_state = None
        self.is_honking = is_honking
        self.prim_queue = Queue() if prim_queue is None else prim_queue
        self.fuel_level = fuel_level

    def state_dot(self, state, t, a, nu):
        """
        state_dot is a function that defines the system dynamics

        Inputs
        state: current state
        t: current time
        a: acceleration input
        nu: steering input

        """
        (L, a_max, a_min, nu_max, nu_min, vee_max) = self.params
        dstate_dt = np.zeros(np.shape(state))
        dstate_dt[0] = saturation_filter(a, a_max, a_min)
        # if already at maximum speed, can't no longer accelerate
        if np.abs(state[1]) >= vee_max and np.sign(a) == np.sign(state[1]):
            dstate_dt[1] = 0
        else:
            dstate_dt[1] = state[0] / L * \
                tan(saturation_filter(nu, nu_max, nu_min))
        dstate_dt[2] = state[0] * cos(state[1])
        dstate_dt[3] = state[0] * sin(state[1])
        return dstate_dt

    def toggle_honk(self):
        self.is_honking = not self.is_honking

    def next(self, inputs, dt):
        """
        next is a function that updates the current position of the car when inputs are applied for a duration of dt
        Inputs:
        inputs: acceleration and steering inputs
        dt: integration time

        Outputs:
        None - the states of the car will get updated
        """
        a, nu = inputs

        # take only the real part of the solution
        self.state = odeint(self.state_dot,
                            self.state,
                            t=(0, dt),
                            args=(a, nu))[1]
        # fuel decreases linearly with acceleration/deceleration
        self.fuel_level -= np.abs(a) * dt
        # update alive time
        self.alive_time += dt

        # TODO: temporary fix to floating problem
        if a == 0:
            self.state[0] = np.sign(self.state[0]) * \
                abs(self.state[0]) * dt * 0.05

    def extract_primitive(self):
        # TODO: rewrite the comment below
        """
        This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
        return False

        """
        while self.prim_queue.len() > 0:
            # if the top primitive hasn't been exhausted
            if self.prim_queue.top()[1] < 1:
                prim_id, prim_progress = self.prim_queue.top()  # extract it
                return prim_id, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    def prim_next(self, dt):
        """
        updates with primitive, if no primitive available, update with next with zero inputs
        Inputs:
        dt: integration time

        Outputs:
        None - the states of the car will get updated
        """
        # TODO: implement compatibility check with primitive to make sure that the params & dynamics match (essentially comparing prim_car and the
        # kinematic model)
        if self.extract_primitive(
        ) == False:  # if there is no primitive to use
            self.next((0, 0), dt)
        else:
            prim_id, prim_progress = self.extract_primitive()
            # load primitive data TODO: make this portion of the code more automated
            # the primitive corresponding to the primitive number
            prim = mat['MA3'][prim_id, 0]
            t_end = prim['t_end'][0, 0][0, 0]  # extract duration of primitive
            # number of subintervals encoded in primitive
            N = prim['K'][0, 0].shape[0]
            # this diagonal matrix encodes the size of input set (a constraint)
            G_u = np.diag([175, 1.29])
            nu = 2  # number of inputs
            nx = 4  # number of states

            if prim_progress == 0:  # compute initial extended state
                x1 = self.state.reshape((-1, 1))
                x2 = prim['x0'][0, 0]
                x3 = x1 - prim['x0'][0, 0]
                x4 = np.matmul(np.linalg.inv(np.diag([4, 0.02, 4, 4])),
                               (x1 - prim['x0'][0, 0]))
                # initial state, consisting of actual state and virtual states for the controller
                self.extended_state = (np.vstack((x1, x2, x3, x4)))[:, 0]
            k = int(prim_progress * N)  # calculate primitive waypoint

            dist = get_disturbance()
            q1 = prim['K'][0, 0][k, 0].reshape((-1, 1), order='F')
            q2 = 0.5 * (prim['x_ref'][0, 0][:, k + 1] +
                        prim['x_ref'][0, 0][:, k]).reshape(-1, 1)
            q3 = prim['u_ref'][0, 0][:, k].reshape(-1, 1)
            q4 = prim['u_ref'][0, 0][:, k].reshape(-1, 1)
            q5 = np.matmul(G_u, prim['alpha'][0,
                                              0][k * nu:(k + 1) * nu]).reshape(
                                                  (-1, 1), order='F')
            # parameters for the controller
            q = np.vstack((q1, q2, q3, q4, q5))
            self.extended_state = odeint(func=prim_state_dot,
                                         y0=self.extended_state,
                                         t=[0, dt],
                                         args=(dist, q))[-1, :]
            self.state = self.extended_state[0:4]
            # update alive time
            self.alive_time += dt
            # update progress
            prim_progress = prim_progress + dt / t_end
            self.prim_queue.replace_top((prim_id, prim_progress))
Esempio n. 10
0
class Pedestrian:
    def __init__(
            self,
            init_state=[0, 0, 0, 0],  # (x, y, theta, gait)
            number_of_gaits=6,
            gait_length=4,
            gait_progress=0,
            film_dim=(1, 6),
            prim_queue=None,  # primitive queue
            pedestrian_type='3',
            name=None,
            age=20):
        """
        Pedestrian class
        """
        # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0)
        self.vee_max = 50
        self.alive_time = 0
        self.is_dead = False
        self.id = 0
        self.destination = (-1, -1)
        self.state = np.array(init_state, dtype="float")
        self.monitor_state = 0
        self.number_of_gaits = film_dim[0] * film_dim[1]
        self.gait_length = gait_length
        self.gait_progress = gait_progress
        self.film_dim = film_dim
        self.name = name
        self.age = age
        self.pedestrian_type = pedestrian_type
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            prim_queue = prim_queue
        self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'

    def next(self, inputs, dt):
        """
        The pedestrian advances forward
        """
        if self.is_dead:
            if self.fig != medic:
                self.fig = medic
        else:
            dee_theta, vee = inputs
            self.state[2] += dee_theta  # update heading of pedestrian
            self.state[0] += vee * cos(
                self.state[2]) * dt  # update x coordinate of pedestrian
            self.state[1] += vee * sin(
                self.state[2]) * dt  # update y coordinate of pedestrian
            distance_travelled = vee * dt  # compute distance travelled during dt
            gait_change = (self.gait_progress +
                           distance_travelled / self.gait_length
                           ) // 1  # compute number of gait change
            self.gait_progress = (self.gait_progress +
                                  distance_travelled / self.gait_length) % 1
            self.state[3] = int(
                (self.state[3] + gait_change) % self.number_of_gaits)
            self.alive_time += dt

    def extract_primitive(self):
        #TODO: rewrite the comment below
        """
       This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
       return False

       """
        while self.prim_queue.len() > 0:
            if self.prim_queue.top(
            )[1] < 1:  # if the top primitive hasn't been exhausted
                prim_data, prim_progress = self.prim_queue.top()  # extract it
                return prim_data, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    def prim_next(self, dt):
        if self.extract_primitive(
        ) == False:  # if there is no primitive to use
            self.next((0, 0), dt)
        else:
            prim_data, prim_progress = self.extract_primitive(
            )  # extract primitive data and primitive progress from prim
            start, finish, vee = prim_data  # extract data from primitive
            total_distance, _ = self.get_walking_displacement(start, finish)
            if prim_progress == 0:  # ensure that starting position is correct at start of primitive
                self.state[0] = start[0]
                self.state[1] = start[1]
            if start == finish:  #waiting mode
                remaining_distance = 0
                self.state[3] = 0  # reset gait
                if self.prim_queue.len(
                ) > 1:  # if current not at last primitive
                    last_prim_data, last_prim_progress = self.prim_queue.bottom(
                    )  # extract last primitive
                    _, last_finish, vee = last_prim_data
                    _, heading = self.get_walking_displacement(
                        self.state, last_finish)
                    if self.state[2] != heading:
                        self.state[2] = heading
            else:  # if in walking mode
                remaining_distance, heading = self.get_walking_displacement(
                    self.state, finish)
                if self.state[2] != heading:
                    self.state[2] = heading
            if vee * dt > remaining_distance and remaining_distance != 0:
                self.next((0, remaining_distance / dt), dt)
            else:
                self.next((0, vee), dt)
            if total_distance != 0:
                prim_progress += dt / (total_distance / vee)
            self.prim_queue.replace_top(
                (prim_data, prim_progress))  # update primitive queue

    def get_walking_displacement(self, start, finish):
        dx = finish[0] - start[0]
        dy = finish[1] - start[1]
        distance = np.linalg.norm(np.array([dx, dy]))
        heading = arctan2(dy, dx)
        return distance, heading

    # cross the street if light is green, or if the pedestrian just crossed the street, continue walking and ignore traffic light color
    def continue_walking(self, lane1, lane2, direction, remaining_time):
        person_xy = (self.state[0], self.state[1])
        walking = False
        theta = self.state[2]
        self.monitor_state = 4
        if person_xy in (lane1 + lane2) and remaining_time != -1:
            self.monitor_state = 3
            prim_data, prim_progress = self.prim_queue.get_element_at_index(-2)
            start, finish, vee = prim_data
            remaining_distance, _ = self.get_walking_displacement(
                start, finish)  # in this scenario, person_xy = start
            vee = max(vee, remaining_distance / remaining_time)
            if vee <= self.vee_max:
                walking = True
                self.monitor_state = 2
                # if the pedestrian isn't going fast enough, increase speed to cross street before light turns red
                self.prim_queue.replace_element_at_index(
                    ((start, finish, vee), prim_progress), -2)
        elif (person_xy == lane1[0]
              or person_xy == lane2[0]) and theta == direction[0]:
            walking = True
            self.monitor_state = 1
        elif (person_xy == lane1[1]
              or person_xy == lane2[1]) and theta == direction[1]:
            walking = True
            self.monitor_state = 1
        return walking

    # if the pedestrian isn't going fast enough, increase speed to cross street before light turns red
    def walk_faster(self, remaining_time):
        prim_data, prim_progress = self.prim_queue.top()
        start, finish, vee = prim_data
        remaining_distance, _ = self.get_walking_displacement(
            self.state, finish)
        if (remaining_distance / vee) > remaining_time:
            vee = remaining_distance / remaining_time
            if (vee <= self.vee_max):
                self.prim_queue.replace_top(
                    ((start, finish, vee), prim_progress))
Esempio n. 11
0
class Pedestrian:
    def __init__(
            self,
            init_state=[0, 0, 0, 0],  # (x, y, theta, gait)
            number_of_gaits=6,
            gait_length=4,
            gait_progress=0,
            film_dim=(1, 6),
            prim_queue=None,  # primitive queue
            pedestrian_type='3'):  # three types 1 or 2 or 3
        """
        Pedestrian class
        """
        # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0)
        self.alive_time = 0
        self.state = np.array(init_state, dtype="float")
        self.number_of_gaits = film_dim[0] * film_dim[1]
        self.gait_length = gait_length
        self.gait_progress = gait_progress
        self.film_dim = film_dim
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            prim_queue = prim_queue
        self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'

    def next(self, inputs, dt):
        """
        The pedestrian advances forward
        """
        dee_theta, vee = inputs
        self.state[2] += dee_theta  # update heading of pedestrian
        # update x coordinate of pedestrian
        self.state[0] += vee * np.cos(self.state[2]) * dt
        # update y coordinate of pedestrian
        self.state[1] += vee * np.sin(self.state[2]) * dt
        distance_travelled = vee * dt  # compute distance travelled during dt
        gait_change = (self.gait_progress + distance_travelled /
                       self.gait_length) // 1  # compute number of gait change
        self.gait_progress = (self.gait_progress +
                              distance_travelled / self.gait_length) % 1
        self.state[3] = int(
            (self.state[3] + gait_change) % self.number_of_gaits)

    def visualize(self):
        # convert gait number to i, j coordinates of subfigure
        current_gait = self.state[3]
        i = current_gait % self.film_dim[1]
        j = current_gait // self.film_dim[1]
        img = Image.open(self.fig)
        width, height = img.size
        sub_width = width / self.film_dim[1]
        sub_height = height / self.film_dim[0]
        lower = (i * sub_width, (j - 1) * sub_height)
        upper = ((i + 1) * sub_width, j * sub_height)
        area = (lower[0], lower[1], upper[0], upper[1])
        cropped_img = img.crop(area)
        return cropped_img

    def extract_primitive(self):
        # TODO: rewrite the comment below
        """
        This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
        return False

        """
        while self.prim_queue.len() > 0:
            # if the top primitive hasn't been exhausted
            if self.prim_queue.top()[1] < 1:
                prim_data, prim_progress = self.prim_queue.top()  # extract it
                return prim_data, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    def prim_next(self, dt):
        if self.extract_primitive(
        ) == False:  # if there is no primitive to use
            self.next((0, 0), dt)
        else:
            # extract primitive data and primitive progress from prim
            prim_data, prim_progress = self.extract_primitive()
            start, finish, t_end = prim_data  # extract data from primitive
            if prim_progress == 0:  # ensure that starting position is correct at start of primitive
                self.state[0] = start[0]
                self.state[1] = start[1]
            if start == finish:  # waiting mode
                remaining_distance = 0
                self.state[3] = 0  # reset gait
                if self.prim_queue.len(
                ) > 1:  # if current not at last primitive
                    last_prim_data, last_prim_progress = self.prim_queue.bottom(
                    )  # extract last primitive
                    last_start, last_finish, last_t_end = last_prim_data
                    dx_last = last_finish[0] - self.state[0]
                    dy_last = last_finish[1] - self.state[1]
                    heading = np.arctan2(dy_last, dx_last)
                    if self.state[2] != heading:
                        self.state[2] = heading
            else:  # if in walking mode
                dx = finish[0] - self.state[0]
                dy = finish[1] - self.state[1]
                heading = np.arctan2(dy, dx)
                if self.state[2] != heading:
                    self.state[2] = heading
                remaining_distance = np.linalg.norm(np.array([dx, dy]))
            remaining_time = (1 - prim_progress) * t_end
            vee = remaining_distance / remaining_time
            self.next((0, vee), dt)
            prim_progress += dt / t_end
            self.prim_queue.replace_top(
                (prim_data, prim_progress))  # update primitive queue
Esempio n. 12
0
class Pedestrian:
    def __init__(
        self,
        init_state=[2908, 665, -pi / 2, 0],  # (x, y, theta, gait)
        number_of_gaits=6,
        gait_length=4,
        gait_progress=0,
        film_dim=(1, 6),
        prim_queue=None,  # primitive queue
        pedestrian_type='3',
    ):
        # init_state: initial state by default
        #self.vee_max = 50
        self.alive_time = 0
        self.is_dead = False
        self.state = np.array(init_state, dtype="float")
        self.number_of_gaits = film_dim[0] * film_dim[1]
        self.gait_length = gait_length
        self.gait_progress = gait_progress
        self.film_dim = film_dim
        self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6'])
        if prim_queue == None:
            self.prim_queue = Queue()
        else:
            prim_queue = prim_queue
        self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'

    def next(self, inputs, dt):
        """
        The pedestrian advances forward
        """
        if self.is_dead:
            if self.fig != medic:
                self.fig = medic
        else:
            dee_theta, vee = inputs
            self.state[2] += dee_theta  # update heading of pedestrian
            self.state[0] += vee * cos(
                self.state[2]) * dt  # update x coordinate of pedestrian
            self.state[1] += vee * sin(
                self.state[2]) * dt  # update y coordinate of pedestrian
            distance_travelled = vee * dt  # compute distance travelled during dt
            gait_change = (self.gait_progress +
                           distance_travelled / self.gait_length
                           ) // 1  # compute number of gait change
            self.gait_progress = (self.gait_progress +
                                  distance_travelled / self.gait_length) % 1
            self.state[3] = int(
                (self.state[3] + gait_change) % self.number_of_gaits)
            self.alive_time += dt

    def extract_primitive(self):
        #TODO: rewrite the comment below
        """
       This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will
       return False

       """
        while self.prim_queue.len() > 0:
            if self.prim_queue.top(
            )[1] < 1:  # if the top primitive hasn't been exhausted
                prim_data, prim_progress = self.prim_queue.top()  # extract it
                return prim_data, prim_progress
            else:
                self.prim_queue.pop()  # pop it
        return False

    def prim_next(self, dt):
        if self.extract_primitive(
        ) == False:  # if there is no primitive to use
            self.next((0, 0), dt)
        else:
            prim_data, prim_progress = self.extract_primitive(
            )  # extract primitive data and primitive progress from prim
            start, finish, vee = prim_data  # extract data from primitive
            total_distance, _ = self.get_walking_displacement(start, finish)
            if prim_progress == 0:  # ensure that starting position is correct at start of primitive
                self.state[0] = start[0]
                self.state[1] = start[1]
            if start == finish:  #waiting mode
                remaining_distance = 0
                self.state[3] = 0  # reset gait
                if self.prim_queue.len(
                ) > 1:  # if current not at last primitive
                    last_prim_data, last_prim_progress = self.prim_queue.bottom(
                    )  # extract last primitive
                    _, last_finish, vee = last_prim_data
                    _, heading = self.get_walking_displacement(
                        self.state, last_finish)
                    if self.state[2] != heading:
                        self.state[2] = heading
            else:  # if in walking mode
                remaining_distance, heading = self.get_walking_displacement(
                    self.state, finish)
                if self.state[2] != heading:
                    self.state[2] = heading
            if vee * dt > remaining_distance and remaining_distance != 0:
                self.next((0, remaining_distance / dt), dt)
            else:
                self.next((0, vee), dt)
            if total_distance != 0:
                prim_progress += dt / (total_distance / vee)
            self.prim_queue.replace_top(
                (prim_data, prim_progress))  # update primitive queue

    def get_walking_displacement(self, start, finish):
        dx = finish[0] - start[0]
        dy = finish[1] - start[1]
        distance = np.linalg.norm(np.array([dx, dy]))
        heading = arctan2(dy, dx)
        return distance, heading