def __init__( self, init_state=[start_walk_lane[0], start_walk_lane[1], -np.pi / 2, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', ): # init_state: initial state by default self.name = 'Pedestrian {}'.format(id(self)) self.state = np.array(init_state, dtype="float") self.alive_time = 0 self.is_dead = False self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6']) if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = '../imglib/pedestrians/walking' + pedestrian_type + '.png' self.medic = '../imglib/pedestrians/medic' + '.png' self.all_pedestrian_types = {'1', '2', '3', '4', '5', '6'} self.dt = 0.1
def __init__( self, init_state=[0, 0, 0, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', name=None, age=20): """ Pedestrian class """ # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0) self.vee_max = 50 self.alive_time = 0 self.is_dead = False self.id = 0 self.destination = (-1, -1) self.state = np.array(init_state, dtype="float") self.monitor_state = 0 self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.name = name self.age = age self.pedestrian_type = pedestrian_type if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
def __init__( self, init_state=[0, 0, 0, 0], L=50, # length of vehicle a_max=9.81, # maximum acceleration of vehicle a_min=-9.81, # maximum deceleration of vehicle nu_max=0.5, # maximum steering input in radians/sec nu_min=-0.5, # minimum steering input in radians/sec) vee_max=100, # maximum velocity is_honking=False, # the car is honking color='blue', # color of the car # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive) prim_queue=None, fuel_level=float('inf') ): # TODO: fuel level of the car - FUTURE FEATURE) if color != 'blue' and color != 'gray': raise Exception("Color must either be blue or gray!") self.color = color self.fig = Image.open(car_figs[color]) self.params = (L, a_max, a_min, nu_max, nu_min, vee_max) self.alive_time = 0 self.state = np.array(init_state, dtype='float') # extended state required for Bastian's primitive computation self.extended_state = None self.is_honking = is_honking self.prim_queue = Queue() if prim_queue is None else prim_queue self.fuel_level = fuel_level
def __init__( self, init_state=[2908, 665, -pi / 2, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', ): # init_state: initial state by default #self.vee_max = 50 self.alive_time = 0 self.is_dead = False self.state = np.array(init_state, dtype="float") self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6']) if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
def __init__(self, init_state=[0, 0, 0, 0], length = 50, # length of vehicle in pixels acc_max = 9.81, # maximum acceleration of vehicle acc_min = -9.81, # maximum deceleration of vehicle steer_max = 0.5, # maximum steering input in radians steer_min = -0.5, # minimum steering input in radians vee_max = 100, # maximum velocity is_honking = False, # the car is honking color = 'blue', # color of the car plate_number = None, # license plate number # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive) prim_queue = None, fuel_level = float('inf')): # TODO: fuel level of the car if color not in car_colors: raise Exception("This car color doesn't exist!") self._length = length self._vee_max = vee_max self.id = 0 self.destination = None # to check whether the car is arrived for monitoring self.acc_range = (acc_min, acc_max) self.steer_range = (steer_min, steer_max) self.alive_time = 0 self.plate_number = plate_number #self.init_state = np.array(init_state, dtype='float') self.state = np.array(init_state, dtype='float') self.color = color # self.new_unpause = False # self.new_pause = False # extended state required for Bastian's primitive computation self.extended_state = None self.is_honking = is_honking if prim_queue == None: self.prim_queue = Queue() else: self.prim_queue = prim_queue self.fuel_level = fuel_level self.fig = Image.open(car_figs[color])
def __init__( self, init_state=[0, 0, 0, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3'): # three types 1 or 2 or 3 """ Pedestrian class """ # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0) self.alive_time = 0 self.state = np.array(init_state, dtype="float") self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png'
class Pedestrian(BoxComponent): def __init__( self, init_state=[start_walk_lane[0], start_walk_lane[1], -np.pi / 2, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', ): # init_state: initial state by default self.name = 'Pedestrian {}'.format(id(self)) self.state = np.array(init_state, dtype="float") self.alive_time = 0 self.is_dead = False self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6']) if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = '../imglib/pedestrians/walking' + pedestrian_type + '.png' self.medic = '../imglib/pedestrians/medic' + '.png' self.all_pedestrian_types = {'1', '2', '3', '4', '5', '6'} self.dt = 0.1 async def next(self, inputs, dt): """ The pedestrian advances forward """ #await trio.sleep(0) if self.is_dead: if self.fig != self.medic: self.fig = self.medic else: dee_theta, vee = inputs self.state[2] += dee_theta # update heading of pedestrian self.state[0] += vee * np.cos( self.state[2]) * self.dt # update x coordinate of pedestrian self.state[1] += vee * np.sin( self.state[2]) * self.dt # update y coordinate of pedestrian distance_travelled = vee * self.dt # compute distance travelled during dt gait_change = (self.gait_progress + distance_travelled / self.gait_length ) // 1 # compute number of gait change self.gait_progress = (self.gait_progress + distance_travelled / self.gait_length) % 1 self.state[3] = int( (self.state[3] + gait_change) % self.number_of_gaits) self.alive_time += self.dt async def extract_primitive(self): #TODO: rewrite the comment below """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: if self.prim_queue.top( )[1] < 1: # if the top primitive hasn't been exhausted prim_data, prim_progress = self.prim_queue.top() # extract it return prim_data, prim_progress else: self.prim_queue.pop() # pop it return False async def prim_next(self): #await trio.sleep(0) if await self.extract_primitive( ) == False: # if there is no primitive to use await self.next((0, 0), self.dt) else: prim_data, prim_progress = await self.extract_primitive( ) # extract primitive data and primitive progress from prim start, finish, vee = prim_data # extract data from primitive total_distance, _ = await self.get_walking_displacement( start, finish) if prim_progress == 0: # ensure that starting position is correct at start of primitive self.state[0] = start[0] self.state[1] = start[1] if start == finish: #waiting mode remaining_distance = 0 self.state[3] = 0 # reset gait if self.prim_queue.len( ) > 1: # if current not at last primitive last_prim_data, last_prim_progress = self.prim_queue.bottom( ) # extract last primitive _, last_finish, vee = last_prim_data _, heading = await self.get_walking_displacement( self.state, last_finish) if self.state[2] != heading: self.state[2] = heading else: # if in walking mode remaining_distance, heading = await self.get_walking_displacement( self.state, finish) if self.state[2] != heading: self.state[2] = heading if vee * self.dt > remaining_distance and remaining_distance != 0: await self.next((0, remaining_distance / self.dt), self.dt) else: await self.next((0, vee), self.dt) if total_distance != 0: prim_progress += self.dt / (total_distance / vee) self.prim_queue.replace_top( (prim_data, prim_progress)) # update primitive queue async def get_walking_displacement(self, start, finish): dx = finish[0] - start[0] dy = finish[1] - start[1] distance = np.linalg.norm(np.array([dx, dy])) heading = np.arctan2(dy, dx) return distance, heading async def start_ped(self, start_walk, end_walk): print('Start Pedestrian') self.start_walk_lane = start_walk self.end_walk_lane = end_walk self.prim_queue.enqueue( ((self.start_walk_lane, self.end_walk_lane, 60), 0)) async def ped_walk(self): while (self.state[0] < self.end_walk_lane[0]): # if not at the destination #print('Pedestrian is walking') #print(self.state) await self.prim_next() await trio.sleep(0) async def run(self, start_walk, end_walk): await self.start_ped(start_walk, end_walk) async with trio.open_nursery() as nursery: nursery.start_soon(self.ped_walk) await trio.sleep(0)
class KinematicCar(): '''Kinematic car class init_state is [vee, theta, x, y], where vee, theta, x, y are the velocity, orientation, and coordinates of the car respectively ''' def __init__( self, init_state=[0, 0, 0, 0], length=50, # length of vehicle in pixels acc_max=9.81, # maximum acceleration of vehicle acc_min=-9.81, # maximum deceleration of vehicle steer_max=0.5, # maximum steering input in radians steer_min=-0.5, # minimum steering input in radians vee_max=100, # maximum velocity is_honking=False, # the car is honking color='blue', # color of the car plate_number=None, # license plate number # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive) prim_queue=None, fuel_level=float('inf')): # TODO: fuel level of the car if color not in car_colors: raise Exception("This car color doesn't exist!") self._length = length self._vee_max = vee_max self.acc_range = (acc_min, acc_max) self.steer_range = (steer_min, steer_max) self.alive_time = 0 self.plate_number = plate_number #self.init_state = np.array(init_state, dtype='float') self.state = np.array(init_state, dtype='float') self.color = color # self.new_unpause = False # self.new_pause = False # extended state required for Bastian's primitive computation self.extended_state = None self.is_honking = is_honking if prim_queue == None: self.prim_queue = Queue() else: self.prim_queue = prim_queue self.fuel_level = fuel_level self.fig = Image.open(car_figs[color]) def state_dot(self, state, time, acc, steer): """ This function defines the system dynamics Inputs acc: acceleration input steer: steering input """ # if already at maximum speed, can't no longer accelerate if abs(state[0]) >= self._vee_max and sign(acc) == sign(state[0]): vee_dot = 0 else: vee_dot = saturation_filter(acc, self.acc_range[0], self.acc_range[1]) theta_dot = state[0] / self._length * tan( saturation_filter(steer, self.steer_range[0], self.steer_range[1])) x_dot = state[0] * cos(state[1]) y_dot = state[0] * sin(state[1]) dstate = [vee_dot, theta_dot, x_dot, y_dot] return dstate def toggle_honk(self): self.is_honking = not self.is_honking def next(self, inputs, dt): """ next is a function that updates the current position of the car when inputs are applied for a duration of dt Inputs: inputs: acceleration and steering inputs dt: integration time Outputs: None - the states of the car will get updated """ acc, steer = inputs # take only the real part of the solution self.state = odeint(self.state_dot, self.state, t=(0, dt), args=(acc, steer))[1] self.fuel_level -= abs( acc) * dt # fuel decreases linearly with acceleration self.alive_time += dt # fix floating if abs(acc) < 0.1: self.state[0] = 0 def extract_primitive(self): """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: # if the top primitive hasn't been exhausted if self.prim_queue.top()[1] < 1: prim_id, prim_progress = self.prim_queue.top() # extract it return prim_id, prim_progress else: self.prim_queue.pop() # pop it return False def prim_next(self, dt): """ updates with primitive, if no primitive available, update with next with zero inputs Inputs: dt: integration time Outputs: None - the states of the car will get updated """ if self.extract_primitive( ) == False: # if there is no primitive to use self.next((0, 0), dt) else: prim_id, prim_progress = self.extract_primitive() # TODO: make this portion of the code more automated if prim_id > -1: # load primitive data list_of_key = ['x0', 'x_ref', 'u_ref', 'alpha', 'K'] x0, x_ref, u_ref, alpha, K = get_bunch_prim_data( prim_id, list_of_key) if prim_progress == 0: # compute initial extended state x_real = self.state.reshape((-1, 1)) x1 = x_real - x0 x2 = np.matmul(np.linalg.inv(diag([4, 0.02, 4, 4])), x1) # initial state, consisting of actual and virtual states for the controller self.extended_state = (np.vstack((x_real, x0, x1, x2)))[:, 0] num_of_inputs = 2 G_u = np.diag( [175, 1.29] ) # this diagonal matrix encodes the size of input set (a constraint) dist = get_disturbance() k = int(prim_progress * params.num_subprims) # calculate primitive waypoint q1 = K[k, 0].reshape((-1, 1), order='F') q2 = 0.5 * (x_ref[:, k + 1] + x_ref[:, k]).reshape(-1, 1) q3 = u_ref[:, k].reshape(-1, 1) q4 = u_ref[:, k].reshape(-1, 1) q5 = np.matmul( G_u, alpha[k * num_of_inputs:(k + 1) * num_of_inputs]).reshape( (-1, 1), order='F') # parameters for the controller q = np.vstack((q1, q2, q3, q4, q5)) self.extended_state = odeint(func=prim_state_dot, y0=self.extended_state, t=[0, dt], args=(dist, q))[-1, :] self.state = self.extended_state[0:len(self.state)] self.alive_time += dt prim_progress = prim_progress + dt / get_prim_data( prim_id, 't_end')[0] self.prim_queue.replace_top((prim_id, prim_progress)) else: # if is stopping primitive self.next((0, 0), dt)
class KinematicCar: """Kinematic Car Class init_state is [vee, theta, x, y], where vee, theta, x, y are the velocity, orientation, and coordinates of the car respectively """ def __init__( self, init_state=[0, 0, 0, 0], L=50, # length of vehicle a_max=9.81, # maximum acceleration of vehicle a_min=-9.81, # maximum deceleration of vehicle nu_max=0.5, # maximum steering input in radians/sec nu_min=-0.5, # minimum steering input in radians/sec) vee_max=100, # maximum velocity is_honking=False, # the car is honking color='blue', # color of the car # queue of primitives, each item in the queue has the form (prim_id, prim_progress) where prim_id is the primitive ID and prim_progress is the progress of the primitive) prim_queue=None, fuel_level=float('inf') ): # TODO: fuel level of the car - FUTURE FEATURE) if color != 'blue' and color != 'gray': raise Exception("Color must either be blue or gray!") self.color = color self.fig = Image.open(car_figs[color]) self.params = (L, a_max, a_min, nu_max, nu_min, vee_max) self.alive_time = 0 self.state = np.array(init_state, dtype='float') # extended state required for Bastian's primitive computation self.extended_state = None self.is_honking = is_honking self.prim_queue = Queue() if prim_queue is None else prim_queue self.fuel_level = fuel_level def state_dot(self, state, t, a, nu): """ state_dot is a function that defines the system dynamics Inputs state: current state t: current time a: acceleration input nu: steering input """ (L, a_max, a_min, nu_max, nu_min, vee_max) = self.params dstate_dt = np.zeros(np.shape(state)) dstate_dt[0] = saturation_filter(a, a_max, a_min) # if already at maximum speed, can't no longer accelerate if np.abs(state[1]) >= vee_max and np.sign(a) == np.sign(state[1]): dstate_dt[1] = 0 else: dstate_dt[1] = state[0] / L * \ tan(saturation_filter(nu, nu_max, nu_min)) dstate_dt[2] = state[0] * cos(state[1]) dstate_dt[3] = state[0] * sin(state[1]) return dstate_dt def toggle_honk(self): self.is_honking = not self.is_honking def next(self, inputs, dt): """ next is a function that updates the current position of the car when inputs are applied for a duration of dt Inputs: inputs: acceleration and steering inputs dt: integration time Outputs: None - the states of the car will get updated """ a, nu = inputs # take only the real part of the solution self.state = odeint(self.state_dot, self.state, t=(0, dt), args=(a, nu))[1] # fuel decreases linearly with acceleration/deceleration self.fuel_level -= np.abs(a) * dt # update alive time self.alive_time += dt # TODO: temporary fix to floating problem if a == 0: self.state[0] = np.sign(self.state[0]) * \ abs(self.state[0]) * dt * 0.05 def extract_primitive(self): # TODO: rewrite the comment below """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: # if the top primitive hasn't been exhausted if self.prim_queue.top()[1] < 1: prim_id, prim_progress = self.prim_queue.top() # extract it return prim_id, prim_progress else: self.prim_queue.pop() # pop it return False def prim_next(self, dt): """ updates with primitive, if no primitive available, update with next with zero inputs Inputs: dt: integration time Outputs: None - the states of the car will get updated """ # TODO: implement compatibility check with primitive to make sure that the params & dynamics match (essentially comparing prim_car and the # kinematic model) if self.extract_primitive( ) == False: # if there is no primitive to use self.next((0, 0), dt) else: prim_id, prim_progress = self.extract_primitive() # load primitive data TODO: make this portion of the code more automated # the primitive corresponding to the primitive number prim = mat['MA3'][prim_id, 0] t_end = prim['t_end'][0, 0][0, 0] # extract duration of primitive # number of subintervals encoded in primitive N = prim['K'][0, 0].shape[0] # this diagonal matrix encodes the size of input set (a constraint) G_u = np.diag([175, 1.29]) nu = 2 # number of inputs nx = 4 # number of states if prim_progress == 0: # compute initial extended state x1 = self.state.reshape((-1, 1)) x2 = prim['x0'][0, 0] x3 = x1 - prim['x0'][0, 0] x4 = np.matmul(np.linalg.inv(np.diag([4, 0.02, 4, 4])), (x1 - prim['x0'][0, 0])) # initial state, consisting of actual state and virtual states for the controller self.extended_state = (np.vstack((x1, x2, x3, x4)))[:, 0] k = int(prim_progress * N) # calculate primitive waypoint dist = get_disturbance() q1 = prim['K'][0, 0][k, 0].reshape((-1, 1), order='F') q2 = 0.5 * (prim['x_ref'][0, 0][:, k + 1] + prim['x_ref'][0, 0][:, k]).reshape(-1, 1) q3 = prim['u_ref'][0, 0][:, k].reshape(-1, 1) q4 = prim['u_ref'][0, 0][:, k].reshape(-1, 1) q5 = np.matmul(G_u, prim['alpha'][0, 0][k * nu:(k + 1) * nu]).reshape( (-1, 1), order='F') # parameters for the controller q = np.vstack((q1, q2, q3, q4, q5)) self.extended_state = odeint(func=prim_state_dot, y0=self.extended_state, t=[0, dt], args=(dist, q))[-1, :] self.state = self.extended_state[0:4] # update alive time self.alive_time += dt # update progress prim_progress = prim_progress + dt / t_end self.prim_queue.replace_top((prim_id, prim_progress))
class Pedestrian: def __init__( self, init_state=[0, 0, 0, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', name=None, age=20): """ Pedestrian class """ # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0) self.vee_max = 50 self.alive_time = 0 self.is_dead = False self.id = 0 self.destination = (-1, -1) self.state = np.array(init_state, dtype="float") self.monitor_state = 0 self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.name = name self.age = age self.pedestrian_type = pedestrian_type if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png' def next(self, inputs, dt): """ The pedestrian advances forward """ if self.is_dead: if self.fig != medic: self.fig = medic else: dee_theta, vee = inputs self.state[2] += dee_theta # update heading of pedestrian self.state[0] += vee * cos( self.state[2]) * dt # update x coordinate of pedestrian self.state[1] += vee * sin( self.state[2]) * dt # update y coordinate of pedestrian distance_travelled = vee * dt # compute distance travelled during dt gait_change = (self.gait_progress + distance_travelled / self.gait_length ) // 1 # compute number of gait change self.gait_progress = (self.gait_progress + distance_travelled / self.gait_length) % 1 self.state[3] = int( (self.state[3] + gait_change) % self.number_of_gaits) self.alive_time += dt def extract_primitive(self): #TODO: rewrite the comment below """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: if self.prim_queue.top( )[1] < 1: # if the top primitive hasn't been exhausted prim_data, prim_progress = self.prim_queue.top() # extract it return prim_data, prim_progress else: self.prim_queue.pop() # pop it return False def prim_next(self, dt): if self.extract_primitive( ) == False: # if there is no primitive to use self.next((0, 0), dt) else: prim_data, prim_progress = self.extract_primitive( ) # extract primitive data and primitive progress from prim start, finish, vee = prim_data # extract data from primitive total_distance, _ = self.get_walking_displacement(start, finish) if prim_progress == 0: # ensure that starting position is correct at start of primitive self.state[0] = start[0] self.state[1] = start[1] if start == finish: #waiting mode remaining_distance = 0 self.state[3] = 0 # reset gait if self.prim_queue.len( ) > 1: # if current not at last primitive last_prim_data, last_prim_progress = self.prim_queue.bottom( ) # extract last primitive _, last_finish, vee = last_prim_data _, heading = self.get_walking_displacement( self.state, last_finish) if self.state[2] != heading: self.state[2] = heading else: # if in walking mode remaining_distance, heading = self.get_walking_displacement( self.state, finish) if self.state[2] != heading: self.state[2] = heading if vee * dt > remaining_distance and remaining_distance != 0: self.next((0, remaining_distance / dt), dt) else: self.next((0, vee), dt) if total_distance != 0: prim_progress += dt / (total_distance / vee) self.prim_queue.replace_top( (prim_data, prim_progress)) # update primitive queue def get_walking_displacement(self, start, finish): dx = finish[0] - start[0] dy = finish[1] - start[1] distance = np.linalg.norm(np.array([dx, dy])) heading = arctan2(dy, dx) return distance, heading # cross the street if light is green, or if the pedestrian just crossed the street, continue walking and ignore traffic light color def continue_walking(self, lane1, lane2, direction, remaining_time): person_xy = (self.state[0], self.state[1]) walking = False theta = self.state[2] self.monitor_state = 4 if person_xy in (lane1 + lane2) and remaining_time != -1: self.monitor_state = 3 prim_data, prim_progress = self.prim_queue.get_element_at_index(-2) start, finish, vee = prim_data remaining_distance, _ = self.get_walking_displacement( start, finish) # in this scenario, person_xy = start vee = max(vee, remaining_distance / remaining_time) if vee <= self.vee_max: walking = True self.monitor_state = 2 # if the pedestrian isn't going fast enough, increase speed to cross street before light turns red self.prim_queue.replace_element_at_index( ((start, finish, vee), prim_progress), -2) elif (person_xy == lane1[0] or person_xy == lane2[0]) and theta == direction[0]: walking = True self.monitor_state = 1 elif (person_xy == lane1[1] or person_xy == lane2[1]) and theta == direction[1]: walking = True self.monitor_state = 1 return walking # if the pedestrian isn't going fast enough, increase speed to cross street before light turns red def walk_faster(self, remaining_time): prim_data, prim_progress = self.prim_queue.top() start, finish, vee = prim_data remaining_distance, _ = self.get_walking_displacement( self.state, finish) if (remaining_distance / vee) > remaining_time: vee = remaining_distance / remaining_time if (vee <= self.vee_max): self.prim_queue.replace_top( ((start, finish, vee), prim_progress))
class Pedestrian: def __init__( self, init_state=[0, 0, 0, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3'): # three types 1 or 2 or 3 """ Pedestrian class """ # init_state: initial state by default (x = 0, y = 0, theta = 0, gait = 0) self.alive_time = 0 self.state = np.array(init_state, dtype="float") self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png' def next(self, inputs, dt): """ The pedestrian advances forward """ dee_theta, vee = inputs self.state[2] += dee_theta # update heading of pedestrian # update x coordinate of pedestrian self.state[0] += vee * np.cos(self.state[2]) * dt # update y coordinate of pedestrian self.state[1] += vee * np.sin(self.state[2]) * dt distance_travelled = vee * dt # compute distance travelled during dt gait_change = (self.gait_progress + distance_travelled / self.gait_length) // 1 # compute number of gait change self.gait_progress = (self.gait_progress + distance_travelled / self.gait_length) % 1 self.state[3] = int( (self.state[3] + gait_change) % self.number_of_gaits) def visualize(self): # convert gait number to i, j coordinates of subfigure current_gait = self.state[3] i = current_gait % self.film_dim[1] j = current_gait // self.film_dim[1] img = Image.open(self.fig) width, height = img.size sub_width = width / self.film_dim[1] sub_height = height / self.film_dim[0] lower = (i * sub_width, (j - 1) * sub_height) upper = ((i + 1) * sub_width, j * sub_height) area = (lower[0], lower[1], upper[0], upper[1]) cropped_img = img.crop(area) return cropped_img def extract_primitive(self): # TODO: rewrite the comment below """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: # if the top primitive hasn't been exhausted if self.prim_queue.top()[1] < 1: prim_data, prim_progress = self.prim_queue.top() # extract it return prim_data, prim_progress else: self.prim_queue.pop() # pop it return False def prim_next(self, dt): if self.extract_primitive( ) == False: # if there is no primitive to use self.next((0, 0), dt) else: # extract primitive data and primitive progress from prim prim_data, prim_progress = self.extract_primitive() start, finish, t_end = prim_data # extract data from primitive if prim_progress == 0: # ensure that starting position is correct at start of primitive self.state[0] = start[0] self.state[1] = start[1] if start == finish: # waiting mode remaining_distance = 0 self.state[3] = 0 # reset gait if self.prim_queue.len( ) > 1: # if current not at last primitive last_prim_data, last_prim_progress = self.prim_queue.bottom( ) # extract last primitive last_start, last_finish, last_t_end = last_prim_data dx_last = last_finish[0] - self.state[0] dy_last = last_finish[1] - self.state[1] heading = np.arctan2(dy_last, dx_last) if self.state[2] != heading: self.state[2] = heading else: # if in walking mode dx = finish[0] - self.state[0] dy = finish[1] - self.state[1] heading = np.arctan2(dy, dx) if self.state[2] != heading: self.state[2] = heading remaining_distance = np.linalg.norm(np.array([dx, dy])) remaining_time = (1 - prim_progress) * t_end vee = remaining_distance / remaining_time self.next((0, vee), dt) prim_progress += dt / t_end self.prim_queue.replace_top( (prim_data, prim_progress)) # update primitive queue
class Pedestrian: def __init__( self, init_state=[2908, 665, -pi / 2, 0], # (x, y, theta, gait) number_of_gaits=6, gait_length=4, gait_progress=0, film_dim=(1, 6), prim_queue=None, # primitive queue pedestrian_type='3', ): # init_state: initial state by default #self.vee_max = 50 self.alive_time = 0 self.is_dead = False self.state = np.array(init_state, dtype="float") self.number_of_gaits = film_dim[0] * film_dim[1] self.gait_length = gait_length self.gait_progress = gait_progress self.film_dim = film_dim self.pedestrian_type = random.choice(['1', '2', '3', '4', '5', '6']) if prim_queue == None: self.prim_queue = Queue() else: prim_queue = prim_queue self.fig = dir_path + '/imglib/pedestrians/walking' + pedestrian_type + '.png' def next(self, inputs, dt): """ The pedestrian advances forward """ if self.is_dead: if self.fig != medic: self.fig = medic else: dee_theta, vee = inputs self.state[2] += dee_theta # update heading of pedestrian self.state[0] += vee * cos( self.state[2]) * dt # update x coordinate of pedestrian self.state[1] += vee * sin( self.state[2]) * dt # update y coordinate of pedestrian distance_travelled = vee * dt # compute distance travelled during dt gait_change = (self.gait_progress + distance_travelled / self.gait_length ) // 1 # compute number of gait change self.gait_progress = (self.gait_progress + distance_travelled / self.gait_length) % 1 self.state[3] = int( (self.state[3] + gait_change) % self.number_of_gaits) self.alive_time += dt def extract_primitive(self): #TODO: rewrite the comment below """ This function updates the primitive queue and picks the next primitive to be applied. When there is no more primitive in the queue, it will return False """ while self.prim_queue.len() > 0: if self.prim_queue.top( )[1] < 1: # if the top primitive hasn't been exhausted prim_data, prim_progress = self.prim_queue.top() # extract it return prim_data, prim_progress else: self.prim_queue.pop() # pop it return False def prim_next(self, dt): if self.extract_primitive( ) == False: # if there is no primitive to use self.next((0, 0), dt) else: prim_data, prim_progress = self.extract_primitive( ) # extract primitive data and primitive progress from prim start, finish, vee = prim_data # extract data from primitive total_distance, _ = self.get_walking_displacement(start, finish) if prim_progress == 0: # ensure that starting position is correct at start of primitive self.state[0] = start[0] self.state[1] = start[1] if start == finish: #waiting mode remaining_distance = 0 self.state[3] = 0 # reset gait if self.prim_queue.len( ) > 1: # if current not at last primitive last_prim_data, last_prim_progress = self.prim_queue.bottom( ) # extract last primitive _, last_finish, vee = last_prim_data _, heading = self.get_walking_displacement( self.state, last_finish) if self.state[2] != heading: self.state[2] = heading else: # if in walking mode remaining_distance, heading = self.get_walking_displacement( self.state, finish) if self.state[2] != heading: self.state[2] = heading if vee * dt > remaining_distance and remaining_distance != 0: self.next((0, remaining_distance / dt), dt) else: self.next((0, vee), dt) if total_distance != 0: prim_progress += dt / (total_distance / vee) self.prim_queue.replace_top( (prim_data, prim_progress)) # update primitive queue def get_walking_displacement(self, start, finish): dx = finish[0] - start[0] dy = finish[1] - start[1] distance = np.linalg.norm(np.array([dx, dy])) heading = arctan2(dy, dx) return distance, heading