Esempio n. 1
0
    def test_Input_term(self):
        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.input_term2)).get_terms()
        self.assertTrue(
            np.allclose(terms["G"][0][1], np.array([[0], [-2], [2]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.input_term1_squared)).get_terms()
        self.assertTrue(
            np.allclose(terms["G"][0][2], np.array([[0], [0], [1]])))
Esempio n. 2
0
    def test_fem(self):
        self.act_funcs = "fem_funcs"
        controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz(self.l),
                                                                    original_beta=self.beta_i,
                                                                    target_beta=self.beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs, self.act_funcs, controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        self.t, self.q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))),
                                                  self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-3)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 3
0
    def setUp(self):

        self.u = CorrectInput()

        # setup temp and spat domain
        spat_domain = sim.Domain((0, 1), num=3)
        nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, spat_domain.bounds, node_count=3)
        register_base("init_funcs", ini_funcs, overwrite=True)

        # enter string with mass equations for testing
        int1 = ph.IntegralTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2),
                       ph.TestFunction("init_funcs")), spat_domain.bounds)
        s1 = ph.ScalarTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
                       ph.TestFunction("init_funcs", location=0)))
        int2 = ph.IntegralTerm(
            ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1),
                       ph.TestFunction("init_funcs", order=1)), spat_domain.bounds)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1)

        string_pde = sim.WeakFormulation([int1, s1, int2, s2])
        self.cf = sim.parse_weak_formulation(string_pde)
        self.ic = np.zeros((3, 2))
Esempio n. 4
0
    def setUp(self):

        self.u = CorrectInput()

        # setup temp and spat domain
        spat_domain = sim.Domain((0, 1), num=3)
        nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                            spat_domain.bounds,
                                            node_count=3)
        register_base("init_funcs", ini_funcs, overwrite=True)

        # enter string with mass equations for testing
        int1 = ph.IntegralTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2),
                       ph.TestFunction("init_funcs")), spat_domain.bounds)
        s1 = ph.ScalarTerm(
            ph.Product(
                ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
                ph.TestFunction("init_funcs", location=0)))
        int2 = ph.IntegralTerm(
            ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1),
                       ph.TestFunction("init_funcs", order=1)),
            spat_domain.bounds)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u),
                       ph.TestFunction("init_funcs", location=1)), -1)

        string_pde = sim.WeakFormulation([int1, s1, int2, s2])
        self.cf = sim.parse_weak_formulation(string_pde)
        self.ic = np.zeros((3, 2))
Esempio n. 5
0
        def test_rd():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # integral terms
            int1 = ph.IntegralTerm(ph.Product(ph.TemporalDerivedFieldVariable("init_funcs_2", order=1),
                                              ph.TestFunction("init_funcs_2", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                                              ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2)
            int3 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=1),
                                              ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1)
            int4 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                                              ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=1, location=l),
                                          ph.TestFunction("init_funcs_2", order=0, location=l)), -a2)
            s2 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0),
                                          ph.TestFunction("init_funcs_2", order=0, location=0)), a2*alpha)
            s3 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0),
                                          ph.TestFunction("init_funcs_2", order=1, location=0)), -a2)
            s4 = ph.ScalarTerm(ph.Product(ph.Input(u),
                                          ph.TestFunction("init_funcs_2", order=1, location=l)), a2)

            # derive state-space system
            rad_pde = sim.WeakFormulation([int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_2.shape), dt)

            return t, q
Esempio n. 6
0
        def test_dr():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # integral terms
            int1 = ph.IntegralTerm(ph.Product(ph.TemporalDerivedFieldVariable("init_funcs_1", order=1),
                                              ph.TestFunction("init_funcs_1", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=1),
                                              ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2)
            int3 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                                              ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1)
            int4 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                                              ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l),
                                          ph.TestFunction("init_funcs_1", order=0, location=l)), -a1)
            s2 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l),
                                          ph.TestFunction("init_funcs_1", order=0, location=l)), a2*beta)
            s3 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=1, location=0),
                                          ph.TestFunction("init_funcs_1", order=0, location=0)), a2)
            s4 = ph.ScalarTerm(ph.Product(ph.Input(u),
                                          ph.TestFunction("init_funcs_1", order=0, location=l)), -a2)
            # derive state-space system
            rad_pde = sim.WeakFormulation([int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_1.shape), dt)

            # check if (x'(0,t_end) - 1.) < 0.1
            self.assertLess(np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) * (q[-1, 0] - q[-1, 1])) - 1, 0.1)
            return t, q
Esempio n. 7
0
    def test_it(self):
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        param = [2., 1.5, -3., -1., -.5]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, alpha, beta = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n)

        init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq])
        init_adjoint_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
                                           for om in eig_freq])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n)]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)
        rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real_if_close(eig_val))
        B = a2*np.array([adjoint_eig_funcs[i](l) for i in xrange(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B)

        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(np.allclose(np.sort(np.linalg.eigvals(ss_weak.A)), np.sort(np.linalg.eigvals(ss_modal.A)),
                                    rtol=1e-05, atol=0.))
        self.assertTrue(np.allclose(np.array([i[0] for i in ss_weak.B]), ss_modal.B))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, u, initial_weights, dt)
            eval_d = ut.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1)
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d[0])
            app.exec_()
Esempio n. 8
0
        def test_rd():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # integral terms
            int1 = ph.IntegralTerm(
                ph.Product(
                    ph.TemporalDerivedFieldVariable("init_funcs_2", order=1),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                    ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2)
            int3 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=1),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1)
            int4 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=1,
                                                   location=l),
                    ph.TestFunction("init_funcs_2", order=0, location=l)), -a2)
            s2 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=0,
                                                   location=0),
                    ph.TestFunction("init_funcs_2", order=0, location=0)),
                a2 * alpha)
            s3 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=0,
                                                   location=0),
                    ph.TestFunction("init_funcs_2", order=1, location=0)), -a2)
            s4 = ph.ScalarTerm(
                ph.Product(
                    ph.Input(u),
                    ph.TestFunction("init_funcs_2", order=1, location=l)), a2)

            # derive state-space system
            rad_pde = sim.WeakFormulation(
                [int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape),
                                            dt)

            return t, q
Esempio n. 9
0
    def test_it(self):
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'
        param = [1., -2., -1., None, None]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, _, _ = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        omega = np.array([(i+1)*np.pi/l for i in xrange(spatial_disc)])
        eig_values = a0 - a2*omega**2 - a1**2/4./a2
        norm_fak = np.ones(omega.shape)*np.sqrt(2)
        eig_funcs = np.array([ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds, norm_fak[i])
                              for i in range(spatial_disc)])
        register_base("eig_funcs", eig_funcs, overwrite=True)
        adjoint_eig_funcs = np.array([ef.SecondOrderDirichletEigenfunction(omega[i],
                                                                           adjoint_param,
                                                                           dz.bounds,
                                                                           norm_fak[i]) for i in range(spatial_disc)])
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)

        # derive sate-space system
        rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2*np.array([adjoint_eig_funcs[i].derive()(l) for i in xrange(spatial_disc)])
        ss_modal = sim.StateSpace("eig_funcs", A, B)

        # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A
        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(np.allclose(np.sort(np.linalg.eigvals(ss_weak.A)), np.sort(np.linalg.eigvals(ss_modal.A)),
                                    rtol=3e-1, atol=0.))
        self.assertTrue(np.allclose(np.array([i[0] for i in ss_weak.B]), ss_modal.B))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, u, initial_weights, dt)
            eval_d = ut.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 10
0
    def test_FieldVariable_term(self):
        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_term_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_term_at1_squared)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][2],
                        np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(
            self.field_int)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][1],
                np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5,
                                                                 .25]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_squared_int)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][2],
                np.array([[1 / 6, 1 / 3, 1 / 6], [1 / 6, 1 / 3, 1 / 6],
                          [1 / 6, 1 / 3, 1 / 6]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_term_dz_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, -2, 2], [0, -2, 2], [0, -2, 2]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_dz_int)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_term_ddt_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][2][1],
                        np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.field_ddt_int)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][2][1],
                np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5,
                                                                 .25]])))
Esempio n. 11
0
    def test_fem(self):
        """
        use best documented fem case to test all steps in simulation process
        """

        # enter string with mass equations
        nodes, ini_funcs = pyinduct.shapefunctions.cure_interval(pyinduct.shapefunctions.LagrangeSecondOrder,
                                                                 self.dz.bounds, node_count=10)
        register_base("init_funcs", ini_funcs, overwrite=True)
        int1 = ph.IntegralTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2),
                       ph.TestFunction("init_funcs")), self.dz.bounds, scale=self.params.sigma*self.params.tau**2)
        s1 = ph.ScalarTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
                       ph.TestFunction("init_funcs", location=0)), scale=self.params.m)
        int2 = ph.IntegralTerm(
            ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1),
                       ph.TestFunction("init_funcs", order=1)), self.dz.bounds, scale=self.params.sigma)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -self.params.sigma)

        # derive sate-space system
        string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test")
        self.cf = sim.parse_weak_formulation(string_pde)
        ss = self.cf.convert_to_state_space()

        # generate initial conditions for weights
        q0 = np.array([cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2)]).flatten()

        # simulate
        t, q = sim.simulate_state_space(ss, self.cf.input_function, q0, self.dt)

        # calculate result data
        eval_data = []
        for der_idx in range(2):
            eval_data.append(
                ut.evaluate_approximation("init_funcs", q[:, der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size],
                                          t, self.dz))
            eval_data[-1].name = "{0}{1}".format(self.cf.name, "_"+"".join(["d" for x in range(der_idx)])
                                                               + "t" if der_idx > 0 else "")

        # display results
        if show_plots:
            win = vis.PgAnimatedPlot(eval_data[:2], title="fem approx and derivative")
            win2 = vis.PgSurfacePlot(eval_data[0])
            app.exec_()

        # test for correct transition
        self.assertTrue(np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))

        # TODO dump in pyinduct/tests/ressources
        file_path = os.sep.join(["resources", "test_data.res"])
        if not os.path.isdir("resources"):
            os.makedirs("resources")
        with open(file_path, "w") as f:
            f.write(dumps(eval_data))
Esempio n. 12
0
        def test_dd():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # derive state-space system
            rad_pde = ut.get_parabolic_dirichlet_weak_form("init_funcs_2", "init_funcs_2", u, param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_2.shape), dt)

            return t, q
Esempio n. 13
0
        def test_rr():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # derive state-space system
            rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1", "init_funcs_1", u, param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_1.shape), dt)

            # check if (x(0,t_end) - 1.) < 0.1
            self.assertLess(np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1)
            return t, q
Esempio n. 14
0
        def test_dd():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # derive state-space system
            rad_pde = ut.get_parabolic_dirichlet_weak_form(
                "init_funcs_2", "init_funcs_2", u, param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape),
                                            dt)

            return t, q
Esempio n. 15
0
    def setUp(self):
        # enter string with mass equations
        self.u = cr.Function(lambda x: 0)
        interval = (0, 1)
        nodes, ini_funcs = pyinduct.shapefunctions.cure_interval(pyinduct.shapefunctions.LagrangeFirstOrder, interval, node_count=3)
        register_base("init_funcs", ini_funcs, overwrite=True)
        int1 = ph.IntegralTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2),
                       ph.TestFunction("init_funcs")), interval)
        s1 = ph.ScalarTerm(
            ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
                       ph.TestFunction("init_funcs", location=0)))
        int2 = ph.IntegralTerm(
            ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1),
                       ph.TestFunction("init_funcs", order=1)), interval)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1)

        string_pde = sim.WeakFormulation([int1, s1, int2, s2])
        self.cf = sim.parse_weak_formulation(string_pde)
Esempio n. 16
0
        def test_rr():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # derive state-space system
            rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1",
                                                       "init_funcs_1", u,
                                                       param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape),
                                            dt)

            # check if (x(0,t_end) - 1.) < 0.1
            self.assertLess(
                np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1)
            return t, q
Esempio n. 17
0
    def test_FieldVariable_term(self):
        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_at1)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_at1_squared)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][2], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_int)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_squared_int)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][2], np.array([[1/6, 1/3, 1/6], [1/6, 1/3, 1/6], [1/6, 1/3, 1/6]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_dz_at1)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0, -2, 2], [0, -2, 2], [0, -2, 2]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_dz_int)).get_terms()
        self.assertTrue(np.allclose(terms["E"][0][1], np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_ddt_at1)).get_terms()
        self.assertTrue(np.allclose(terms["E"][2][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_ddt_int)).get_terms()
        self.assertTrue(np.allclose(terms["E"][2][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]])))
Esempio n. 18
0
    def test_fem(self):
        self.act_funcs = "fem_funcs"
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs,
                                                   self.act_funcs, controller,
                                                   self.param, self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_weak, np.zeros((len(self.fem_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-3)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 19
0
 def test_TestFunction_term(self):
     terms = sim.parse_weak_formulation(sim.WeakFormulation(self.func_term)).get_terms()
     self.assertTrue(np.allclose(terms["f"], np.array([[0], [0], [1]])))
Esempio n. 20
0
 def test_TestFunction_term(self):
     terms = sim.parse_weak_formulation(sim.WeakFormulation(
         self.func_term)).get_terms()
     self.assertTrue(np.allclose(terms["f"], np.array([[0], [0], [1]])))
Esempio n. 21
0
    def test_Product_term(self):
        # TODO create test functionality that will automatically check if Case is also valid for swapped arguments

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_term_fs_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_fs)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0], [0.25, .5, .25], [.5, 1, .5]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_f)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][1],
                np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12],
                          [0, 1 / 12, 1 / 6]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_squared_f)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][2],
                np.array([[1 / 8, 1 / 24, 0], [1 / 24, 1 / 4, 1 / 24],
                          [0, 1 / 24, 1 / 8]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_f_swapped)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][1],
                np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12],
                          [0, 1 / 12, 1 / 6]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_at1_f)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_at1_squared_f)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][2],
                        np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_f_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0], [0, 0, 0], [0.25, 0.5, .25]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_f_squared_f_at1)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][0][2],
                np.array([[0, 0, 0], [0, 0, 0], [1 / 6, 1 / 3, 1 / 6]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_term_f_at1_f_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(
                self.prod_term_f_at1_squared_f_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][2],
                        np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])))

        # more complex terms
        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_int_fddt_f)).get_terms()
        self.assertTrue(
            np.allclose(
                terms["E"][2][1],
                np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12],
                          [0, 1 / 12, 1 / 6]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_term_fddt_at0_f_at0)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][2][1],
                        np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(
            self.spat_int)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[2, -2, 0], [-2, 4, -2], [0, -2, 2]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.spat_int_asymmetric)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[-.5, .5, 0], [-.5, 0, .5], [0, -.5, .5]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.prod_term_f_at1_dphi_at1)).get_terms()
        self.assertTrue(
            np.allclose(terms["E"][0][1],
                        np.array([[0, 0, 0], [0, 0, -2], [0, 0, 2]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.input_term1)).get_terms()
        self.assertTrue(
            np.allclose(terms["G"][0][1], np.array([[0], [0], [1]])))

        terms = sim.parse_weak_formulation(
            sim.WeakFormulation(self.input_term1_swapped)).get_terms()
        self.assertTrue(
            np.allclose(terms["G"][0][1], np.array([[0], [0], [1]])))
Esempio n. 22
0
    def test_fem(self):
        """
        use best documented fem case to test all steps in simulation process
        """

        # enter string with mass equations
        # nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
        nodes, ini_funcs = sf.cure_interval(sf.LagrangeSecondOrder,
                                            self.dz.bounds,
                                            node_count=11)
        register_base("init_funcs", ini_funcs, overwrite=True)
        int1 = ph.IntegralTerm(ph.Product(
            ph.TemporalDerivedFieldVariable("init_funcs", 2),
            ph.TestFunction("init_funcs")),
                               self.dz.bounds,
                               scale=self.params.sigma * self.params.tau**2)
        s1 = ph.ScalarTerm(ph.Product(
            ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
            ph.TestFunction("init_funcs", location=0)),
                           scale=self.params.m)
        int2 = ph.IntegralTerm(ph.Product(
            ph.SpatialDerivedFieldVariable("init_funcs", 1),
            ph.TestFunction("init_funcs", order=1)),
                               self.dz.bounds,
                               scale=self.params.sigma)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u),
                       ph.TestFunction("init_funcs", location=1)),
            -self.params.sigma)

        # derive sate-space system
        string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test")
        self.cf = sim.parse_weak_formulation(string_pde)
        ss = self.cf.convert_to_state_space()

        # generate initial conditions for weights
        q0 = np.array([
            cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2)
        ]).flatten()

        # simulate
        t, q = sim.simulate_state_space(ss, q0, self.dt)

        # calculate result data
        eval_data = []
        for der_idx in range(2):
            eval_data.append(
                sim.evaluate_approximation(
                    "init_funcs",
                    q[:,
                      der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size],
                    t, self.dz))
            eval_data[-1].name = "{0}{1}".format(
                self.cf.name, "_" + "".join(["d" for x in range(der_idx)]) +
                "t" if der_idx > 0 else "")

        # display results
        if show_plots:
            win = vis.PgAnimatedPlot(eval_data[:2],
                                     title="fem approx and derivative")
            win2 = vis.PgSurfacePlot(eval_data[0])
            app.exec_()

        # test for correct transition
        self.assertTrue(
            np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))

        # save some test data for later use
        root_dir = os.getcwd()
        if root_dir.split(os.sep)[-1] == "tests":
            res_dir = os.sep.join([os.getcwd(), "resources"])
        else:
            res_dir = os.sep.join([os.getcwd(), "tests", "resources"])

        if not os.path.isdir(res_dir):
            os.makedirs(res_dir)

        file_path = os.sep.join([res_dir, "test_data.res"])
        with open(file_path, "w+b") as f:
            dump(eval_data, f)
Esempio n. 23
0
        def test_dr():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # integral terms
            int1 = ph.IntegralTerm(
                ph.Product(
                    ph.TemporalDerivedFieldVariable("init_funcs_1", order=1),
                    ph.TestFunction("init_funcs_1", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=1),
                    ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2)
            int3 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                    ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1)
            int4 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                    ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=0,
                                                   location=l),
                    ph.TestFunction("init_funcs_1", order=0, location=l)), -a1)
            s2 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=0,
                                                   location=l),
                    ph.TestFunction("init_funcs_1", order=0, location=l)),
                a2 * beta)
            s3 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=1,
                                                   location=0),
                    ph.TestFunction("init_funcs_1", order=0, location=0)), a2)
            s4 = ph.ScalarTerm(
                ph.Product(
                    ph.Input(u),
                    ph.TestFunction("init_funcs_1", order=0, location=l)), -a2)
            # derive state-space system
            rad_pde = sim.WeakFormulation(
                [int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape),
                                            dt)

            # check if (x'(0,t_end) - 1.) < 0.1
            self.assertLess(
                np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) *
                       (q[-1, 0] - q[-1, 1])) - 1, 0.1)
            return t, q
Esempio n. 24
0
    def test_it(self):
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'
        param = [1., -2., -1., None, None]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, _, _ = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        omega = np.array([(i + 1) * np.pi / l for i in range(spatial_disc)])
        eig_values = a0 - a2 * omega**2 - a1**2 / 4. / a2
        norm_fak = np.ones(omega.shape) * np.sqrt(2)
        eig_funcs = np.array([
            ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds,
                                                 norm_fak[i])
            for i in range(spatial_disc)
        ])
        register_base("eig_funcs", eig_funcs, overwrite=True)
        adjoint_eig_funcs = np.array([
            ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param,
                                                 dz.bounds, norm_fak[i])
            for i in range(spatial_disc)
        ])
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)

        # derive sate-space system
        rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs",
                                                       "adjoint_eig_funcs", u,
                                                       param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array(
            [adjoint_eig_funcs[i].derive()(l) for i in range(spatial_disc)])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u)

        # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A
        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(
            np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])),
                        np.sort(np.linalg.eigvals(ss_modal.A[1])),
                        rtol=3e-1,
                        atol=0.))
        self.assertTrue(
            np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1]))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)
            eval_d = sim.evaluate_approximation("eig_funcs",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 25
0
 def test_TestFunction_term(self):
     wf = sim.WeakFormulation(self.func_term)
     sim.parse_weak_formulation(wf)
Esempio n. 26
0
    def test_Product_term(self):
        # TODO create test functionality that will automatically check if Case is also valid for swapped arguments
        # terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_fs_at1)).get_terms()
        # self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [1, 0, 0], [2, 0, 0]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_fs)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0.25, .5, .25], [.5, 1, .5]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f_swapped)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_at1_f)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f_at1)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, 0], [0.25, 0.5, .25]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_f_at1_f_at1)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])))

        # more complex terms
        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_fddt_f)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.zeros((3, 3))))
        self.assertTrue(np.allclose(terms[0][1], np.zeros((3, 3))))
        self.assertTrue(np.allclose(terms[0][2], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]])))
        self.assertEqual(terms[1], None)  # f
        self.assertEqual(terms[2], None)  # g

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_fddt_at0_f_at0)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.zeros((3, 3))))
        self.assertTrue(np.allclose(terms[0][1], np.zeros((3, 3))))
        self.assertTrue(np.allclose(terms[0][2], np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]])))
        self.assertEqual(terms[1], None)  # f
        self.assertEqual(terms[2], None)  # g

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.spat_int)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[2, -2, 0], [-2, 4, -2], [0, -2, 2]])))
        self.assertEqual(terms[1], None)  # f
        self.assertEqual(terms[2], None)  # g

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.spat_int_asymmetric)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[-.5, .5, 0], [-.5, 0, .5], [0, -.5, .5]])))
        self.assertEqual(terms[1], None)  # f
        self.assertEqual(terms[2], None)  # g

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_f_at1_dphi_at1)).get_terms()
        self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, -2], [0, 0, 2]])))
        self.assertEqual(terms[1], None)  # f
        self.assertEqual(terms[2], None)  # g

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1)).get_terms()
        self.assertEqual(terms[0], None)  # E
        self.assertEqual(terms[1], None)  # f
        self.assertTrue(np.allclose(terms[2][0], np.array([[0], [0], [1]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1_swapped)).get_terms()
        self.assertEqual(terms[0], None)  # E
        self.assertEqual(terms[1], None)  # f
        self.assertTrue(np.allclose(terms[2][0], np.array([[0], [0], [1]])))
Esempio n. 27
0
    state=sh_x_fem_i_at_l,
    approx_state=x_i_at_l,
    d_approx_state=xd_i_at_l,
    approx_target_state=x_ti_at_l,
    d_approx_target_state=xd_ti_at_l,
    integral_kernel_zz=int_kernel_zz(l),
    original_beta=beta_i,
    target_beta=beta_ti,
    trajectory=traj,
    scale=np.exp(-a1 / 2 / a2 * b))

# determine (A,B) with modal transformation
rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                           controller, param,
                                           spatial_domain.bounds, b)
cf = sim.parse_weak_formulation(rad_pde)
ss_weak = cf.convert_to_state_space()

# simulate (t: time vector, q: weights matrix)
t, q = sim.simulate_state_space(ss_weak,
                                init_profile * np.ones((len(fem_funcs))),
                                temporal_domain)

# compute modal weights (for the intermediate system: evald_modal_xi)
mat = cr.calculate_base_transformation_matrix(fem_funcs, eig_funcs)
q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
for i in range(q.shape[0]):
    q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

# evaluate approximation of xi
evald_modal_xi = sim.evaluate_approximation("eig_funcs_i",
Esempio n. 28
0
 def test_Input_term(self):
     terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term2)).get_terms()
     self.assertEqual(terms[0], None)  # E0
     self.assertEqual(terms[1], None)  # f
     self.assertTrue(np.allclose(terms[2][0], np.array([[0], [-2], [2]])))  # g
Esempio n. 29
0
    def test_fem(self):

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 30
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 12

        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # actuation_type by b which is close to b_desired on a k times subdivided spatial domain
        b_desired = self.l / 2
        k = 51  # = k1 + k2
        k1, k2, self.b = ut.split_domain(k, b_desired, self.l, mode='coprime')[0:3]
        M = np.linalg.inv(ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(self.param, self.l, self.n)
        init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq])
        init_adjoint_eig_funcs = np.array(
            [ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in
                                 range(self.n)]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system
        eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(self.param_i, self.l, self.n)
        self.assertTrue(all(np.isclose(eig_val_i, self.eig_val)))
        eig_funcs_id = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i],
                                                                  self.param_i,
                                                                  self.dz.bounds,
                                                                  eig_funcs[i](0))
                                 for i in range(self.n)])
        eig_funcs_i = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i],
                                                                 self.param_i,
                                                                 self.dz.bounds,
                                                                 eig_funcs[i](0) * eig_funcs_id[i](self.l) /
                                                                 eig_funcs_id[i](self.b))
                                for i in range(self.n)])

        # eigenfunctions from target system ("_ti")
        eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2)
        eig_funcs_ti = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_ti[i],
                                                                  self.param_ti,
                                                                  self.dz.bounds,
                                                                  eig_funcs_i[i](0))
                                 for i in range(self.n)])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                                      self.dz.bounds,
                                                                      node_count=self.n)

        # register eigenfunctions
        # register_functions("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
        register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_i = ph.FieldVariable("eig_funcs_i", weight_label="eig_funcs", location=self.l)
        d_field_variable_i = ph.SpatialDerivedFieldVariable("eig_funcs_i", 1, weight_label="eig_funcs", location=self.l)
        field_variable_ti = ph.FieldVariable("eig_funcs_ti", weight_label="eig_funcs", location=self.l)
        d_field_variable_ti = ph.SpatialDerivedFieldVariable("eig_funcs_ti", 1, weight_label="eig_funcs",
                                                             location=self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable_i)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)]

        # shift transformation
        shifted_fem_funcs_i = np.array(
            [ef.FiniteTransformFunction(func, M, self.b, self.l, scale_func=lambda z: np.exp(a1 / 2 / a2 * z))
             for func in self.fem_funcs])
        shifted_eig_funcs_id = np.array([ef.FiniteTransformFunction(func, M, self.b, self.l) for func in eig_funcs_id])
        register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True)
        register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True)
        sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i", weight_label="fem_funcs", location=self.l)
        sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id", weight_label="eig_funcs", location=self.l)
        self.sh_x_fem_i_at_l = [ph.ScalarTerm(sh_fem_field_variable_i),
                                ph.ScalarTerm(field_variable_i),
                                ph.ScalarTerm(sh_field_variable_id, -1)]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (a0_i - a0_ti) / 2 / a2 * z

        a2, a1, _, _, _ = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(state=self.sh_x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz(self.l),
                                                                    original_beta=self.beta_i,
                                                                    target_beta=self.beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=np.exp(-a1 / 2 / a2 * self.b))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds,
                                                   self.b)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt)

        # weights of the intermediate system
        mat = cr.calculate_base_transformation_matrix(self.fem_funcs, eig_funcs)
        q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
        for i in range(q.shape[0]):
            q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

        eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz)
        x_0t = eval_i.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-2)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
            win1 = vis.PgSurfacePlot(eval_i)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 30
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
                                     for om in eig_freq_t])
        init_adjoint_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds)
                                             for om in eig_freq_t])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i])
                                   for i in range(self.n)]
        eig_funcs_t = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([ef.TransformedSecondOrderEigenfunction(self.eig_val_t[i],
                                                                          [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0),
                                                                           0, 0],
                                                                          [a2, a1_z, a0_z],
                                                                          np.linspace(0, self.l, 1e4))
                                   for i in range(self.n)])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                                      self.dz.bounds,
                                                                      node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(-integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
                          ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
                           ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2)]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz,
                                                                    original_beta=beta_i,
                                                                    target_beta=beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 31
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param,
                                                                d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(
            self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
            for om in eig_freq_t
        ])
        init_adjoint_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param_t,
                                             self.dz.bounds)
            for om in eig_freq_t
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [
            cr.normalize_function(init_eig_funcs_t[i],
                                  init_adjoint_eig_funcs_t[i])
            for i in range(self.n)
        ]
        eig_funcs_t = np.array(
            [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([
            ef.TransformedSecondOrderEigenfunction(
                self.eig_val_t[i],
                [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0],
                [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t",
                      self.adjoint_eig_funcs_t,
                      overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable(
            "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                          1,
                                                          location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(
            integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(
            -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [
            ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)
        ]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [
            ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
            ph.ScalarTerm(field_variable,
                          self.transform_i_at_l * a1_z(self.l) / 2 / a2)
        ]
        self.x_ti_at_l = [
            ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)
        ]
        self.xd_ti_at_l = [
            ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
            ph.ScalarTerm(field_variable_t,
                          self.transform_ti_at_l * a1_t / 2 / a2)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(
            lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz,
            original_beta=beta_i,
            target_beta=beta_ti,
            trajectory=self.traj,
            scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 32
0
    def test_fem(self):

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 30
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 12

        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # actuation_type by b which is close to b_desired on a k times subdivided spatial domain
        b_desired = self.l / 2
        k = 51  # = k1 + k2
        k1, k2, self.b = ut.split_domain(k, b_desired, self.l,
                                         mode='coprime')[0:3]
        M = np.linalg.inv(
            ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(
            self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(
            self.param, self.l, self.n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(self.n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system
        eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(
            self.param_i, self.l, self.n)
        self.assertTrue(all(np.isclose(eig_val_i, self.eig_val)))
        eig_funcs_id = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i,
                                             self.dz.bounds, eig_funcs[i](0))
            for i in range(self.n)
        ])
        eig_funcs_i = np.array([
            ef.SecondOrderRobinEigenfunction(
                eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) *
                eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b))
            for i in range(self.n)
        ])

        # eigenfunctions from target system ("_ti")
        eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2)
        eig_funcs_ti = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti,
                                             self.dz.bounds, eig_funcs_i[i](0))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register eigenfunctions
        # register_functions("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs",
                      self.adjoint_eig_funcs,
                      overwrite=True)
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
        register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_i = ph.FieldVariable("eig_funcs_i",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_i = ph.SpatialDerivedFieldVariable(
            "eig_funcs_i", 1, weight_label="eig_funcs", location=self.l)
        field_variable_ti = ph.FieldVariable("eig_funcs_ti",
                                             weight_label="eig_funcs",
                                             location=self.l)
        d_field_variable_ti = ph.SpatialDerivedFieldVariable(
            "eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable_i)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)]

        # shift transformation
        shifted_fem_funcs_i = np.array([
            ef.FiniteTransformFunction(
                func,
                M,
                self.b,
                self.l,
                scale_func=lambda z: np.exp(a1 / 2 / a2 * z))
            for func in self.fem_funcs
        ])
        shifted_eig_funcs_id = np.array([
            ef.FiniteTransformFunction(func, M, self.b, self.l)
            for func in eig_funcs_id
        ])
        register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True)
        register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True)
        sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i",
                                                   weight_label="fem_funcs",
                                                   location=self.l)
        sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id",
                                                weight_label="eig_funcs",
                                                location=self.l)
        self.sh_x_fem_i_at_l = [
            ph.ScalarTerm(sh_fem_field_variable_i),
            ph.ScalarTerm(field_variable_i),
            ph.ScalarTerm(sh_field_variable_id, -1)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (
            a0_i - a0_ti) / 2 / a2 * z

        a2, a1, _, _, _ = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.sh_x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=np.exp(-a1 / 2 / a2 * self.b))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds, self.b)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)

        # weights of the intermediate system
        mat = cr.calculate_base_transformation_matrix(self.fem_funcs,
                                                      eig_funcs)
        q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
        for i in range(q.shape[0]):
            q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

        eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz)
        x_0t = eval_i.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
            win1 = vis.PgSurfacePlot(eval_i)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Esempio n. 33
0
    def test_Input_term(self):
        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term2)).get_terms()
        self.assertTrue(np.allclose(terms["G"][0][1], np.array([[0], [-2], [2]])))

        terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1_squared)).get_terms()
        self.assertTrue(np.allclose(terms["G"][0][2], np.array([[0], [0], [1]])))
Esempio n. 34
0
int_kernel_zz = alpha_ti - alpha_i + si.quad(lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, l)[0]

# init controller
controller = ut.get_parabolic_robin_backstepping_controller(state=x_fem_i_at_l,
                                                            approx_state=x_i_at_l,
                                                            d_approx_state=xd_i_at_l,
                                                            approx_target_state=x_ti_at_l,
                                                            d_approx_target_state=xd_ti_at_l,
                                                            integral_kernel_zz=int_kernel_zz,
                                                            original_beta=beta_i,
                                                            target_beta=beta_ti,
                                                            trajectory=traj,
                                                            scale=inv_transform_i_at_l)

rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, param, spatial_domain.bounds)
cf = sim.parse_weak_formulation(rad_pde)
ss_weak = cf.convert_to_state_space()

# simulate
t, q = sim.simulate_state_space(ss_weak, np.zeros((len(fem_funcs))), temporal_domain)

# pyqtgraph visualization
evald_x = sim.evaluate_approximation("fem_funcs", q, t, spatial_domain, name="x(z,t)")
win1 = vis.PgAnimatedPlot([evald_x], title="animation", dt=temporal_domain.step*.25)
win2 = vis.PgSurfacePlot(evald_x, title=evald_x.name, grid_height=1)
pg.QtGui.QApplication.instance().exec_()

# visualization
vis.MplSlicePlot([evald_x], time_point=1, legend_label=["$x(z,1)$"], legend_location=1)
vis.MplSurfacePlot(evald_x)
plt.show()
Esempio n. 35
0
    def test_it(self):
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        param = [2., 1.5, -3., -1., -.5]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, alpha, beta = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n)

        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)
        rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs",
                                                   "adjoint_eig_funcs", u,
                                                   param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real_if_close(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u)

        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(
            np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])),
                        np.sort(np.linalg.eigvals(ss_modal.A[1])),
                        rtol=1e-05,
                        atol=0.))
        self.assertTrue(
            np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1]))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)
            eval_d = sim.evaluate_approximation("eig_funcs",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()