def test_Input_term(self): terms = sim.parse_weak_formulation( sim.WeakFormulation(self.input_term2)).get_terms() self.assertTrue( np.allclose(terms["G"][0][1], np.array([[0], [-2], [2]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.input_term1_squared)).get_terms() self.assertTrue( np.allclose(terms["G"][0][2], np.array([[0], [0], [1]])))
def test_fem(self): self.act_funcs = "fem_funcs" controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz(self.l), original_beta=self.beta_i, target_beta=self.beta_ti, trajectory=self.traj, scale=self.transform_i(-self.l)) # determine (A,B) with modal-transfomation rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs, self.act_funcs, controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate self.t, self.q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(self.t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-3) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def setUp(self): self.u = CorrectInput() # setup temp and spat domain spat_domain = sim.Domain((0, 1), num=3) nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, spat_domain.bounds, node_count=3) register_base("init_funcs", ini_funcs, overwrite=True) # enter string with mass equations for testing int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), spat_domain.bounds) s1 = ph.ScalarTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0))) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), spat_domain.bounds) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1) string_pde = sim.WeakFormulation([int1, s1, int2, s2]) self.cf = sim.parse_weak_formulation(string_pde) self.ic = np.zeros((3, 2))
def setUp(self): self.u = CorrectInput() # setup temp and spat domain spat_domain = sim.Domain((0, 1), num=3) nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, spat_domain.bounds, node_count=3) register_base("init_funcs", ini_funcs, overwrite=True) # enter string with mass equations for testing int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), spat_domain.bounds) s1 = ph.ScalarTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0))) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), spat_domain.bounds) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1) string_pde = sim.WeakFormulation([int1, s1, int2, s2]) self.cf = sim.parse_weak_formulation(string_pde) self.ic = np.zeros((3, 2))
def test_rd(): # trajectory bound_cond_type = 'robin' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm(ph.Product(ph.TemporalDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds) int2 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2) int3 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1) int4 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=1, location=l), ph.TestFunction("init_funcs_2", order=0, location=l)), -a2) s2 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=0, location=0)), a2*alpha) s3 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=1, location=0)), -a2) s4 = ph.ScalarTerm(ph.Product(ph.Input(u), ph.TestFunction("init_funcs_2", order=1, location=l)), a2) # derive state-space system rad_pde = sim.WeakFormulation([int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_2.shape), dt) return t, q
def test_dr(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm(ph.Product(ph.TemporalDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=0)), dz.bounds) int2 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2) int3 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1) int4 = ph.IntegralTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), -a1) s2 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), a2*beta) s3 = ph.ScalarTerm(ph.Product(ph.SpatialDerivedFieldVariable("init_funcs_1", order=1, location=0), ph.TestFunction("init_funcs_1", order=0, location=0)), a2) s4 = ph.ScalarTerm(ph.Product(ph.Input(u), ph.TestFunction("init_funcs_1", order=0, location=l)), -a2) # derive state-space system rad_pde = sim.WeakFormulation([int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_1.shape), dt) # check if (x'(0,t_end) - 1.) < 0.1 self.assertLess(np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) * (q[-1, 0] - q[-1, 1])) - 1, 0.1) return t, q
def test_it(self): actuation_type = 'robin' bound_cond_type = 'robin' param = [2., 1.5, -3., -1., -.5] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, alpha, beta = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n) init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq]) init_adjoint_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n)] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(np.real_if_close(eig_val)) B = a2*np.array([adjoint_eig_funcs[i](l) for i in xrange(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B) # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue(np.allclose(np.sort(np.linalg.eigvals(ss_weak.A)), np.sort(np.linalg.eigvals(ss_modal.A)), rtol=1e-05, atol=0.)) self.assertTrue(np.allclose(np.array([i[0] for i in ss_weak.B]), ss_modal.B)) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, u, initial_weights, dt) eval_d = ut.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d[0]) app.exec_()
def test_rd(): # trajectory bound_cond_type = 'robin' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1, location=l), ph.TestFunction("init_funcs_2", order=0, location=l)), -a2) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=0, location=0)), a2 * alpha) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=1, location=0)), -a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_2", order=1, location=l)), a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape), dt) return t, q
def test_it(self): actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' param = [1., -2., -1., None, None] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, _, _ = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) omega = np.array([(i+1)*np.pi/l for i in xrange(spatial_disc)]) eig_values = a0 - a2*omega**2 - a1**2/4./a2 norm_fak = np.ones(omega.shape)*np.sqrt(2) eig_funcs = np.array([ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds, norm_fak[i]) for i in range(spatial_disc)]) register_base("eig_funcs", eig_funcs, overwrite=True) adjoint_eig_funcs = np.array([ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param, dz.bounds, norm_fak[i]) for i in range(spatial_disc)]) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) # derive sate-space system rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2*np.array([adjoint_eig_funcs[i].derive()(l) for i in xrange(spatial_disc)]) ss_modal = sim.StateSpace("eig_funcs", A, B) # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue(np.allclose(np.sort(np.linalg.eigvals(ss_weak.A)), np.sort(np.linalg.eigvals(ss_modal.A)), rtol=3e-1, atol=0.)) self.assertTrue(np.allclose(np.array([i[0] for i in ss_weak.B]), ss_modal.B)) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, u, initial_weights, dt) eval_d = ut.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_FieldVariable_term(self): terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_term_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_term_at1_squared)).get_terms() self.assertTrue( np.allclose(terms["E"][0][2], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation( self.field_int)).get_terms() self.assertTrue( np.allclose( terms["E"][0][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_squared_int)).get_terms() self.assertTrue( np.allclose( terms["E"][0][2], np.array([[1 / 6, 1 / 3, 1 / 6], [1 / 6, 1 / 3, 1 / 6], [1 / 6, 1 / 3, 1 / 6]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_term_dz_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, -2, 2], [0, -2, 2], [0, -2, 2]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_dz_int)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_term_ddt_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][2][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.field_ddt_int)).get_terms() self.assertTrue( np.allclose( terms["E"][2][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]])))
def test_fem(self): """ use best documented fem case to test all steps in simulation process """ # enter string with mass equations nodes, ini_funcs = pyinduct.shapefunctions.cure_interval(pyinduct.shapefunctions.LagrangeSecondOrder, self.dz.bounds, node_count=10) register_base("init_funcs", ini_funcs, overwrite=True) int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), self.dz.bounds, scale=self.params.sigma*self.params.tau**2) s1 = ph.ScalarTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0)), scale=self.params.m) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), self.dz.bounds, scale=self.params.sigma) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -self.params.sigma) # derive sate-space system string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test") self.cf = sim.parse_weak_formulation(string_pde) ss = self.cf.convert_to_state_space() # generate initial conditions for weights q0 = np.array([cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2)]).flatten() # simulate t, q = sim.simulate_state_space(ss, self.cf.input_function, q0, self.dt) # calculate result data eval_data = [] for der_idx in range(2): eval_data.append( ut.evaluate_approximation("init_funcs", q[:, der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size], t, self.dz)) eval_data[-1].name = "{0}{1}".format(self.cf.name, "_"+"".join(["d" for x in range(der_idx)]) + "t" if der_idx > 0 else "") # display results if show_plots: win = vis.PgAnimatedPlot(eval_data[:2], title="fem approx and derivative") win2 = vis.PgSurfacePlot(eval_data[0]) app.exec_() # test for correct transition self.assertTrue(np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3)) # TODO dump in pyinduct/tests/ressources file_path = os.sep.join(["resources", "test_data.res"]) if not os.path.isdir("resources"): os.makedirs("resources") with open(file_path, "w") as f: f.write(dumps(eval_data))
def test_dd(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_dirichlet_weak_form("init_funcs_2", "init_funcs_2", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_2.shape), dt) return t, q
def test_rr(): # trajectory bound_cond_type = 'robin' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1", "init_funcs_1", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, cf.input_function, np.zeros(ini_funcs_1.shape), dt) # check if (x(0,t_end) - 1.) < 0.1 self.assertLess(np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1) return t, q
def test_dd(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_dirichlet_weak_form( "init_funcs_2", "init_funcs_2", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape), dt) return t, q
def setUp(self): # enter string with mass equations self.u = cr.Function(lambda x: 0) interval = (0, 1) nodes, ini_funcs = pyinduct.shapefunctions.cure_interval(pyinduct.shapefunctions.LagrangeFirstOrder, interval, node_count=3) register_base("init_funcs", ini_funcs, overwrite=True) int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), interval) s1 = ph.ScalarTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0))) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), interval) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1) string_pde = sim.WeakFormulation([int1, s1, int2, s2]) self.cf = sim.parse_weak_formulation(string_pde)
def test_rr(): # trajectory bound_cond_type = 'robin' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1", "init_funcs_1", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape), dt) # check if (x(0,t_end) - 1.) < 0.1 self.assertLess( np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1) return t, q
def test_FieldVariable_term(self): terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_at1)).get_terms() self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_at1_squared)).get_terms() self.assertTrue(np.allclose(terms["E"][0][2], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_int)).get_terms() self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_squared_int)).get_terms() self.assertTrue(np.allclose(terms["E"][0][2], np.array([[1/6, 1/3, 1/6], [1/6, 1/3, 1/6], [1/6, 1/3, 1/6]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_dz_at1)).get_terms() self.assertTrue(np.allclose(terms["E"][0][1], np.array([[0, -2, 2], [0, -2, 2], [0, -2, 2]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_dz_int)).get_terms() self.assertTrue(np.allclose(terms["E"][0][1], np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_term_ddt_at1)).get_terms() self.assertTrue(np.allclose(terms["E"][2][1], np.array([[0, 0, 1], [0, 0, 1], [0, 0, 1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.field_ddt_int)).get_terms() self.assertTrue(np.allclose(terms["E"][2][1], np.array([[0.25, 0.5, 0.25], [0.25, 0.5, 0.25], [.25, .5, .25]])))
def test_fem(self): self.act_funcs = "fem_funcs" controller = ut.get_parabolic_robin_backstepping_controller( state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz(self.l), original_beta=self.beta_i, target_beta=self.beta_ti, trajectory=self.traj, scale=self.transform_i(-self.l)) # determine (A,B) with modal-transfomation rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs, self.act_funcs, controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate self.t, self.q = sim.simulate_state_space( ss_weak, np.zeros((len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(self.t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-3) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_TestFunction_term(self): terms = sim.parse_weak_formulation(sim.WeakFormulation(self.func_term)).get_terms() self.assertTrue(np.allclose(terms["f"], np.array([[0], [0], [1]])))
def test_TestFunction_term(self): terms = sim.parse_weak_formulation(sim.WeakFormulation( self.func_term)).get_terms() self.assertTrue(np.allclose(terms["f"], np.array([[0], [0], [1]])))
def test_Product_term(self): # TODO create test functionality that will automatically check if Case is also valid for swapped arguments terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_term_fs_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_fs)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0], [0.25, .5, .25], [.5, 1, .5]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_f)).get_terms() self.assertTrue( np.allclose( terms["E"][0][1], np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12], [0, 1 / 12, 1 / 6]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_squared_f)).get_terms() self.assertTrue( np.allclose( terms["E"][0][2], np.array([[1 / 8, 1 / 24, 0], [1 / 24, 1 / 4, 1 / 24], [0, 1 / 24, 1 / 8]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_f_swapped)).get_terms() self.assertTrue( np.allclose( terms["E"][0][1], np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12], [0, 1 / 12, 1 / 6]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_at1_f)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_at1_squared_f)).get_terms() self.assertTrue( np.allclose(terms["E"][0][2], np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_f_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0], [0, 0, 0], [0.25, 0.5, .25]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_f_squared_f_at1)).get_terms() self.assertTrue( np.allclose( terms["E"][0][2], np.array([[0, 0, 0], [0, 0, 0], [1 / 6, 1 / 3, 1 / 6]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_term_f_at1_f_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation( self.prod_term_f_at1_squared_f_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][2], np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]]))) # more complex terms terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_int_fddt_f)).get_terms() self.assertTrue( np.allclose( terms["E"][2][1], np.array([[1 / 6, 1 / 12, 0], [1 / 12, 1 / 3, 1 / 12], [0, 1 / 12, 1 / 6]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_term_fddt_at0_f_at0)).get_terms() self.assertTrue( np.allclose(terms["E"][2][1], np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation( self.spat_int)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[2, -2, 0], [-2, 4, -2], [0, -2, 2]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.spat_int_asymmetric)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[-.5, .5, 0], [-.5, 0, .5], [0, -.5, .5]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.prod_term_f_at1_dphi_at1)).get_terms() self.assertTrue( np.allclose(terms["E"][0][1], np.array([[0, 0, 0], [0, 0, -2], [0, 0, 2]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.input_term1)).get_terms() self.assertTrue( np.allclose(terms["G"][0][1], np.array([[0], [0], [1]]))) terms = sim.parse_weak_formulation( sim.WeakFormulation(self.input_term1_swapped)).get_terms() self.assertTrue( np.allclose(terms["G"][0][1], np.array([[0], [0], [1]])))
def test_fem(self): """ use best documented fem case to test all steps in simulation process """ # enter string with mass equations # nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, nodes, ini_funcs = sf.cure_interval(sf.LagrangeSecondOrder, self.dz.bounds, node_count=11) register_base("init_funcs", ini_funcs, overwrite=True) int1 = ph.IntegralTerm(ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), self.dz.bounds, scale=self.params.sigma * self.params.tau**2) s1 = ph.ScalarTerm(ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0)), scale=self.params.m) int2 = ph.IntegralTerm(ph.Product( ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), self.dz.bounds, scale=self.params.sigma) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -self.params.sigma) # derive sate-space system string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test") self.cf = sim.parse_weak_formulation(string_pde) ss = self.cf.convert_to_state_space() # generate initial conditions for weights q0 = np.array([ cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2) ]).flatten() # simulate t, q = sim.simulate_state_space(ss, q0, self.dt) # calculate result data eval_data = [] for der_idx in range(2): eval_data.append( sim.evaluate_approximation( "init_funcs", q[:, der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size], t, self.dz)) eval_data[-1].name = "{0}{1}".format( self.cf.name, "_" + "".join(["d" for x in range(der_idx)]) + "t" if der_idx > 0 else "") # display results if show_plots: win = vis.PgAnimatedPlot(eval_data[:2], title="fem approx and derivative") win2 = vis.PgSurfacePlot(eval_data[0]) app.exec_() # test for correct transition self.assertTrue( np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3)) # save some test data for later use root_dir = os.getcwd() if root_dir.split(os.sep)[-1] == "tests": res_dir = os.sep.join([os.getcwd(), "resources"]) else: res_dir = os.sep.join([os.getcwd(), "tests", "resources"]) if not os.path.isdir(res_dir): os.makedirs(res_dir) file_path = os.sep.join([res_dir, "test_data.res"]) with open(file_path, "w+b") as f: dump(eval_data, f)
def test_dr(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), -a1) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), a2 * beta) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1, location=0), ph.TestFunction("init_funcs_1", order=0, location=0)), a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_1", order=0, location=l)), -a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape), dt) # check if (x'(0,t_end) - 1.) < 0.1 self.assertLess( np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) * (q[-1, 0] - q[-1, 1])) - 1, 0.1) return t, q
def test_it(self): actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' param = [1., -2., -1., None, None] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, _, _ = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) omega = np.array([(i + 1) * np.pi / l for i in range(spatial_disc)]) eig_values = a0 - a2 * omega**2 - a1**2 / 4. / a2 norm_fak = np.ones(omega.shape) * np.sqrt(2) eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("eig_funcs", eig_funcs, overwrite=True) adjoint_eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) # derive sate-space system rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array( [adjoint_eig_funcs[i].derive()(l) for i in range(spatial_disc)]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=3e-1, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_TestFunction_term(self): wf = sim.WeakFormulation(self.func_term) sim.parse_weak_formulation(wf)
def test_Product_term(self): # TODO create test functionality that will automatically check if Case is also valid for swapped arguments # terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_fs_at1)).get_terms() # self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [1, 0, 0], [2, 0, 0]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_fs)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0.25, .5, .25], [.5, 1, .5]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f_swapped)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_at1_f)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0.25], [0, 0, 0.5], [0, 0, .25]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_f_f_at1)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, 0], [0.25, 0.5, .25]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_f_at1_f_at1)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]]))) # more complex terms terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_int_fddt_f)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.zeros((3, 3)))) self.assertTrue(np.allclose(terms[0][1], np.zeros((3, 3)))) self.assertTrue(np.allclose(terms[0][2], np.array([[1/6, 1/12, 0], [1/12, 1/3, 1/12], [0, 1/12, 1/6]]))) self.assertEqual(terms[1], None) # f self.assertEqual(terms[2], None) # g terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_fddt_at0_f_at0)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.zeros((3, 3)))) self.assertTrue(np.allclose(terms[0][1], np.zeros((3, 3)))) self.assertTrue(np.allclose(terms[0][2], np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]))) self.assertEqual(terms[1], None) # f self.assertEqual(terms[2], None) # g terms = sim.parse_weak_formulation(sim.WeakFormulation(self.spat_int)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[2, -2, 0], [-2, 4, -2], [0, -2, 2]]))) self.assertEqual(terms[1], None) # f self.assertEqual(terms[2], None) # g terms = sim.parse_weak_formulation(sim.WeakFormulation(self.spat_int_asymmetric)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[-.5, .5, 0], [-.5, 0, .5], [0, -.5, .5]]))) self.assertEqual(terms[1], None) # f self.assertEqual(terms[2], None) # g terms = sim.parse_weak_formulation(sim.WeakFormulation(self.prod_term_f_at1_dphi_at1)).get_terms() self.assertTrue(np.allclose(terms[0][0], np.array([[0, 0, 0], [0, 0, -2], [0, 0, 2]]))) self.assertEqual(terms[1], None) # f self.assertEqual(terms[2], None) # g terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1)).get_terms() self.assertEqual(terms[0], None) # E self.assertEqual(terms[1], None) # f self.assertTrue(np.allclose(terms[2][0], np.array([[0], [0], [1]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1_swapped)).get_terms() self.assertEqual(terms[0], None) # E self.assertEqual(terms[1], None) # f self.assertTrue(np.allclose(terms[2][0], np.array([[0], [0], [1]])))
state=sh_x_fem_i_at_l, approx_state=x_i_at_l, d_approx_state=xd_i_at_l, approx_target_state=x_ti_at_l, d_approx_target_state=xd_ti_at_l, integral_kernel_zz=int_kernel_zz(l), original_beta=beta_i, target_beta=beta_ti, trajectory=traj, scale=np.exp(-a1 / 2 / a2 * b)) # determine (A,B) with modal transformation rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, param, spatial_domain.bounds, b) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate (t: time vector, q: weights matrix) t, q = sim.simulate_state_space(ss_weak, init_profile * np.ones((len(fem_funcs))), temporal_domain) # compute modal weights (for the intermediate system: evald_modal_xi) mat = cr.calculate_base_transformation_matrix(fem_funcs, eig_funcs) q_i = np.zeros((q.shape[0], len(eig_funcs_i))) for i in range(q.shape[0]): q_i[i, :] = np.dot(q[i, :], np.transpose(mat)) # evaluate approximation of xi evald_modal_xi = sim.evaluate_approximation("eig_funcs_i",
def test_Input_term(self): terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term2)).get_terms() self.assertEqual(terms[0], None) # E0 self.assertEqual(terms[1], None) # f self.assertTrue(np.allclose(terms[2][0], np.array([[0], [-2], [2]]))) # g
def test_fem(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 30 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 12 # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 self.param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(self.param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # actuation_type by b which is close to b_desired on a k times subdivided spatial domain b_desired = self.l / 2 k = 51 # = k1 + k2 k1, k2, self.b = ut.split_domain(k, b_desired, self.l, mode='coprime')[0:3] M = np.linalg.inv(ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n")) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(self.param) self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(self.param_t) self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti # create (not normalized) eigenfunctions eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(self.param, self.l, self.n) init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq]) init_adjoint_eig_funcs = np.array( [ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(self.n)] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) self.adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(self.param_i, self.l, self.n) self.assertTrue(all(np.isclose(eig_val_i, self.eig_val))) eig_funcs_id = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0)) for i in range(self.n)]) eig_funcs_i = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) * eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b)) for i in range(self.n)]) # eigenfunctions from target system ("_ti") eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2) eig_funcs_ti = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti, self.dz.bounds, eig_funcs_i[i](0)) for i in range(self.n)]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register eigenfunctions # register_functions("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True) register_base("eig_funcs", eig_funcs, overwrite=True) register_base("eig_funcs_i", eig_funcs_i, overwrite=True) register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_i = ph.FieldVariable("eig_funcs_i", weight_label="eig_funcs", location=self.l) d_field_variable_i = ph.SpatialDerivedFieldVariable("eig_funcs_i", 1, weight_label="eig_funcs", location=self.l) field_variable_ti = ph.FieldVariable("eig_funcs_ti", weight_label="eig_funcs", location=self.l) d_field_variable_ti = ph.SpatialDerivedFieldVariable("eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)] self.x_i_at_l = [ph.ScalarTerm(field_variable_i)] self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)] self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)] self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)] # shift transformation shifted_fem_funcs_i = np.array( [ef.FiniteTransformFunction(func, M, self.b, self.l, scale_func=lambda z: np.exp(a1 / 2 / a2 * z)) for func in self.fem_funcs]) shifted_eig_funcs_id = np.array([ef.FiniteTransformFunction(func, M, self.b, self.l) for func in eig_funcs_id]) register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True) register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True) sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i", weight_label="fem_funcs", location=self.l) sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id", weight_label="eig_funcs", location=self.l) self.sh_x_fem_i_at_l = [ph.ScalarTerm(sh_fem_field_variable_i), ph.ScalarTerm(field_variable_i), ph.ScalarTerm(sh_field_variable_id, -1)] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (a0_i - a0_ti) / 2 / a2 * z a2, a1, _, _, _ = self.param controller = ut.get_parabolic_robin_backstepping_controller(state=self.sh_x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz(self.l), original_beta=self.beta_i, target_beta=self.beta_ti, trajectory=self.traj, scale=np.exp(-a1 / 2 / a2 * self.b)) # determine (A,B) with modal-transfomation rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds, self.b) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt) # weights of the intermediate system mat = cr.calculate_base_transformation_matrix(self.fem_funcs, eig_funcs) q_i = np.zeros((q.shape[0], len(eig_funcs_i))) for i in range(q.shape[0]): q_i[i, :] = np.dot(q[i, :], np.transpose(mat)) eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz) x_0t = eval_i.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-2) # display results if show_plots: eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) win1 = vis.PgSurfacePlot(eval_i) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 10 # original system parameters a2 = 1.5 a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0]) a0_z = lambda z: 3 alpha = -2 beta = -3 self.param = [a2, a1_z, a0_z, alpha, beta] # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l) self.param_i = a2, 0, a0_i, alpha_i, beta_i _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(self.param_t) self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti # create (not normalized) target (_t) eigenfunctions eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(self.param_t, self.l, self.n) init_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds) for om in eig_freq_t]) init_adjoint_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds) for om in eig_freq_t]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs_t = [cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i]) for i in range(self.n)] eig_funcs_t = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t]) self.adjoint_eig_funcs_t = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t]) # # transformed original eigenfunctions self.eig_funcs = np.array([ef.TransformedSecondOrderEigenfunction(self.eig_val_t[i], [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0], [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4)) for i in range(self.n)]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register functions register_base("eig_funcs_t", eig_funcs_t, overwrite=True) register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True) register_base("eig_funcs", self.eig_funcs, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) d_field_variable_t = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) field_variable = ph.FieldVariable("eig_funcs", location=self.l) d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) # intermediate (_i) and target intermediate (_ti) transformations by z=l # x_i = x * transform_i_at_l self.transform_i_at_l = np.exp(integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x = x_i * inv_transform_i_at_l self.inv_transform_i_at_l = np.exp(-integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x_ti = x_t * transform_ti_at_l self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)] self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)] self.xd_i_at_l = [ph.ScalarTerm(d_field_variable, self.transform_i_at_l), ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2)] self.x_ti_at_l = [ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)] self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l), ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2)] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0] controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz, original_beta=beta_i, target_beta=beta_ti, trajectory=self.traj, scale=self.inv_transform_i_at_l) rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 10 # original system parameters a2 = 1.5 a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0]) a0_z = lambda z: 3 alpha = -2 beta = -3 self.param = [a2, a1_z, a0_z, alpha, beta] # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l) self.param_i = a2, 0, a0_i, alpha_i, beta_i _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti # create (not normalized) target (_t) eigenfunctions eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies( self.param_t, self.l, self.n) init_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds) for om in eig_freq_t ]) init_adjoint_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds) for om in eig_freq_t ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs_t = [ cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i]) for i in range(self.n) ] eig_funcs_t = np.array( [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t]) self.adjoint_eig_funcs_t = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t]) # # transformed original eigenfunctions self.eig_funcs = np.array([ ef.TransformedSecondOrderEigenfunction( self.eig_val_t[i], [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0], [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register functions register_base("eig_funcs_t", eig_funcs_t, overwrite=True) register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True) register_base("eig_funcs", self.eig_funcs, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) d_field_variable_t = ph.SpatialDerivedFieldVariable( "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) field_variable = ph.FieldVariable("eig_funcs", location=self.l) d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) # intermediate (_i) and target intermediate (_ti) transformations by z=l # x_i = x * transform_i_at_l self.transform_i_at_l = np.exp( integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x = x_i * inv_transform_i_at_l self.inv_transform_i_at_l = np.exp( -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x_ti = x_t * transform_ti_at_l self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ ph.ScalarTerm(fem_field_variable, self.transform_i_at_l) ] self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)] self.xd_i_at_l = [ ph.ScalarTerm(d_field_variable, self.transform_i_at_l), ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2) ] self.x_ti_at_l = [ ph.ScalarTerm(field_variable_t, self.transform_ti_at_l) ] self.xd_ti_at_l = [ ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l), ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad( lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0] controller = ut.get_parabolic_robin_backstepping_controller( state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz, original_beta=beta_i, target_beta=beta_ti, trajectory=self.traj, scale=self.inv_transform_i_at_l) rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros( (len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_fem(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 30 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 12 # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 self.param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(self.param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # actuation_type by b which is close to b_desired on a k times subdivided spatial domain b_desired = self.l / 2 k = 51 # = k1 + k2 k1, k2, self.b = ut.split_domain(k, b_desired, self.l, mode='coprime')[0:3] M = np.linalg.inv( ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n")) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate( self.param) self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti # create (not normalized) eigenfunctions eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies( self.param, self.l, self.n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(self.n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) self.adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies( self.param_i, self.l, self.n) self.assertTrue(all(np.isclose(eig_val_i, self.eig_val))) eig_funcs_id = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0)) for i in range(self.n) ]) eig_funcs_i = np.array([ ef.SecondOrderRobinEigenfunction( eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) * eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b)) for i in range(self.n) ]) # eigenfunctions from target system ("_ti") eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2) eig_funcs_ti = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti, self.dz.bounds, eig_funcs_i[i](0)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register eigenfunctions # register_functions("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True) register_base("eig_funcs", eig_funcs, overwrite=True) register_base("eig_funcs_i", eig_funcs_i, overwrite=True) register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_i = ph.FieldVariable("eig_funcs_i", weight_label="eig_funcs", location=self.l) d_field_variable_i = ph.SpatialDerivedFieldVariable( "eig_funcs_i", 1, weight_label="eig_funcs", location=self.l) field_variable_ti = ph.FieldVariable("eig_funcs_ti", weight_label="eig_funcs", location=self.l) d_field_variable_ti = ph.SpatialDerivedFieldVariable( "eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)] self.x_i_at_l = [ph.ScalarTerm(field_variable_i)] self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)] self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)] self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)] # shift transformation shifted_fem_funcs_i = np.array([ ef.FiniteTransformFunction( func, M, self.b, self.l, scale_func=lambda z: np.exp(a1 / 2 / a2 * z)) for func in self.fem_funcs ]) shifted_eig_funcs_id = np.array([ ef.FiniteTransformFunction(func, M, self.b, self.l) for func in eig_funcs_id ]) register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True) register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True) sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i", weight_label="fem_funcs", location=self.l) sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id", weight_label="eig_funcs", location=self.l) self.sh_x_fem_i_at_l = [ ph.ScalarTerm(sh_fem_field_variable_i), ph.ScalarTerm(field_variable_i), ph.ScalarTerm(sh_field_variable_id, -1) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + ( a0_i - a0_ti) / 2 / a2 * z a2, a1, _, _, _ = self.param controller = ut.get_parabolic_robin_backstepping_controller( state=self.sh_x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz(self.l), original_beta=self.beta_i, target_beta=self.beta_ti, trajectory=self.traj, scale=np.exp(-a1 / 2 / a2 * self.b)) # determine (A,B) with modal-transfomation rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds, self.b) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros( (len(self.fem_funcs))), self.dt) # weights of the intermediate system mat = cr.calculate_base_transformation_matrix(self.fem_funcs, eig_funcs) q_i = np.zeros((q.shape[0], len(eig_funcs_i))) for i in range(q.shape[0]): q_i[i, :] = np.dot(q[i, :], np.transpose(mat)) eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz) x_0t = eval_i.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2) # display results if show_plots: eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) win1 = vis.PgSurfacePlot(eval_i) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_Input_term(self): terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term2)).get_terms() self.assertTrue(np.allclose(terms["G"][0][1], np.array([[0], [-2], [2]]))) terms = sim.parse_weak_formulation(sim.WeakFormulation(self.input_term1_squared)).get_terms() self.assertTrue(np.allclose(terms["G"][0][2], np.array([[0], [0], [1]])))
int_kernel_zz = alpha_ti - alpha_i + si.quad(lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, l)[0] # init controller controller = ut.get_parabolic_robin_backstepping_controller(state=x_fem_i_at_l, approx_state=x_i_at_l, d_approx_state=xd_i_at_l, approx_target_state=x_ti_at_l, d_approx_target_state=xd_ti_at_l, integral_kernel_zz=int_kernel_zz, original_beta=beta_i, target_beta=beta_ti, trajectory=traj, scale=inv_transform_i_at_l) rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, param, spatial_domain.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros((len(fem_funcs))), temporal_domain) # pyqtgraph visualization evald_x = sim.evaluate_approximation("fem_funcs", q, t, spatial_domain, name="x(z,t)") win1 = vis.PgAnimatedPlot([evald_x], title="animation", dt=temporal_domain.step*.25) win2 = vis.PgSurfacePlot(evald_x, title=evald_x.name, grid_height=1) pg.QtGui.QApplication.instance().exec_() # visualization vis.MplSlicePlot([evald_x], time_point=1, legend_label=["$x(z,1)$"], legend_location=1) vis.MplSurfacePlot(evald_x) plt.show()
def test_it(self): actuation_type = 'robin' bound_cond_type = 'robin' param = [2., 1.5, -3., -1., -.5] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, alpha, beta = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(np.real_if_close(eig_val)) B = a2 * np.array( [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=1e-05, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()