Esempio n. 1
0
    def add_snl(self, snl, force_new=False, snlgroup_guess=None):
        try:
            self.lock_db()
            snl_id = self._get_next_snl_id()

            spstruc = snl.structure.copy()
            spstruc.remove_oxidation_states()
            sf = SpacegroupAnalyzer(spstruc, SPACEGROUP_TOLERANCE)
            sf.get_space_group_operations()
            sgnum = sf.get_space_group_number() if sf.get_space_group_number() \
                else -1
            sgsym = sf.get_space_group_symbol() if sf.get_space_group_symbol() \
                else 'unknown'
            sghall = sf.get_hall() if sf.get_hall() else 'unknown'
            sgxtal = sf.get_crystal_system() if sf.get_crystal_system() \
                else 'unknown'
            sglatt = sf.get_lattice_type() if sf.get_lattice_type() else 'unknown'
            sgpoint = sf.get_point_group_symbol()

            mpsnl = MPStructureNL.from_snl(snl, snl_id, sgnum, sgsym, sghall,
                                           sgxtal, sglatt, sgpoint)
            snlgroup, add_new, spec_group = self.add_mpsnl(mpsnl, force_new, snlgroup_guess)
            self.release_lock()
            return mpsnl, snlgroup.snlgroup_id, spec_group
        except:
            self.release_lock()
            traceback.print_exc()
            raise ValueError("Error while adding SNL!")
Esempio n. 2
0
    def add_snl(self, snl, force_new=False, snlgroup_guess=None):
        try:
            self.lock_db()
            snl_id = self._get_next_snl_id()

            spstruc = snl.structure.copy()
            spstruc.remove_oxidation_states()
            sf = SpacegroupAnalyzer(spstruc, SPACEGROUP_TOLERANCE)
            sf.get_spacegroup()
            sgnum = sf.get_spacegroup_number() if sf.get_spacegroup_number() \
                else -1
            sgsym = sf.get_spacegroup_symbol() if sf.get_spacegroup_symbol() \
                else 'unknown'
            sghall = sf.get_hall() if sf.get_hall() else 'unknown'
            sgxtal = sf.get_crystal_system() if sf.get_crystal_system() \
                else 'unknown'
            sglatt = sf.get_lattice_type() if sf.get_lattice_type(
            ) else 'unknown'
            sgpoint = sf.get_point_group()

            mpsnl = MPStructureNL.from_snl(snl, snl_id, sgnum, sgsym, sghall,
                                           sgxtal, sglatt, sgpoint)
            snlgroup, add_new, spec_group = self.add_mpsnl(
                mpsnl, force_new, snlgroup_guess)
            self.release_lock()
            return mpsnl, snlgroup.snlgroup_id, spec_group
        except:
            self.release_lock()
            traceback.print_exc()
            raise ValueError("Error while adding SNL!")
Esempio n. 3
0
 def test_tricky_structure(self):
     # for some reason this structure kills spglib1.9
     # 1.7 can't find symmetry either, but at least doesn't kill python
     s = Structure.from_file(os.path.join(test_dir, 'POSCAR.tricky_symmetry'))
     sa = SpacegroupAnalyzer(s, 0.1)
     sa.get_spacegroup_symbol()
     sa.get_spacegroup_number()
     sa.get_point_group()
     sa.get_crystal_system()
     sa.get_hall()
Esempio n. 4
0
 def test_tricky_structure(self):
     # for some reason this structure kills spglib1.9
     # 1.7 can't find symmetry either, but at least doesn't kill python
     s = Structure.from_file(os.path.join(test_dir, 'POSCAR.tricky_symmetry'))
     sa = SpacegroupAnalyzer(s, 0.1)
     sa.get_spacegroup_symbol()
     sa.get_spacegroup_number()
     sa.get_point_group()
     sa.get_crystal_system()
     sa.get_hall()
Esempio n. 5
0
 def set_space_group_from_structure(self, structure):
     spga = SpacegroupAnalyzer(structure=structure)
     self.crystal_system = spga.get_crystal_system()
     self.hall = spga.get_hall()
     self.number = spga.get_space_group_number()
     self.source = "spglib"
     self.symbol = spga.get_space_group_symbol()
Esempio n. 6
0
 def set_material_data_from_structure(self,
                                      structure,
                                      space_group=True,
                                      symprec=1e-3,
                                      angle_tolerance=5):
     comp = structure.composition
     el_amt = structure.composition.get_el_amt_dict()
     self.unit_cell_formula = comp.as_dict()
     self.reduced_cell_formula = comp.to_reduced_dict
     self.elements = list(el_amt.keys())
     self.nelements = len(el_amt)
     self.pretty_formula = comp.reduced_formula
     self.anonymous_formula = comp.anonymized_formula
     self.nsites = comp.num_atoms
     self.chemsys = "-".join(sorted(el_amt.keys()))
     if space_group:
         sym = SpacegroupAnalyzer(structure,
                                  symprec=symprec,
                                  angle_tolerance=angle_tolerance)
         self.spacegroup = SpaceGroupDocument(
             crystal_system=sym.get_crystal_system(),
             hall=sym.get_hall(),
             number=sym.get_space_group_number(),
             point_group=sym.get_point_group_symbol(),
             symbol=sym.get_space_group_symbol(),
             source="spglib")
Esempio n. 7
0
 def set_output_data(self, d_calc, d):
     """
     set the 'output' key
     """
     d["output"] = {
         "structure": d_calc["output"]["structure"],
         "density": d_calc.pop("density"),
         "energy": d_calc["output"]["energy"],
         "energy_per_atom": d_calc["output"]["energy_per_atom"]
     }
     d["output"].update(self.get_basic_processed_data(d))
     sg = SpacegroupAnalyzer(
         Structure.from_dict(d_calc["output"]["structure"]), 0.1)
     if not sg.get_symmetry_dataset():
         sg = SpacegroupAnalyzer(
             Structure.from_dict(d_calc["output"]["structure"]), 1e-3, 1)
     d["output"]["spacegroup"] = {
         "source": "spglib",
         "symbol": sg.get_space_group_symbol(),
         "number": sg.get_space_group_number(),
         "point_group": sg.get_point_group_symbol(),
         "crystal_system": sg.get_crystal_system(),
         "hall": sg.get_hall()
     }
     if d["input"]["parameters"].get("LEPSILON"):
         for k in [
                 'epsilon_static', 'epsilon_static_wolfe', 'epsilon_ionic'
         ]:
             d["output"][k] = d_calc["output"][k]
Esempio n. 8
0
 def set_space_group_from_structure(self, structure):
     spga = SpacegroupAnalyzer(structure=structure)
     self.crystal_system = spga.get_crystal_system()
     self.hall = spga.get_hall()
     self.number = spga.get_space_group_number()
     self.source = "spglib"
     self.symbol = spga.get_space_group_symbol()
Esempio n. 9
0
File: util.py Progetto: muhrin/SPLpy
def create_structure_db_info(structure, spacegroup=None):
    # Figure out the symmetry group
    if not spacegroup:
        spacegroup = SpacegroupAnalyzer(structure, normalised_symmetry_precision(structure), -1)

    d = dict()
    # Set the composition and formulas for the system
    comp = structure.composition
    el_amt = structure.composition.get_el_amt_dict()
    d.update({"unit_cell_formula": comp.to_dict,
              "reduced_cell_formula": comp.to_reduced_dict,
              "elements": list(el_amt.keys()),
              "nelements": len(el_amt),
              "pretty_formula": comp.reduced_formula,
              "anonymous_formula": comp.anonymized_formula,
              "nsites": comp.num_atoms,
              "chemsys": "-".join(sorted(el_amt.keys()))})

    d["spacegroup"] = {"symbol": unicode(spacegroup.get_spacegroup_symbol(),
                                         errors="ignore"),
                       "number": spacegroup.get_spacegroup_number(),
                       "point_group": unicode(spacegroup.get_point_group(),
                                              errors="ignore"),
                       "source": "spglib",
                       "crystal_system": spacegroup.get_crystal_system(),
                       "hall": spacegroup.get_hall()}

    return d
Esempio n. 10
0
    def from_structure(cls, structure: Structure) -> "SymmetryData":
        symprec = SETTINGS.SYMPREC
        sg = SpacegroupAnalyzer(structure, symprec=symprec)
        symmetry: Dict[str, Any] = {"symprec": symprec}
        if not sg.get_symmetry_dataset():
            sg = SpacegroupAnalyzer(structure, 1e-3, 1)
            symmetry["symprec"] = 1e-3

        symmetry.update({
            "source":
            "spglib",
            "symbol":
            sg.get_space_group_symbol(),
            "number":
            sg.get_space_group_number(),
            "point_group":
            sg.get_point_group_symbol(),
            "crystal_system":
            CrystalSystem(sg.get_crystal_system().title()),
            "hall":
            sg.get_hall(),
            "version":
            spglib.__version__,
        })

        return SymmetryData(**symmetry)
Esempio n. 11
0
    def run_task(self, fw_spec):
        additional_fields = self.get("additional_fields", {})

        # pass the additional_fields first to avoid overriding BoltztrapAnalyzer items
        d = additional_fields.copy()

        btrap_dir = os.path.join(os.getcwd(), "boltztrap")
        d["boltztrap_dir"] = btrap_dir

        bta = BoltztrapAnalyzer.from_files(btrap_dir)
        d.update(bta.as_dict())
        d["scissor"] = bta.intrans["scissor"]

        # trim the output
        for x in ['cond', 'seebeck', 'kappa', 'hall', 'mu_steps', 'mu_doping', 'carrier_conc']:
            del d[x]

        if not self.get("hall_doping"):
            del d["hall_doping"]

        bandstructure_dir = os.getcwd()
        d["bandstructure_dir"] = bandstructure_dir

        # add the structure
        v, o = get_vasprun_outcar(bandstructure_dir, parse_eigen=False, parse_dos=False)
        structure = v.final_structure
        d["structure"] = structure.as_dict()
        d["formula_pretty"] = structure.composition.reduced_formula
        d.update(get_meta_from_structure(structure))

        # add the spacegroup
        sg = SpacegroupAnalyzer(Structure.from_dict(d["structure"]), 0.1)
        d["spacegroup"] = {"symbol": sg.get_space_group_symbol(),
                           "number": sg.get_space_group_number(),
                           "point_group": sg.get_point_group_symbol(),
                           "source": "spglib",
                           "crystal_system": sg.get_crystal_system(),
                           "hall": sg.get_hall()}

        d["created_at"] = datetime.utcnow()

        db_file = env_chk(self.get('db_file'), fw_spec)

        if not db_file:
            del d["dos"]
            with open(os.path.join(btrap_dir, "boltztrap.json"), "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            mmdb = VaspCalcDb.from_db_file(db_file, admin=True)

            # dos gets inserted into GridFS
            dos = json.dumps(d["dos"], cls=MontyEncoder)
            fsid, compression = mmdb.insert_gridfs(dos, collection="dos_boltztrap_fs",
                                                   compress=True)
            d["dos_boltztrap_fs_id"] = fsid
            del d["dos"]

            mmdb.db.boltztrap.insert(d)
Esempio n. 12
0
    def run_task(self, fw_spec):
        additional_fields = self.get("additional_fields", {})

        # pass the additional_fields first to avoid overriding BoltztrapAnalyzer items
        d = additional_fields.copy()

        btrap_dir = os.path.join(os.getcwd(), "boltztrap")
        d["boltztrap_dir"] = btrap_dir

        bta = BoltztrapAnalyzer.from_files(btrap_dir)
        d.update(bta.as_dict())
        d["scissor"] = bta.intrans["scissor"]

        # trim the output
        for x in ['cond', 'seebeck', 'kappa', 'hall', 'mu_steps', 'mu_doping', 'carrier_conc']:
            del d[x]

        if not self.get("hall_doping"):
            del d["hall_doping"]

        bandstructure_dir = os.getcwd()
        d["bandstructure_dir"] = bandstructure_dir

        # add the structure
        v, o = get_vasprun_outcar(bandstructure_dir, parse_eigen=False, parse_dos=False)
        structure = v.final_structure
        d["structure"] = structure.as_dict()
        d["formula_pretty"] = structure.composition.reduced_formula
        d.update(get_meta_from_structure(structure))

        # add the spacegroup
        sg = SpacegroupAnalyzer(Structure.from_dict(d["structure"]), 0.1)
        d["spacegroup"] = {"symbol": sg.get_space_group_symbol(),
                           "number": sg.get_space_group_number(),
                           "point_group": sg.get_point_group_symbol(),
                           "source": "spglib",
                           "crystal_system": sg.get_crystal_system(),
                           "hall": sg.get_hall()}

        d["created_at"] = datetime.utcnow()

        db_file = env_chk(self.get('db_file'), fw_spec)

        if not db_file:
            del d["dos"]
            with open(os.path.join(btrap_dir, "boltztrap.json"), "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            mmdb = VaspCalcDb.from_db_file(db_file, admin=True)

            # dos gets inserted into GridFS
            dos = json.dumps(d["dos"], cls=MontyEncoder)
            fsid, compression = mmdb.insert_gridfs(dos, collection="dos_boltztrap_fs",
                                                   compress=True)
            d["dos_boltztrap_fs_id"] = fsid
            del d["dos"]

            mmdb.db.boltztrap.insert(d)
Esempio n. 13
0
def add_cifs(doc):
    struc = Structure.from_dict(doc["structure"])
    sym_finder = SpacegroupAnalyzer(struc, symprec=0.1)
    doc["cif"] = str(CifWriter(struc))
    doc["cifs"] = {}
    if sym_finder.get_hall():
        primitive = sym_finder.get_primitive_standard_structure()
        conventional = sym_finder.get_conventional_standard_structure()
        refined = sym_finder.get_refined_structure()
        doc["cifs"]["primitive"] = str(CifWriter(primitive))
        doc["cifs"]["refined"] = str(CifWriter(refined))
        doc["cifs"]["conventional_standard"] = str(CifWriter(conventional))
        doc["cifs"]["computed"] = str(CifWriter(struc))
        doc["spacegroup"]["symbol"] = sym_finder.get_space_group_symbol()
        doc["spacegroup"]["number"] = sym_finder.get_space_group_number()
        doc["spacegroup"]["point_group"] = sym_finder.get_point_group_symbol()
        doc["spacegroup"]["crystal_system"] = sym_finder.get_crystal_system()
        doc["spacegroup"]["hall"] = sym_finder.get_hall()
    else:
        doc["cifs"]["primitive"] = None
        doc["cifs"]["refined"] = None
        doc["cifs"]["conventional_standard"] = None
Esempio n. 14
0
def analyze_symmetry(request):
    results = {}
    symprec = float(request.POST["symprec"])
    angle_tolerance = float(request.POST["angle_tolerance"])
    for name, f in request.FILES.items():
        name, s = get_structure(f)
        a = SpacegroupAnalyzer(s,
                               symprec=symprec,
                               angle_tolerance=angle_tolerance)
        d = {}
        d["international"] = a.get_space_group_symbol()
        d["number"] = a.get_space_group_number()
        d["hall"] = a.get_hall()
        d["point_group"] = a.get_point_group()
        d["crystal_system"] = a.get_crystal_system()
        results[name] = d
    return results
Esempio n. 15
0
def structure_symmetry():
    structs, fnames = read_structures()
    multi_structs(structs, fnames)
    for struct, fname in zip(structs, fnames):
        if isinstance(struct, Structure):
            sa = SpacegroupAnalyzer(struct)
            print("file name: {}".format(fname))
            print("{} : {}".format('Structure Type', 'periodicity'))
            print("{} : {}".format('Lattice Type', sa.get_lattice_type()))
            print("{} : {}".format('Space Group ID',
                                   sa.get_space_group_number()))
            print("{} : {}".format('International Symbol',
                                   sa.get_space_group_symbol()))
            print("{} : {}".format('Hall Symbol', sa.get_hall()))
            sepline()
        if isinstance(struct, Molecule):
            print("file name: {}".format(fname))
            sa = PointGroupAnalyzer(struct)
            print("{} : {}".format('Structure Type', 'non-periodicity'))
            print("{} : {}".format('International Symbol',
                                   ast.get_pointgroup()))
    return True
Esempio n. 16
0
 def set_output_data(self, d_calc, d):
     """
     set the 'output' key
     """
     d["output"] = {
         "structure": d_calc["output"]["structure"],
         "density": d_calc.pop("density"),
         "energy": d_calc["output"]["energy"],
         "energy_per_atom": d_calc["output"]["energy_per_atom"]}
     d["output"].update(self.get_basic_processed_data(d))
     sg = SpacegroupAnalyzer(Structure.from_dict(d_calc["output"]["structure"]), 0.1)
     if not sg.get_symmetry_dataset():
         sg = SpacegroupAnalyzer(Structure.from_dict(d_calc["output"]["structure"]), 1e-3, 1)
     d["output"]["spacegroup"] = {
         "source": "spglib",
         "symbol": sg.get_space_group_symbol(),
         "number": sg.get_space_group_number(),
         "point_group": sg.get_point_group_symbol(),
         "crystal_system": sg.get_crystal_system(),
         "hall": sg.get_hall()}
     if d["input"]["parameters"].get("LEPSILON"):
         for k in ['epsilon_static', 'epsilon_static_wolfe', 'epsilon_ionic']:
             d["output"][k] = d_calc["output"][k]
Esempio n. 17
0
    def set_material_data_from_structure(self,
                                         structure,
                                         space_group=True,
                                         symprec=1e-3,
                                         angle_tolerance=5):
        """
        Sets the fields of the Document using a Structure and Spglib to determine the space group properties

        Args:
            structure: A |Structure|
            space_group: if True sets the spacegroup fields using spglib_.
            symprec (float): Tolerance for symmetry finding.
            angle_tolerance (float): Angle tolerance for symmetry finding.
        """

        comp = structure.composition
        el_amt = structure.composition.get_el_amt_dict()
        self.unit_cell_formula = comp.as_dict()
        self.reduced_cell_formula = comp.to_reduced_dict
        self.elements = list(el_amt.keys())
        self.nelements = len(el_amt)
        self.pretty_formula = comp.reduced_formula
        self.anonymous_formula = comp.anonymized_formula
        self.nsites = comp.num_atoms
        self.chemsys = "-".join(sorted(el_amt.keys()))
        self.full_formula = comp.formula
        if space_group:
            sym = SpacegroupAnalyzer(structure,
                                     symprec=symprec,
                                     angle_tolerance=angle_tolerance)
            self.spacegroup = SpaceGroupDocument(
                crystal_system=sym.get_crystal_system(),
                hall=sym.get_hall(),
                number=sym.get_space_group_number(),
                point_group=sym.get_point_group_symbol(),
                symbol=sym.get_space_group_symbol(),
                source="spglib")
Esempio n. 18
0
    def generate_doc(self, dir_name, vasprun_files, outcar_files):
        """
        Adapted from matgendb.creator.generate_doc
        """
        try:
            # basic properties, incl. calcs_reversed and run_stats
            fullpath = os.path.abspath(dir_name)
            d = {k: v for k, v in self.additional_fields.items()}
            d["schema"] = {"code": "atomate", "version": VaspDrone.__version__}
            d["dir_name"] = fullpath
            d["calcs_reversed"] = [self.process_vasprun(dir_name, taskname, filename)
                                   for taskname, filename in vasprun_files.items()]
            outcar_data = [Outcar(os.path.join(dir_name, filename)).as_dict()
                           for taskname, filename in outcar_files.items()]
            run_stats = {}
            for i, d_calc in enumerate(d["calcs_reversed"]):
                run_stats[d_calc["task"]["name"]] = outcar_data[i].pop("run_stats")
                if d_calc.get("output"):
                    d_calc["output"].update({"outcar": outcar_data[i]})
                else:
                    d_calc["output"] = {"outcar": outcar_data[i]}
            try:
                overall_run_stats = {}
                for key in ["Total CPU time used (sec)", "User time (sec)", "System time (sec)",
                            "Elapsed time (sec)"]:
                    overall_run_stats[key] = sum([v[key] for v in run_stats.values()])
                run_stats["overall"] = overall_run_stats
            except:
                logger.error("Bad run stats for {}.".format(fullpath))
            d["run_stats"] = run_stats

            # reverse the calculations data order so newest calc is first
            d["calcs_reversed"].reverse()

            # set root formula/composition keys based on initial and final calcs
            d_calc_init = d["calcs_reversed"][-1]
            d_calc_final = d["calcs_reversed"][0]
            d["chemsys"] = "-".join(sorted(d_calc_final["elements"]))
            comp = Composition(d_calc_final["composition_unit_cell"])
            d["formula_anonymous"] = comp.anonymized_formula
            d["formula_reduced_abc"] = comp.reduced_composition.alphabetical_formula
            for root_key in ["completed_at", "nsites", "composition_unit_cell",
                             "composition_reduced", "formula_pretty", "elements", "nelements"]:
                d[root_key] = d_calc_final[root_key]

            # store the input key based on initial calc
            # store any overrides to the exchange correlation functional
            xc = d_calc_init["input"]["incar"].get("GGA")
            if xc:
                xc = xc.upper()
            p = d_calc_init["input"]["potcar_type"][0].split("_")
            pot_type = p[0]
            functional = "lda" if len(pot_type) == 1 else "_".join(p[1:])
            d["input"] = {"structure": d_calc_init["input"]["structure"],
                          "is_hubbard": d_calc_init.pop("is_hubbard"),
                          "hubbards": d_calc_init.pop("hubbards"),
                          "is_lasph": d_calc_init["input"]["incar"].get("LASPH", False),
                          "potcar_spec": d_calc_init["input"].get("potcar_spec"),
                          "xc_override": xc,
                          "pseudo_potential": {"functional": functional.lower(),
                                               "pot_type": pot_type.lower(),
                                               "labels": d_calc_init["input"]["potcar"]},
                          "parameters": d_calc_init["input"]["parameters"],
                          "incar": d_calc_init["input"]["incar"]
                          }

            # store the output key based on final calc
            d["output"] = {
                "structure": d_calc_final["output"]["structure"],
                "density": d_calc_final.pop("density"),
                "energy": d_calc_final["output"]["energy"],
                "energy_per_atom": d_calc_final["output"]["energy_per_atom"],
                "forces": d_calc_final["output"]["ionic_steps"][-1].get("forces"),
                "stress": d_calc_final["output"]["ionic_steps"][-1].get("stress")}

            # patch calculated magnetic moments into final structure
            if len(d_calc_final["output"]["outcar"]["magnetization"]) != 0:
                magmoms = [m["tot"] for m in d_calc_final["output"]["outcar"]["magnetization"]]
                s = Structure.from_dict(d["output"]["structure"])
                s.add_site_property('magmom', magmoms)
                d["output"]["structure"] = s.as_dict()

            calc = d["calcs_reversed"][0]

            try:
                d["output"].update({"bandgap": calc["output"]["bandgap"],
                                    "cbm": calc["output"]["cbm"],
                                    "vbm": calc["output"]["vbm"],
                                    "is_gap_direct": calc["output"]["is_gap_direct"],
                                    "is_metal": calc["output"]["is_metal"]})
                if not calc["output"]["is_gap_direct"]:
                    d["output"]["direct_gap"] = calc["output"]["direct_gap"]
                if "transition" in calc["output"]:
                    d["output"]["transition"] = calc["output"]["transition"]

            except Exception:
                if self.bandstructure_mode is True:
                    import traceback
                    logger.error(traceback.format_exc())
                    logger.error("Error in " + os.path.abspath(dir_name) + ".\n" + traceback.format_exc())
                    raise

            sg = SpacegroupAnalyzer(Structure.from_dict(d_calc_final["output"]["structure"]), 0.1)
            if not sg.get_symmetry_dataset():
                sg = SpacegroupAnalyzer(Structure.from_dict(d_calc_final["output"]["structure"]),
                                        1e-3, 1)
            d["output"]["spacegroup"] = {
                "source": "spglib",
                "symbol": sg.get_space_group_symbol(),
                "number": sg.get_space_group_number(),
                "point_group": sg.get_point_group_symbol(),
                "crystal_system": sg.get_crystal_system(),
                "hall": sg.get_hall()}
            if d["input"]["parameters"].get("LEPSILON"):
                for k in ['epsilon_static', 'epsilon_static_wolfe', 'epsilon_ionic']:
                    d["output"][k] = d_calc_final["output"][k]
                if SymmOp.inversion() not in sg.get_symmetry_operations():
                    for k in ["piezo_ionic_tensor", "piezo_tensor"]:
                        d["output"][k] = d_calc_final["output"]["outcar"][k]

            d["state"] = "successful" if d_calc["has_vasp_completed"] else "unsuccessful"

            self.set_analysis(d)

            d["last_updated"] = datetime.datetime.today()
            return d

        except Exception:
            import traceback
            logger.error(traceback.format_exc())
            logger.error("Error in " + os.path.abspath(dir_name) + ".\n" + traceback.format_exc())
            raise
Esempio n. 19
0
    def generate_doc(self, dir_name, vasprun_files):
        """
        Process aflow style runs, where each run is actually a combination of
        two vasp runs.
        """
        try:
            fullpath = os.path.abspath(dir_name)
            # Defensively copy the additional fields first.  This is a MUST.
            # Otherwise, parallel updates will see the same object and inserts
            # will be overridden!!
            d = {k: v for k, v in self.additional_fields.items()}
            d["dir_name"] = fullpath
            d["schema_version"] = VaspToDbTaskDrone.__version__
            d["calculations"] = [
                self.process_vasprun(dir_name, taskname, filename)
                for taskname, filename in vasprun_files.items()
            ]
            d1 = d["calculations"][0]
            d2 = d["calculations"][-1]

            # Now map some useful info to the root level.
            for root_key in [
                    "completed_at", "nsites", "unit_cell_formula",
                    "reduced_cell_formula", "pretty_formula", "elements",
                    "nelements", "cif", "density", "is_hubbard", "hubbards",
                    "run_type"
            ]:
                d[root_key] = d2[root_key]
            d["chemsys"] = "-".join(sorted(d2["elements"]))

            # store any overrides to the exchange correlation functional
            xc = d2["input"]["incar"].get("GGA")
            if xc:
                xc = xc.upper()
            d["input"] = {
                "crystal": d1["input"]["crystal"],
                "is_lasph": d2["input"]["incar"].get("LASPH", False),
                "potcar_spec": d1["input"].get("potcar_spec"),
                "xc_override": xc
            }
            vals = sorted(d2["reduced_cell_formula"].values())
            d["anonymous_formula"] = {
                string.ascii_uppercase[i]: float(vals[i])
                for i in range(len(vals))
            }
            d["output"] = {
                "crystal": d2["output"]["crystal"],
                "final_energy": d2["output"]["final_energy"],
                "final_energy_per_atom": d2["output"]["final_energy_per_atom"]
            }
            d["name"] = "aflow"
            p = d2["input"]["potcar_type"][0].split("_")
            pot_type = p[0]
            functional = "lda" if len(pot_type) == 1 else "_".join(p[1:])
            d["pseudo_potential"] = {
                "functional": functional.lower(),
                "pot_type": pot_type.lower(),
                "labels": d2["input"]["potcar"]
            }
            if len(d["calculations"]) == len(self.runs) or \
                    list(vasprun_files.keys())[0] != "relax1":
                d["state"] = "successful" if d2["has_vasp_completed"] \
                    else "unsuccessful"
            else:
                d["state"] = "stopped"
            d["analysis"] = get_basic_analysis_and_error_checks(d)

            sg = SpacegroupAnalyzer(
                Structure.from_dict(d["output"]["crystal"]), 0.1)
            d["spacegroup"] = {
                "symbol": sg.get_space_group_symbol(),
                "number": sg.get_space_group_number(),
                "point_group": sg.get_point_group_symbol(),
                "source": "spglib",
                "crystal_system": sg.get_crystal_system(),
                "hall": sg.get_hall()
            }
            d["oxide_type"] = d2["oxide_type"]
            d["last_updated"] = datetime.datetime.today()
            return d
        except Exception as ex:
            import traceback
            print(traceback.format_exc())
            logger.error("Error in " + os.path.abspath(dir_name) + ".\n" +
                         traceback.format_exc())

            return None
Esempio n. 20
0
    def generate_doc(self, dir_name, vasprun_files):
        """
        Process aflow style runs, where each run is actually a combination of
        two vasp runs.
        """
        try:
            fullpath = os.path.abspath(dir_name)
            #Defensively copy the additional fields first.  This is a MUST.
            #Otherwise, parallel updates will see the same object and inserts
            #will be overridden!!
            d = {k: v for k, v in self.additional_fields.items()}
            d["dir_name"] = fullpath
            d["schema_version"] = VaspToDbTaskDrone.__version__
            d["calculations"] = [
                self.process_vasprun(dir_name, taskname, filename)
                for taskname, filename in vasprun_files.items()]
            d1 = d["calculations"][0]
            d2 = d["calculations"][-1]

            #Now map some useful info to the root level.
            for root_key in ["completed_at", "nsites", "unit_cell_formula",
                             "reduced_cell_formula", "pretty_formula",
                             "elements", "nelements", "cif", "density",
                             "is_hubbard", "hubbards", "run_type"]:
                d[root_key] = d2[root_key]
            d["chemsys"] = "-".join(sorted(d2["elements"]))

            #store any overrides to the exchange correlation functional
            xc = d2["input"]["incar"].get("GGA")
            if xc:
                xc = xc.upper()
            d["input"] = {"crystal": d1["input"]["crystal"],
                          "is_lasph": d2["input"]["incar"].get("LASPH", False),
                          "potcar_spec": d1["input"].get("potcar_spec"),
                          "xc_override": xc}
            vals = sorted(d2["reduced_cell_formula"].values())
            d["anonymous_formula"] = {string.ascii_uppercase[i]: float(vals[i])
                                      for i in range(len(vals))}
            d["output"] = {
                "crystal": d2["output"]["crystal"],
                "final_energy": d2["output"]["final_energy"],
                "final_energy_per_atom": d2["output"]["final_energy_per_atom"]}
            d["name"] = "aflow"
            p = d2["input"]["potcar_type"][0].split("_")
            pot_type = p[0]
            functional = "lda" if len(pot_type) == 1 else "_".join(p[1:])
            d["pseudo_potential"] = {"functional": functional.lower(),
                                     "pot_type": pot_type.lower(),
                                     "labels": d2["input"]["potcar"]}
            if len(d["calculations"]) == len(self.runs) or \
                    list(vasprun_files.keys())[0] != "relax1":
                d["state"] = "successful" if d2["has_vasp_completed"] \
                    else "unsuccessful"
            else:
                d["state"] = "stopped"
            d["analysis"] = get_basic_analysis_and_error_checks(d)

            sg = SpacegroupAnalyzer(Structure.from_dict(d["output"]["crystal"]),
                                    0.1)
            d["spacegroup"] = {"symbol": sg.get_space_group_symbol(),
                               "number": sg.get_space_group_number(),
                               "point_group": sg.get_point_group_symbol(),
                               "source": "spglib",
                               "crystal_system": sg.get_crystal_system(),
                               "hall": sg.get_hall()}
            d["last_updated"] = datetime.datetime.today()
            return d
        except Exception as ex:
            import traceback
            print(traceback.format_exc())
            logger.error("Error in " + os.path.abspath(dir_name) +
                         ".\n" + traceback.format_exc())

            return None
Esempio n. 21
0
    def process_item(self, item):
        """
        Finds all predicted structures for given item

        Args:
            item (dict): structure prediction request and relevant oxidation state-labeled structure templates

        Returns:
            (dict, dict): A tuple containing updated request doc and a list of crystal docs to update
        """
        request = item["request"]
        templates = item["templates"]

        self.logger.info(
            f"Labeling oxidation states for {len(templates)} structure templates"
        )

        oxi_labeled_templates = []
        for template in templates:
            struct = Structure.from_dict(template["structure"])
            try:
                oxi_labeled_templates.append({
                    "structure":
                    self.auto_oxi.apply_transformation(struct),
                    "id":
                    template[self.structure_templates.key],
                })
            except:
                continue  # if auto-oxidation fails, try next structure

        self.logger.info(
            f"Successfully labeled oxidation states for {len(oxi_labeled_templates)} structures"
        )
        self.logger.info("Substituting original species into structures")

        predicted_structs = Substitutor(
            threshold=request["threshold"]).pred_from_structures(
                request["original_species"],
                oxi_labeled_templates,
                remove_duplicates=True,
                remove_existing=True,
            )
        predicted_structs.sort(key=lambda s: s.other_parameters["proba"],
                               reverse=True)

        structure_prediction_id = request[self.requests.key]

        crystal_docs = []
        summaries = []

        self.logger.info(
            f"Found {len(predicted_structs)} predicted structures. Generating crystal docs (XRDs, CIFs, etc."
        )

        for number_id, struct in enumerate(predicted_structs):
            crystal = {}
            summary = {}
            xrd_dict = {}

            final_structure = struct.final_structure
            sga = SpacegroupAnalyzer(final_structure, symprec=0.1)

            for rad_source in ["CuKa", "AgKa", "MoKa", "FeKa"]:
                xrdc = XRDCalculator(wavelength=rad_source)
                pattern = xrdc.get_pattern(final_structure,
                                           two_theta_range=None)
                xrd_dict[rad_source] = pattern

            transformed_structure = struct.to_snl(
                f"{request['name']} <{request['email']}>",
                remarks=["Created by MP Structure Predictor"],
            )

            crystal[self.requests.key] = structure_prediction_id
            crystal[self.crystals.key] = number_id
            crystal["probability"] = struct.other_parameters["proba"]
            crystal["transformed_structure"] = transformed_structure
            crystal["xrd"] = xrd_dict
            crystal["space_group_info"] = {
                "symbol": sga.get_space_group_symbol(),
                "number": sga.get_space_group_number(),
                "hall": sga.get_hall(),
                "crystal_system": sga.get_crystal_system(),
            }

            summary[self.crystals.key] = number_id
            summary["probability"] = struct.other_parameters["proba"]
            summary[
                "pretty_formula"] = final_structure.composition.reduced_formula
            summary["nsites"] = len(final_structure)
            summary["space_group"] = sga.get_space_group_symbol()
            summary["cif"] = str(CifWriter(final_structure))

            crystal_docs.append(jsanitize(crystal, strict=True))
            summaries.append(jsanitize(summary, strict=True))

        self.logger.info(
            f"Successfully generated {len(crystal_docs)} crystal docs for request {request['original_species']}"
        )

        request.update({
            "state": "COMPLETE",
            "completed_at": datetime.utcnow(),
            "num_crystals": len(crystal_docs),
            "crystals": summaries,
        })

        return request, crystal_docs
Esempio n. 22
0
class SpacegroupAnalyzerTest(PymatgenTest):

    def setUp(self):
        p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure('Li10GeP2S12')
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure, 0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species_and_occu, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure('Graphite')
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_spacegroup_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_spacegroup_symbol(), "R-3m")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_spacegroup_number(), 62)
        self.assertEqual(self.disordered_sg.get_spacegroup_number(), 137)
        self.assertEqual(self.sg4.get_spacegroup_number(), 166)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), '-P 2ac 2n')
        self.assertEqual(self.disordered_sg.get_hall(), 'P 4n 2n -1n')

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group(), 'mmm')
        self.assertEqual(self.disordered_sg.get_point_group(), '4/mmm')

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds['international'], 'Pnma')

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual('orthorhombic', crystal_system)
        self.assertEqual('tetragonal', self.disordered_sg.get_crystal_system())

    def test_get_symmetry_operations(self):
        fracsymmops = self.sg.get_symmetry_operations()
        symmops = self.sg.get_symmetry_operations(True)
        self.assertEqual(len(symmops), 8)
        latt = self.structure.lattice
        for fop, op in zip(fracsymmops, symmops):
            for site in self.structure:
                newfrac = fop.operate(site.frac_coords)
                newcart = op.operate(site.coords)
                self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                            newfrac))
                found = False
                newsite = PeriodicSite(site.species_and_occu, newcart, latt,
                                       coords_are_cartesian=True)
                for testsite in self.structure:
                    if newsite.is_periodic_image(testsite, 1e-3):
                        found = True
                        break
                self.assertTrue(found)

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.001)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16,4,8,4,2,8,8,8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
        self.assertEqual(primitive_structure.formula, "Li2 O1")
        # This isn't what is expected. All the angles should be 60
        self.assertAlmostEqual(primitive_structure.lattice.alpha, 60)
        self.assertAlmostEqual(primitive_structure.lattice.beta, 60)
        self.assertAlmostEqual(primitive_structure.lattice.gamma, 60)
        self.assertAlmostEqual(primitive_structure.lattice.volume,
                               structure.lattice.volume / 4.0)

    def test_get_ir_reciprocal_mesh(self):
        grid=self.sg.get_ir_reciprocal_mesh()
        self.assertEqual(len(grid), 216)
        self.assertAlmostEquals(grid[1][0][0], 0.1)
        self.assertAlmostEquals(grid[1][0][1], 0.0)
        self.assertAlmostEquals(grid[1][0][2], 0.0)
        self.assertEqual(grid[1][1], 2)

    def test_get_conventional_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.b, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.c, 9.1980270633769461)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.b, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.c, 4.2327080177761687)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 2.9542233922299999)
        self.assertAlmostEqual(conv.lattice.b, 4.6330325651443296)
        self.assertAlmostEqual(conv.lattice.c, 5.373703587040775)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 4.1430033493799998)
        self.assertAlmostEqual(conv.lattice.b, 31.437979757624728)
        self.assertAlmostEqual(conv.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 117.53832420192903)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 14.033435583000625)
        self.assertAlmostEqual(conv.lattice.b, 3.96052850731)
        self.assertAlmostEqual(conv.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'rhomb_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 120)
        self.assertAlmostEqual(conv.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.c, 6.9779585500000003)

    def test_get_primitive_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.beta, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.gamma, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.a, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.b, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.c, 7.9657251015812145)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 105.015053349)
        self.assertAlmostEqual(prim.lattice.beta, 105.015053349)
        self.assertAlmostEqual(prim.lattice.gamma, 118.80658411899999)
        self.assertAlmostEqual(prim.lattice.a, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.b, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.c, 4.1579321075608791)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 134.78923546600001)
        self.assertAlmostEqual(prim.lattice.beta, 105.856239333)
        self.assertAlmostEqual(prim.lattice.gamma, 91.276341676000001)
        self.assertAlmostEqual(prim.lattice.a, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.b, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.c, 3.8428217771014852)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 164.985257335)
        self.assertAlmostEqual(prim.lattice.a, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.b, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 63.579155761999999)
        self.assertAlmostEqual(prim.lattice.beta, 116.42084423747779)
        self.assertAlmostEqual(prim.lattice.gamma, 148.47965136208569)
        self.assertAlmostEqual(prim.lattice.a, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.b, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'rhomb_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 120)
        self.assertAlmostEqual(prim.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.c, 6.9779585500000003)
Esempio n. 23
0
    def set_material_data_from_structure(self, structure, space_group=True, symprec=1e-3, angle_tolerance=5):
        """
        Sets the fields of the Document using a Structure and Spglib to determine the space group properties

        Args:
            structure: A |Structure|
            space_group: if True sets the spacegroup fields using spglib_.
            symprec (float): Tolerance for symmetry finding.
            angle_tolerance (float): Angle tolerance for symmetry finding.
        """

        comp = structure.composition
        el_amt = structure.composition.get_el_amt_dict()
        self.unit_cell_formula = comp.as_dict()
        self.reduced_cell_formula = comp.to_reduced_dict
        self.elements = list(el_amt.keys())
        self.nelements = len(el_amt)
        self.pretty_formula = comp.reduced_formula
        self.anonymous_formula = comp.anonymized_formula
        self.nsites = comp.num_atoms
        self.chemsys = "-".join(sorted(el_amt.keys()))
        if space_group:
            sym = SpacegroupAnalyzer(structure, symprec=symprec, angle_tolerance=angle_tolerance)
            self.spacegroup = SpaceGroupDocument(crystal_system=sym.get_crystal_system(), hall=sym.get_hall(),
                                                 number=sym.get_space_group_number(), point_group=sym.get_point_group_symbol(),
                                                 symbol=sym.get_space_group_symbol(), source="spglib")
Esempio n. 24
0
class SpacegroupAnalyzerTest(PymatgenTest):

    def setUp(self):
        p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure('Li10GeP2S12')
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure, 0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species_and_occu, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure('Graphite')
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)
        self.structure4 = graphite

    def test_primitive(self):
        s = Structure.from_spacegroup("Fm-3m", np.eye(3) * 3, ["Cu"],
                                      [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertEqual(len(s), 4)
        self.assertEqual(len(a.find_primitive()), 1)

    def test_is_laue(self):
        s = Structure.from_spacegroup("Fm-3m", np.eye(3) * 3, ["Cu"],
                                      [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertTrue(a.is_laue())

    def test_magnetic(self):
        lfp = PymatgenTest.get_structure("LiFePO4")
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")
        magmoms = [0] * len(lfp)
        magmoms[4] = 1
        magmoms[5] = -1
        magmoms[6] = 1
        magmoms[7] = -1
        lfp.add_site_property("magmom", magmoms)
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_space_group_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_space_group_symbol(), "P6_3/mmc")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_space_group_number(), 62)
        self.assertEqual(self.disordered_sg.get_space_group_number(), 137)
        self.assertEqual(self.sg4.get_space_group_number(), 194)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), '-P 2ac 2n')
        self.assertEqual(self.disordered_sg.get_hall(), 'P 4n 2n -1n')

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group_symbol(), 'mmm')
        self.assertEqual(self.disordered_sg.get_point_group_symbol(), '4/mmm')

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds['international'], 'Pnma')

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual('orthorhombic', crystal_system)
        self.assertEqual('tetragonal', self.disordered_sg.get_crystal_system())

    def test_get_symmetry_operations(self):
        for sg, structure in [(self.sg, self.structure),
                              (self.sg4, self.structure4)]:

            pgops = sg.get_point_group_operations()
            fracsymmops = sg.get_symmetry_operations()
            symmops = sg.get_symmetry_operations(True)
            latt = structure.lattice
            for fop, op, pgop in zip(fracsymmops, symmops, pgops):
                # translation vector values should all be 0 or 0.5
                t = fop.translation_vector * 2
                self.assertArrayAlmostEqual(t - np.round(t), 0)

                self.assertArrayAlmostEqual(fop.rotation_matrix,
                                            pgop.rotation_matrix)
                for site in structure:
                    newfrac = fop.operate(site.frac_coords)
                    newcart = op.operate(site.coords)
                    self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                                newfrac))
                    found = False
                    newsite = PeriodicSite(site.species_and_occu, newcart, latt,
                                           coords_are_cartesian=True)
                    for testsite in structure:
                        if newsite.is_periodic_image(testsite, 1e-3):
                            found = True
                            break
                    self.assertTrue(found)

                # Make sure this works for any position, not just the atomic
                # ones.
                random_fcoord = np.random.uniform(size=(3))
                random_ccoord = latt.get_cartesian_coords(random_fcoord)
                newfrac = fop.operate(random_fcoord)
                newcart = op.operate(random_ccoord)
                self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                            newfrac))

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.01)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16,4,8,4,2,8,8,8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)
        self.assertEqual(symm_struct.wyckoff_symbols[0], '16h')
        # self.assertEqual(symm_struct[0].wyckoff, "16h")

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
        self.assertEqual(primitive_structure.formula, "Li2 O1")
        # This isn't what is expected. All the angles should be 60
        self.assertAlmostEqual(primitive_structure.lattice.alpha, 60)
        self.assertAlmostEqual(primitive_structure.lattice.beta, 60)
        self.assertAlmostEqual(primitive_structure.lattice.gamma, 60)
        self.assertAlmostEqual(primitive_structure.lattice.volume,
                               structure.lattice.volume / 4.0)

    def test_get_ir_reciprocal_mesh(self):
        grid = self.sg.get_ir_reciprocal_mesh()
        self.assertEqual(len(grid), 216)
        self.assertAlmostEqual(grid[1][0][0], 0.1)
        self.assertAlmostEqual(grid[1][0][1], 0.0)
        self.assertAlmostEqual(grid[1][0][2], 0.0)
        self.assertAlmostEqual(grid[1][1], 2)

    def test_get_conventional_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.b, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.c, 9.1980270633769461)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.b, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.c, 4.2327080177761687)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 2.9542233922299999)
        self.assertAlmostEqual(conv.lattice.b, 4.6330325651443296)
        self.assertAlmostEqual(conv.lattice.c, 5.373703587040775)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 4.1430033493799998)
        self.assertAlmostEqual(conv.lattice.b, 31.437979757624728)
        self.assertAlmostEqual(conv.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'orac_632475.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 3.1790663399999999)
        self.assertAlmostEqual(conv.lattice.b, 9.9032878699999998)
        self.assertAlmostEqual(conv.lattice.c, 3.5372412099999999)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 117.53832420192903)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 14.033435583000625)
        self.assertAlmostEqual(conv.lattice.b, 3.96052850731)
        self.assertAlmostEqual(conv.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 120)
        self.assertAlmostEqual(conv.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.c, 6.9779585500000003)

    def test_get_primitive_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.beta, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.gamma, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.a, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.b, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.c, 7.9657251015812145)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 105.015053349)
        self.assertAlmostEqual(prim.lattice.beta, 105.015053349)
        self.assertAlmostEqual(prim.lattice.gamma, 118.80658411899999)
        self.assertAlmostEqual(prim.lattice.a, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.b, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.c, 4.1579321075608791)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 134.78923546600001)
        self.assertAlmostEqual(prim.lattice.beta, 105.856239333)
        self.assertAlmostEqual(prim.lattice.gamma, 91.276341676000001)
        self.assertAlmostEqual(prim.lattice.a, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.b, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.c, 3.8428217771014852)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 164.985257335)
        self.assertAlmostEqual(prim.lattice.a, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.b, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'orac_632475.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 144.40557588533386)
        self.assertAlmostEqual(prim.lattice.a, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.b, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.c, 3.5372412099999999)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 63.579155761999999)
        self.assertAlmostEqual(prim.lattice.beta, 116.42084423747779)
        self.assertAlmostEqual(prim.lattice.gamma, 148.47965136208569)
        self.assertAlmostEqual(prim.lattice.a, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.b, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 120)
        self.assertAlmostEqual(prim.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.c, 6.9779585500000003)

        parser = CifParser(os.path.join(test_dir, 'rhomb_3478_conv.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.beta, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.gamma, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.a, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.b, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.c, 5.9352627428399982)
Esempio n. 25
0
        def update_contents(data, symprec, angle_tolerance):

            if not data:
                return html.Div()

            struct = self.from_data(data)

            if not isinstance(struct, Structure):
                return html.Div(
                    "Can only analyze symmetry of crystal structures at present."
                )

            kwargs = self.reconstruct_kwargs_from_state(
                callback_context.inputs)
            symprec = kwargs["symprec"]
            angle_tolerance = kwargs["angle_tolerance"]

            if symprec <= 0:
                return html.Span(
                    f"Please use a positive symmetry-finding tolerance (currently {symprec})."
                )

            sga = SpacegroupAnalyzer(struct,
                                     symprec=symprec,
                                     angle_tolerance=angle_tolerance)

            try:
                data = dict()
                data["Crystal System"] = sga.get_crystal_system().title()
                data["Lattice System"] = sga.get_lattice_type().title()
                data["Hall Number"] = sga.get_hall()
                data["International Number"] = sga.get_space_group_number()
                data["Symbol"] = unicodeify_spacegroup(
                    sga.get_space_group_symbol())
                data["Point Group"] = unicodeify_spacegroup(
                    sga.get_point_group_symbol())

                sym_struct = sga.get_symmetrized_structure()
            except Exception:
                return html.Span(
                    f"Failed to calculate symmetry with this combination of "
                    f"symmetry-finding ({symprec}) and angle tolerances ({angle_tolerance})."
                )

            datalist = get_data_list(data)

            wyckoff_contents = []

            wyckoff_data = sorted(
                zip(sym_struct.wyckoff_symbols, sym_struct.equivalent_sites),
                key=lambda x: "".join(filter(lambda w: w.isalpha(), x[0])),
            )

            for symbol, equiv_sites in wyckoff_data:
                wyckoff_contents.append(
                    html.Label(
                        f"{symbol}, {unicodeify_species(equiv_sites[0].species_string)}",
                        className="mpc-label",
                    ))
                site_data = [(
                    self.pretty_frac_format(site.frac_coords[0]),
                    self.pretty_frac_format(site.frac_coords[1]),
                    self.pretty_frac_format(site.frac_coords[2]),
                ) for site in equiv_sites]
                wyckoff_contents.append(get_table(site_data))

            return Columns([
                Column([H5("Overview"), datalist]),
                Column([H5("Wyckoff Positions"),
                        html.Div(wyckoff_contents)]),
            ])
Esempio n. 26
0
    def update_contents(self, new_store_contents, symprec, angle_tolerance):

        try:
            # input sanitation
            symprec = float(literal_eval(str(symprec)))
            angle_tolerance = float(literal_eval(str(angle_tolerance)))
        except:
            raise PreventUpdate

        struct_or_mol = self.from_data(new_store_contents)

        if not isinstance(struct_or_mol, Structure):
            return html.Div(
                "Can only analyze symmetry of crystal structures at present.")

        sga = SpacegroupAnalyzer(struct_or_mol,
                                 symprec=symprec,
                                 angle_tolerance=angle_tolerance)

        try:
            data = {}
            data["Crystal System"] = sga.get_crystal_system().title()
            data["Lattice System"] = sga.get_lattice_type().title()
            data["Hall Number"] = sga.get_hall()
            data["International Number"] = sga.get_space_group_number()
            data["Symbol"] = unicodeify_spacegroup(
                sga.get_space_group_symbol())
            data["Point Group"] = unicodeify_spacegroup(
                sga.get_point_group_symbol())

            sym_struct = sga.get_symmetrized_structure()
        except:
            return html.Span(
                f"Failed to calculate symmetry with this combination of "
                f"symmetry-finding ({symprec}) and angle tolerances ({angle_tolerance})."
            )

        datalist = get_data_list(data)

        wyckoff_contents = []

        wyckoff_data = sorted(
            zip(sym_struct.wyckoff_symbols, sym_struct.equivalent_sites),
            key=lambda x: "".join(filter(lambda w: w.isalpha(), x[0])),
        )

        for symbol, equiv_sites in wyckoff_data:
            wyckoff_contents.append(
                html.Label(
                    f"{symbol}, {unicodeify_species(equiv_sites[0].species_string)}",
                    className="mpc-label",
                ))
            site_data = [(
                pretty_frac_format(site.frac_coords[0]),
                pretty_frac_format(site.frac_coords[1]),
                pretty_frac_format(site.frac_coords[2]),
            ) for site in equiv_sites]
            wyckoff_contents.append(get_table(site_data))

        return Columns([
            Column([H5("Overview"), datalist]),
            Column([H5("Wyckoff Positions"),
                    html.Div(wyckoff_contents)]),
        ])
Esempio n. 27
0
derv_properties.update(structure_lattice_beta)
derv_properties.update(structure_lattice_c)
derv_properties.update(structure_lattice_gamma)
derv_properties.update(structure_lattice_matrix_0_0)
derv_properties.update(structure_lattice_matrix_0_1)
derv_properties.update(structure_lattice_matrix_0_2)
derv_properties.update(structure_lattice_matrix_1_0)
derv_properties.update(structure_lattice_matrix_1_1)
derv_properties.update(structure_lattice_matrix_1_2)
derv_properties.update(structure_lattice_matrix_2_0)
derv_properties.update(structure_lattice_matrix_2_1)
derv_properties.update(structure_lattice_matrix_2_2)
derv_properties.update(structure_lattice_volume)

## not yet updated for learning (2017-08-29)
derv_spacegroup_hall = {"spacegroup_hall": spacegroup.get_hall()}
derv_spacegroup_crystal_system = {
    "spacegroup_crystal_system": spacegroup.get_crystal_system()
}
derv_spacegroup_groupsymbol = {
    "spacegroup_symbol": spacegroup.get_space_group_symbol()
}
derv_spacegroup_point_group = {
    "spacegroup_point_group": spacegroup.get_point_group_symbol()
}
derv_properties.update(derv_spacegroup_hall)
derv_properties.update(derv_spacegroup_crystal_system)
derv_properties.update(derv_spacegroup_groupsymbol)
derv_properties.update(derv_spacegroup_point_group)
#add electronegativity
derv_avg_electroneg = {"electronegativity": ps.composition.average_electroneg}
Esempio n. 28
0
class SpacegroupAnalyzerTest(PymatgenTest):
    def setUp(self):
        p = Poscar.from_file(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "POSCAR"))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure("Li10GeP2S12")
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure,
                                                0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure("Graphite")
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)
        self.structure4 = graphite

    def test_primitive(self):
        s = Structure.from_spacegroup("Fm-3m",
                                      np.eye(3) * 3, ["Cu"], [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertEqual(len(s), 4)
        self.assertEqual(len(a.find_primitive()), 1)

    def test_is_laue(self):
        s = Structure.from_spacegroup("Fm-3m",
                                      np.eye(3) * 3, ["Cu"], [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertTrue(a.is_laue())

    def test_magnetic(self):
        lfp = PymatgenTest.get_structure("LiFePO4")
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")
        magmoms = [0] * len(lfp)
        magmoms[4] = 1
        magmoms[5] = -1
        magmoms[6] = 1
        magmoms[7] = -1
        lfp.add_site_property("magmom", magmoms)
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_space_group_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_space_group_symbol(), "P6_3/mmc")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_space_group_number(), 62)
        self.assertEqual(self.disordered_sg.get_space_group_number(), 137)
        self.assertEqual(self.sg4.get_space_group_number(), 194)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), "-P 2ac 2n")
        self.assertEqual(self.disordered_sg.get_hall(), "P 4n 2n -1n")

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group_symbol(), "mmm")
        self.assertEqual(self.disordered_sg.get_point_group_symbol(), "4/mmm")

    def test_get_symmetry_operations(self):

        for sg, structure in [(self.sg, self.structure),
                              (self.sg4, self.structure4)]:

            pgops = sg.get_point_group_operations()
            fracsymmops = sg.get_symmetry_operations()
            symmops = sg.get_symmetry_operations(True)
            latt = structure.lattice
            for fop, op, pgop in zip(fracsymmops, symmops, pgops):
                # translation vector values should all be 0 or 0.5
                t = fop.translation_vector * 2
                self.assertArrayAlmostEqual(t - np.round(t), 0)

                self.assertArrayAlmostEqual(fop.rotation_matrix,
                                            pgop.rotation_matrix)
                for site in structure:
                    newfrac = fop.operate(site.frac_coords)
                    newcart = op.operate(site.coords)
                    self.assertTrue(
                        np.allclose(latt.get_fractional_coords(newcart),
                                    newfrac))
                    found = False
                    newsite = PeriodicSite(site.species,
                                           newcart,
                                           latt,
                                           coords_are_cartesian=True)
                    for testsite in structure:
                        if newsite.is_periodic_image(testsite, 1e-3):
                            found = True
                            break
                    self.assertTrue(found)

                # Make sure this works for any position, not just the atomic
                # ones.
                random_fcoord = np.random.uniform(size=(3))
                random_ccoord = latt.get_cartesian_coords(random_fcoord)
                newfrac = fop.operate(random_fcoord)
                newcart = op.operate(random_ccoord)
                self.assertTrue(
                    np.allclose(latt.get_fractional_coords(newcart), newfrac))

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds["international"], "Pnma")

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual("orthorhombic", crystal_system)
        self.assertEqual("tetragonal", self.disordered_sg.get_crystal_system())

        orig_spg = self.sg._space_group_data["number"]
        self.sg._space_group_data["number"] = 0
        try:
            crystal_system = self.sg.get_crystal_system()
        except ValueError as exc:
            self.assertEqual(str(exc), "Received invalid space group 0")
        finally:
            self.sg._space_group_data["number"] = orig_spg

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)

        structure = self.get_structure("Li2O")
        structure.add_site_property("magmom", [1.0] * len(structure))
        sg = SpacegroupAnalyzer(structure, 0.01)
        refined_struct = sg.get_refined_structure(keep_site_properties=True)
        self.assertEqual(refined_struct.site_properties["magmom"],
                         [1.0] * len(refined_struct))

        structure = self.get_structure("Li2O")
        structure.add_site_property("magmom", [1.0] * len(structure))
        sg = SpacegroupAnalyzer(structure, 0.01)
        refined_struct = sg.get_refined_structure(keep_site_properties=False)
        self.assertEqual(refined_struct.site_properties.get("magmom", None),
                         None)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16, 4, 8, 4, 2, 8, 8, 8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)
        self.assertEqual(symm_struct.wyckoff_symbols[0], "16h")
        # self.assertEqual(symm_struct[0].wyckoff, "16h")

        # Check copying
        self.assertEqual(symm_struct.copy(), symm_struct)
        d = symm_struct.as_dict()
        from pymatgen.symmetry.structure import SymmetrizedStructure

        ss = SymmetrizedStructure.from_dict(d)
        self.assertEqual(ss.wyckoff_symbols[0], "16h")
        self.assertIn("SymmetrizedStructure", ss.__str__())

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "Li2O.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
        self.assertEqual(primitive_structure.formula, "Li2 O1")
        self.assertTrue(
            primitive_structure.site_properties.get("magmom", None) is None)
        # This isn't what is expected. All the angles should be 60
        self.assertAlmostEqual(primitive_structure.lattice.alpha, 60)
        self.assertAlmostEqual(primitive_structure.lattice.beta, 60)
        self.assertAlmostEqual(primitive_structure.lattice.gamma, 60)
        self.assertAlmostEqual(primitive_structure.lattice.volume,
                               structure.lattice.volume / 4.0)

        structure = parser.get_structures(False)[0]
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive(keep_site_properties=True)
        self.assertEqual(primitive_structure.site_properties["magmom"],
                         [1.0] * len(primitive_structure))

        structure = parser.get_structures(False)[0]
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive(keep_site_properties=False)
        self.assertEqual(
            primitive_structure.site_properties.get("magmom", None), None)

    def test_get_ir_reciprocal_mesh(self):
        grid = self.sg.get_ir_reciprocal_mesh()
        self.assertEqual(len(grid), 216)
        self.assertAlmostEqual(grid[1][0][0], 0.1)
        self.assertAlmostEqual(grid[1][0][1], 0.0)
        self.assertAlmostEqual(grid[1][0][2], 0.0)
        self.assertAlmostEqual(grid[1][1], 2)

    def test_get_conventional_standard_structure(self):
        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "bcc_1927.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.b, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.c, 9.1980270633769461)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "btet_1915.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.b, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.c, 4.2327080177761687)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orci_1010.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 2.9542233922299999)
        self.assertAlmostEqual(conv.lattice.b, 4.6330325651443296)
        self.assertAlmostEqual(conv.lattice.c, 5.373703587040775)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orcc_1003.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 4.1430033493799998)
        self.assertAlmostEqual(conv.lattice.b, 31.437979757624728)
        self.assertAlmostEqual(conv.lattice.c, 3.99648651)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orac_632475.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 3.1790663399999999)
        self.assertAlmostEqual(conv.lattice.b, 9.9032878699999998)
        self.assertAlmostEqual(conv.lattice.c, 3.5372412099999999)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "monoc_1028.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 117.53832420192903)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 14.033435583000625)
        self.assertAlmostEqual(conv.lattice.b, 3.96052850731)
        self.assertAlmostEqual(conv.lattice.c, 6.8743926325200002)
        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "hex_1170.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 120)
        self.assertAlmostEqual(conv.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.c, 6.9779585500000003)

        structure = Structure.from_file(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "tric_684654.json"))
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 74.09581916308757)
        self.assertAlmostEqual(conv.lattice.beta, 75.72817279281173)
        self.assertAlmostEqual(conv.lattice.gamma, 63.63234318667333)
        self.assertAlmostEqual(conv.lattice.a, 3.741372924048738)
        self.assertAlmostEqual(conv.lattice.b, 3.9883228679270686)
        self.assertAlmostEqual(conv.lattice.c, 7.288495840048958)

        structure = Structure.from_file(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "tric_684654.json"))
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure(keep_site_properties=True)
        self.assertEqual(conv.site_properties["magmom"], [1.0] * len(conv))

        structure = Structure.from_file(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "tric_684654.json"))
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure(
            keep_site_properties=False)
        self.assertEqual(conv.site_properties.get("magmom", None), None)

    def test_get_primitive_standard_structure(self):
        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "bcc_1927.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.beta, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.gamma, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.a, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.b, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.c, 7.9657251015812145)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "btet_1915.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 105.015053349)
        self.assertAlmostEqual(prim.lattice.beta, 105.015053349)
        self.assertAlmostEqual(prim.lattice.gamma, 118.80658411899999)
        self.assertAlmostEqual(prim.lattice.a, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.b, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.c, 4.1579321075608791)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orci_1010.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 134.78923546600001)
        self.assertAlmostEqual(prim.lattice.beta, 105.856239333)
        self.assertAlmostEqual(prim.lattice.gamma, 91.276341676000001)
        self.assertAlmostEqual(prim.lattice.a, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.b, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.c, 3.8428217771014852)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orcc_1003.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 164.985257335)
        self.assertAlmostEqual(prim.lattice.a, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.b, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.c, 3.99648651)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "orac_632475.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 144.40557588533386)
        self.assertAlmostEqual(prim.lattice.a, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.b, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.c, 3.5372412099999999)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "monoc_1028.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 63.579155761999999)
        self.assertAlmostEqual(prim.lattice.beta, 116.42084423747779)
        self.assertAlmostEqual(prim.lattice.gamma, 148.47965136208569)
        self.assertAlmostEqual(prim.lattice.a, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.b, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.c, 6.8743926325200002)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "hex_1170.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 120)
        self.assertAlmostEqual(prim.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.c, 6.9779585500000003)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "rhomb_3478_conv.cif"))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.beta, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.gamma, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.a, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.b, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.c, 5.9352627428399982)

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "rhomb_3478_conv.cif"))
        structure = parser.get_structures(False)[0]
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure(keep_site_properties=True)
        self.assertEqual(prim.site_properties["magmom"], [1.0] * len(prim))

        parser = CifParser(
            os.path.join(PymatgenTest.TEST_FILES_DIR, "rhomb_3478_conv.cif"))
        structure = parser.get_structures(False)[0]
        structure.add_site_property("magmom", [1.0] * len(structure))
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure(keep_site_properties=False)
        self.assertEqual(prim.site_properties.get("magmom", None), None)

    def test_tricky_structure(self):
        # for some reason this structure kills spglib1.9
        # 1.7 can't find symmetry either, but at least doesn't kill python
        s = Structure.from_file(
            os.path.join(PymatgenTest.TEST_FILES_DIR,
                         "POSCAR.tricky_symmetry"))
        sa = SpacegroupAnalyzer(s, 0.1)
        sa.get_space_group_symbol()
        sa.get_space_group_number()
        sa.get_point_group_symbol()
        sa.get_crystal_system()
        sa.get_hall()
Esempio n. 29
0
class SpacegroupAnalyzerTest(PymatgenTest):
    def setUp(self):
        p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure('Li10GeP2S12')
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure,
                                                0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species_and_occu, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure('Graphite')
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)
        self.structure4 = graphite

    def test_primitive(self):
        s = Structure.from_spacegroup("Fm-3m",
                                      np.eye(3) * 3, ["Cu"], [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertEqual(len(s), 4)
        self.assertEqual(len(a.find_primitive()), 1)

    def test_is_laue(self):
        s = Structure.from_spacegroup("Fm-3m",
                                      np.eye(3) * 3, ["Cu"], [[0, 0, 0]])
        a = SpacegroupAnalyzer(s)
        self.assertTrue(a.is_laue())

    def test_magnetic(self):
        lfp = PymatgenTest.get_structure("LiFePO4")
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")
        magmoms = [0] * len(lfp)
        magmoms[4] = 1
        magmoms[5] = -1
        magmoms[6] = 1
        magmoms[7] = -1
        lfp.add_site_property("magmom", magmoms)
        sg = SpacegroupAnalyzer(lfp, 0.1)
        self.assertEqual(sg.get_space_group_symbol(), "Pnma")

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_space_group_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_space_group_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_space_group_symbol(), "P6_3/mmc")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_space_group_number(), 62)
        self.assertEqual(self.disordered_sg.get_space_group_number(), 137)
        self.assertEqual(self.sg4.get_space_group_number(), 194)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), '-P 2ac 2n')
        self.assertEqual(self.disordered_sg.get_hall(), 'P 4n 2n -1n')

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group_symbol(), 'mmm')
        self.assertEqual(self.disordered_sg.get_point_group_symbol(), '4/mmm')

    def test_get_symmetry_operations(self):
        coordinates = np.array([[0.5, 0.0, 0.0], [0.0, 0.5, 0.0],
                                [0.5, 1.0, 0.0], [1.0, 0.5, 0.0]])
        species = ['H'] * len(coordinates)
        molecule = Molecule(species, coordinates)
        so = PointGroupAnalyzer(molecule, 0.3).get_symmetry_operations()
        self.assertEqual(len(so), 16)  # D4h contains 16 symmetry elements
        for o in so:
            self.assertEqual(isinstance(o, SymmOp), True)

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds['international'], 'Pnma')

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual('orthorhombic', crystal_system)
        self.assertEqual('tetragonal', self.disordered_sg.get_crystal_system())

    def test_get_symmetry_operations(self):
        for sg, structure in [(self.sg, self.structure),
                              (self.sg4, self.structure4)]:

            pgops = sg.get_point_group_operations()
            fracsymmops = sg.get_symmetry_operations()
            symmops = sg.get_symmetry_operations(True)
            latt = structure.lattice
            for fop, op, pgop in zip(fracsymmops, symmops, pgops):
                # translation vector values should all be 0 or 0.5
                t = fop.translation_vector * 2
                self.assertArrayAlmostEqual(t - np.round(t), 0)

                self.assertArrayAlmostEqual(fop.rotation_matrix,
                                            pgop.rotation_matrix)
                for site in structure:
                    newfrac = fop.operate(site.frac_coords)
                    newcart = op.operate(site.coords)
                    self.assertTrue(
                        np.allclose(latt.get_fractional_coords(newcart),
                                    newfrac))
                    found = False
                    newsite = PeriodicSite(site.species_and_occu,
                                           newcart,
                                           latt,
                                           coords_are_cartesian=True)
                    for testsite in structure:
                        if newsite.is_periodic_image(testsite, 1e-3):
                            found = True
                            break
                    self.assertTrue(found)

                # Make sure this works for any position, not just the atomic
                # ones.
                random_fcoord = np.random.uniform(size=(3))
                random_ccoord = latt.get_cartesian_coords(random_fcoord)
                newfrac = fop.operate(random_fcoord)
                newcart = op.operate(random_ccoord)
                self.assertTrue(
                    np.allclose(latt.get_fractional_coords(newcart), newfrac))

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.01)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16, 4, 8, 4, 2, 8, 8, 8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)
        self.assertEqual(symm_struct.wyckoff_symbols[0], '16h')
        # self.assertEqual(symm_struct[0].wyckoff, "16h")

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
        self.assertEqual(primitive_structure.formula, "Li2 O1")
        # This isn't what is expected. All the angles should be 60
        self.assertAlmostEqual(primitive_structure.lattice.alpha, 60)
        self.assertAlmostEqual(primitive_structure.lattice.beta, 60)
        self.assertAlmostEqual(primitive_structure.lattice.gamma, 60)
        self.assertAlmostEqual(primitive_structure.lattice.volume,
                               structure.lattice.volume / 4.0)

    def test_get_ir_reciprocal_mesh(self):
        grid = self.sg.get_ir_reciprocal_mesh()
        self.assertEqual(len(grid), 216)
        self.assertAlmostEqual(grid[1][0][0], 0.1)
        self.assertAlmostEqual(grid[1][0][1], 0.0)
        self.assertAlmostEqual(grid[1][0][2], 0.0)
        self.assertAlmostEqual(grid[1][1], 2)

    def test_get_conventional_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.b, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.c, 9.1980270633769461)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.b, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.c, 4.2327080177761687)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 2.9542233922299999)
        self.assertAlmostEqual(conv.lattice.b, 4.6330325651443296)
        self.assertAlmostEqual(conv.lattice.c, 5.373703587040775)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 4.1430033493799998)
        self.assertAlmostEqual(conv.lattice.b, 31.437979757624728)
        self.assertAlmostEqual(conv.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'orac_632475.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 3.1790663399999999)
        self.assertAlmostEqual(conv.lattice.b, 9.9032878699999998)
        self.assertAlmostEqual(conv.lattice.c, 3.5372412099999999)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 117.53832420192903)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 14.033435583000625)
        self.assertAlmostEqual(conv.lattice.b, 3.96052850731)
        self.assertAlmostEqual(conv.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 120)
        self.assertAlmostEqual(conv.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.c, 6.9779585500000003)

    def test_get_primitive_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.beta, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.gamma, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.a, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.b, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.c, 7.9657251015812145)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 105.015053349)
        self.assertAlmostEqual(prim.lattice.beta, 105.015053349)
        self.assertAlmostEqual(prim.lattice.gamma, 118.80658411899999)
        self.assertAlmostEqual(prim.lattice.a, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.b, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.c, 4.1579321075608791)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 134.78923546600001)
        self.assertAlmostEqual(prim.lattice.beta, 105.856239333)
        self.assertAlmostEqual(prim.lattice.gamma, 91.276341676000001)
        self.assertAlmostEqual(prim.lattice.a, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.b, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.c, 3.8428217771014852)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 164.985257335)
        self.assertAlmostEqual(prim.lattice.a, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.b, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'orac_632475.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 144.40557588533386)
        self.assertAlmostEqual(prim.lattice.a, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.b, 5.2005185662155391)
        self.assertAlmostEqual(prim.lattice.c, 3.5372412099999999)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 63.579155761999999)
        self.assertAlmostEqual(prim.lattice.beta, 116.42084423747779)
        self.assertAlmostEqual(prim.lattice.gamma, 148.47965136208569)
        self.assertAlmostEqual(prim.lattice.a, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.b, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 120)
        self.assertAlmostEqual(prim.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.c, 6.9779585500000003)

        parser = CifParser(os.path.join(test_dir, 'rhomb_3478_conv.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.beta, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.gamma, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.a, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.b, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.c, 5.9352627428399982)
Esempio n. 30
0
class SpacegroupAnalyzerTest(PymatgenTest):

    def setUp(self):
        p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure('Li10GeP2S12')
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure, 0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species_and_occu, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure('Graphite')
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_spacegroup_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_spacegroup_symbol(), "P6_3/mmc")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_spacegroup_number(), 62)
        self.assertEqual(self.disordered_sg.get_spacegroup_number(), 137)
        self.assertEqual(self.sg4.get_spacegroup_number(), 194)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), '-P 2ac 2n')
        self.assertEqual(self.disordered_sg.get_hall(), 'P 4n 2n -1n')

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group(), 'mmm')
        self.assertEqual(self.disordered_sg.get_point_group(), '4/mmm')

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds['international'], 'Pnma')

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual('orthorhombic', crystal_system)
        self.assertEqual('tetragonal', self.disordered_sg.get_crystal_system())

    def test_get_symmetry_operations(self):
        fracsymmops = self.sg.get_symmetry_operations()
        symmops = self.sg.get_symmetry_operations(True)
        self.assertEqual(len(symmops), 8)
        latt = self.structure.lattice
        for fop, op in zip(fracsymmops, symmops):
            for site in self.structure:
                newfrac = fop.operate(site.frac_coords)
                newcart = op.operate(site.coords)
                self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                            newfrac))
                found = False
                newsite = PeriodicSite(site.species_and_occu, newcart, latt,
                                       coords_are_cartesian=True)
                for testsite in self.structure:
                    if newsite.is_periodic_image(testsite, 1e-3):
                        found = True
                        break
                self.assertTrue(found)

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.001)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16,4,8,4,2,8,8,8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
        self.assertEqual(primitive_structure.formula, "Li2 O1")
        # This isn't what is expected. All the angles should be 60
        self.assertAlmostEqual(primitive_structure.lattice.alpha, 60)
        self.assertAlmostEqual(primitive_structure.lattice.beta, 60)
        self.assertAlmostEqual(primitive_structure.lattice.gamma, 60)
        self.assertAlmostEqual(primitive_structure.lattice.volume,
                               structure.lattice.volume / 4.0)

    def test_get_ir_reciprocal_mesh(self):
        grid=self.sg.get_ir_reciprocal_mesh()
        self.assertEqual(len(grid), 216)
        self.assertAlmostEquals(grid[1][0][0], 0.1)
        self.assertAlmostEquals(grid[1][0][1], 0.0)
        self.assertAlmostEquals(grid[1][0][2], 0.0)
        self.assertEqual(grid[1][1], 2)

    def test_get_conventional_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.b, 9.1980270633769461)
        self.assertAlmostEqual(conv.lattice.c, 9.1980270633769461)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.b, 5.0615106678044235)
        self.assertAlmostEqual(conv.lattice.c, 4.2327080177761687)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 2.9542233922299999)
        self.assertAlmostEqual(conv.lattice.b, 4.6330325651443296)
        self.assertAlmostEqual(conv.lattice.c, 5.373703587040775)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 4.1430033493799998)
        self.assertAlmostEqual(conv.lattice.b, 31.437979757624728)
        self.assertAlmostEqual(conv.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 117.53832420192903)
        self.assertAlmostEqual(conv.lattice.gamma, 90)
        self.assertAlmostEqual(conv.lattice.a, 14.033435583000625)
        self.assertAlmostEqual(conv.lattice.b, 3.96052850731)
        self.assertAlmostEqual(conv.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        conv = s.get_conventional_standard_structure()
        self.assertAlmostEqual(conv.lattice.alpha, 90)
        self.assertAlmostEqual(conv.lattice.beta, 90)
        self.assertAlmostEqual(conv.lattice.gamma, 120)
        self.assertAlmostEqual(conv.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(conv.lattice.c, 6.9779585500000003)

    def test_get_primitive_standard_structure(self):
        parser = CifParser(os.path.join(test_dir, 'bcc_1927.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.beta, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.gamma, 109.47122063400001)
        self.assertAlmostEqual(prim.lattice.a, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.b, 7.9657251015812145)
        self.assertAlmostEqual(prim.lattice.c, 7.9657251015812145)

        parser = CifParser(os.path.join(test_dir, 'btet_1915.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 105.015053349)
        self.assertAlmostEqual(prim.lattice.beta, 105.015053349)
        self.assertAlmostEqual(prim.lattice.gamma, 118.80658411899999)
        self.assertAlmostEqual(prim.lattice.a, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.b, 4.1579321075608791)
        self.assertAlmostEqual(prim.lattice.c, 4.1579321075608791)

        parser = CifParser(os.path.join(test_dir, 'orci_1010.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 134.78923546600001)
        self.assertAlmostEqual(prim.lattice.beta, 105.856239333)
        self.assertAlmostEqual(prim.lattice.gamma, 91.276341676000001)
        self.assertAlmostEqual(prim.lattice.a, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.b, 3.8428217771014852)
        self.assertAlmostEqual(prim.lattice.c, 3.8428217771014852)

        parser = CifParser(os.path.join(test_dir, 'orcc_1003.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 164.985257335)
        self.assertAlmostEqual(prim.lattice.a, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.b, 15.854897098324196)
        self.assertAlmostEqual(prim.lattice.c, 3.99648651)

        parser = CifParser(os.path.join(test_dir, 'monoc_1028.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 63.579155761999999)
        self.assertAlmostEqual(prim.lattice.beta, 116.42084423747779)
        self.assertAlmostEqual(prim.lattice.gamma, 148.47965136208569)
        self.assertAlmostEqual(prim.lattice.a, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.b, 7.2908007159612325)
        self.assertAlmostEqual(prim.lattice.c, 6.8743926325200002)

        parser = CifParser(os.path.join(test_dir, 'hex_1170.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 90)
        self.assertAlmostEqual(prim.lattice.beta, 90)
        self.assertAlmostEqual(prim.lattice.gamma, 120)
        self.assertAlmostEqual(prim.lattice.a, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.b, 3.699919902005897)
        self.assertAlmostEqual(prim.lattice.c, 6.9779585500000003)

        parser = CifParser(os.path.join(test_dir, 'rhomb_3478_conv.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure, symprec=1e-2)
        prim = s.get_primitive_standard_structure()
        self.assertAlmostEqual(prim.lattice.alpha, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.beta, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.gamma, 28.049186140546812)
        self.assertAlmostEqual(prim.lattice.a, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.b, 5.9352627428399982)
        self.assertAlmostEqual(prim.lattice.c, 5.9352627428399982)