Esempio n. 1
0
    def add_snl(self, snl, force_new=False, snlgroup_guess=None):
        try:
            self.lock_db()
            snl_id = self._get_next_snl_id()

            spstruc = snl.structure.copy()
            spstruc.remove_oxidation_states()
            sf = SpacegroupAnalyzer(spstruc, SPACEGROUP_TOLERANCE)
            sf.get_spacegroup()
            sgnum = sf.get_spacegroup_number() if sf.get_spacegroup_number() \
                else -1
            sgsym = sf.get_spacegroup_symbol() if sf.get_spacegroup_symbol() \
                else 'unknown'
            sghall = sf.get_hall() if sf.get_hall() else 'unknown'
            sgxtal = sf.get_crystal_system() if sf.get_crystal_system() \
                else 'unknown'
            sglatt = sf.get_lattice_type() if sf.get_lattice_type(
            ) else 'unknown'
            sgpoint = sf.get_point_group()

            mpsnl = MPStructureNL.from_snl(snl, snl_id, sgnum, sgsym, sghall,
                                           sgxtal, sglatt, sgpoint)
            snlgroup, add_new, spec_group = self.add_mpsnl(
                mpsnl, force_new, snlgroup_guess)
            self.release_lock()
            return mpsnl, snlgroup.snlgroup_id, spec_group
        except:
            self.release_lock()
            traceback.print_exc()
            raise ValueError("Error while adding SNL!")
Esempio n. 2
0
    def add_snl(self, snl, force_new=False, snlgroup_guess=None):
        try:
            self.lock_db()
            snl_id = self._get_next_snl_id()

            spstruc = snl.structure.copy()
            spstruc.remove_oxidation_states()
            sf = SpacegroupAnalyzer(spstruc, SPACEGROUP_TOLERANCE, ANGLE_TOLERANCE)
            sf.get_spacegroup()
            sgnum = sf.get_spacegroup_number() if sf.get_spacegroup_number() \
                else -1
            sgsym = sf.get_spacegroup_symbol() if sf.get_spacegroup_symbol() \
                else 'unknown'
            sghall = sf.get_hall() if sf.get_hall() else 'unknown'
            sgxtal = sf.get_crystal_system() if sf.get_crystal_system() \
                else 'unknown'
            sglatt = sf.get_lattice_type() if sf.get_lattice_type() else 'unknown'
            sgpoint = sf.get_point_group()

            mpsnl = MPStructureNL.from_snl(snl, snl_id, sgnum, sgsym, sghall,
                                           sgxtal, sglatt, sgpoint)
            snlgroup, add_new, spec_group = self.add_mpsnl(mpsnl, force_new, snlgroup_guess)
            self.release_lock()
            return mpsnl, snlgroup.snlgroup_id, spec_group
        except:
            self.release_lock()
            traceback.print_exc()
            raise ValueError("Error while adding SNL!")
Esempio n. 3
0
    def complete_ordering(self, structure, num_remove_dict):
        self.logger.debug("Performing complete ordering...")
        all_structures = []
        symprec = 0.2
        s = SpacegroupAnalyzer(structure, symprec=symprec)
        self.logger.debug(
            "Symmetry of structure is determined to be {}.".format(
                s.get_spacegroup_symbol()))
        sg = s.get_spacegroup()
        tested_sites = []
        starttime = time.time()
        self.logger.debug("Performing initial ewald sum...")
        ewaldsum = EwaldSummation(structure)
        self.logger.debug("Ewald sum took {} seconds.".format(time.time() -
                                                              starttime))
        starttime = time.time()

        allcombis = []
        for ind, num in num_remove_dict.items():
            allcombis.append(itertools.combinations(ind, num))

        count = 0
        for allindices in itertools.product(*allcombis):
            sites_to_remove = []
            indices_list = []
            for indices in allindices:
                sites_to_remove.extend([structure[i] for i in indices])
                indices_list.extend(indices)
            s_new = Structure.from_sites(structure.sites)
            s_new.remove_sites(indices_list)
            energy = ewaldsum.compute_partial_energy(indices_list)
            already_tested = False
            for i, tsites in enumerate(tested_sites):
                tenergy = all_structures[i]["energy"]
                if abs((energy - tenergy) / len(s_new)) < 1e-5 and \
                        sg.are_symmetrically_equivalent(sites_to_remove,
                                                        tsites,
                                                        symm_prec=symprec):
                    already_tested = True

            if not already_tested:
                tested_sites.append(sites_to_remove)
                all_structures.append({"structure": s_new, "energy": energy})

            count += 1
            if count % 10 == 0:
                timenow = time.time()
                self.logger.debug("{} structures, {:.2f} seconds.".format(
                    count, timenow - starttime))
                self.logger.debug("Average time per combi = {} seconds".format(
                    (timenow - starttime) / count))
                self.logger.debug(
                    "{} symmetrically distinct structures found.".format(
                        len(all_structures)))

        self.logger.debug(
            "Total symmetrically distinct structures found = {}".format(
                len(all_structures)))
        all_structures = sorted(all_structures, key=lambda s: s["energy"])
        return all_structures
Esempio n. 4
0
    def test_tensor(self):
        """Initialize Tensor"""

        lattice = Lattice.hexagonal(4,6)
        #rprimd = np.array([[0,0.5,0.5],[0.5,0,0.5],[0.5,0.5,0]])
        #rprimd = rprimd*10
        #lattice = Lattice(rprimd)
        structure = Structure(lattice, ["Ga", "As"],
                                      [[0, 0, 0], [0.5, 0.5, 0.5]])

        #finder = SymmetryFinder(structure)
        finder = SpacegroupAnalyzer(structure)

        spacegroup = finder.get_spacegroup()
        pointgroup = finder.get_point_group()

        cartesian_tensor = [[2,3,1.2],[3,4,1.0],[1.2,1.0,6]]

        tensor = Tensor.from_cartesian_tensor(cartesian_tensor,lattice.reciprocal_lattice,space="g")
        red_tensor = tensor.reduced_tensor
        tensor2 = Tensor(red_tensor,lattice.reciprocal_lattice,space="g")
        assert(((np.abs(tensor2.cartesian_tensor)-np.abs(cartesian_tensor)) < 1E-8).all())

        self.assertTrue(tensor==tensor2)
        print(tensor)

        #print("non-symmetrized cartesian_tensor = ",tensor2.cartesian_tensor)
        tensor2.symmetrize(structure)

        #print("symmetrized_cartesian_tensor = ",tensor2.cartesian_tensor)

        self.serialize_with_pickle(tensor)
Esempio n. 5
0
    def test_tensor(self):
        """Initialize Tensor"""

        lattice = Lattice.hexagonal(4, 6)
        #rprimd = np.array([[0,0.5,0.5],[0.5,0,0.5],[0.5,0.5,0]])
        #rprimd = rprimd*10
        #lattice = Lattice(rprimd)
        structure = Structure(lattice, ["Ga", "As"],
                              [[0, 0, 0], [0.5, 0.5, 0.5]])

        #finder = SymmetryFinder(structure)
        finder = SpacegroupAnalyzer(structure)

        spacegroup = finder.get_spacegroup()
        pointgroup = finder.get_point_group()

        cartesian_tensor = [[2, 3, 1.2], [3, 4, 1.0], [1.2, 1.0, 6]]

        tensor = Tensor.from_cartesian_tensor(cartesian_tensor,
                                              lattice.reciprocal_lattice,
                                              space="g")
        red_tensor = tensor.reduced_tensor
        tensor2 = Tensor(red_tensor, lattice.reciprocal_lattice, space="g")
        assert (((np.abs(tensor2.cartesian_tensor) - np.abs(cartesian_tensor))
                 < 1E-8).all())

        self.assertTrue(tensor == tensor2)
        print(tensor)

        #print("non-symmetrized cartesian_tensor = ",tensor2.cartesian_tensor)
        tensor2.symmetrize(structure)

        #print("symmetrized_cartesian_tensor = ",tensor2.cartesian_tensor)

        self.serialize_with_pickle(tensor)
    def complete_ordering(self, structure, num_remove_dict):
        self.logger.debug("Performing complete ordering...")
        all_structures = []
        symprec = 0.2
        s = SpacegroupAnalyzer(structure, symprec=symprec)
        self.logger.debug("Symmetry of structure is determined to be {}."
                          .format(s.get_spacegroup_symbol()))
        sg = s.get_spacegroup()
        tested_sites = []
        starttime = time.time()
        self.logger.debug("Performing initial ewald sum...")
        ewaldsum = EwaldSummation(structure)
        self.logger.debug("Ewald sum took {} seconds."
                          .format(time.time() - starttime))
        starttime = time.time()

        allcombis = []
        for ind, num in num_remove_dict.items():
            allcombis.append(itertools.combinations(ind, num))

        count = 0
        for allindices in itertools.product(*allcombis):
            sites_to_remove = []
            indices_list = []
            for indices in allindices:
                sites_to_remove.extend([structure[i] for i in indices])
                indices_list.extend(indices)
            s_new = structure.copy()
            s_new.remove_sites(indices_list)
            energy = ewaldsum.compute_partial_energy(indices_list)
            already_tested = False
            for i, tsites in enumerate(tested_sites):
                tenergy = all_structures[i]["energy"]
                if abs((energy - tenergy) / len(s_new)) < 1e-5 and \
                        sg.are_symmetrically_equivalent(sites_to_remove,
                                                        tsites,
                                                        symm_prec=symprec):
                    already_tested = True

            if not already_tested:
                tested_sites.append(sites_to_remove)
                all_structures.append({"structure": s_new, "energy": energy})

            count += 1
            if count % 10 == 0:
                timenow = time.time()
                self.logger.debug("{} structures, {:.2f} seconds."
                                  .format(count, timenow - starttime))
                self.logger.debug("Average time per combi = {} seconds"
                                  .format((timenow - starttime) / count))
                self.logger.debug("{} symmetrically distinct structures found."
                                  .format(len(all_structures)))

        self.logger.debug("Total symmetrically distinct structures found = {}"
                          .format(len(all_structures)))
        all_structures = sorted(all_structures, key=lambda s: s["energy"])
        return all_structures