Esempio n. 1
0
class mp_query():
    def __init__(self, api_key):
        self.mpr = MPRester(api_key)

    def find_access_strings(self, search):

        data = self.mpr.get_data(search)
        material_ids = [datum['material_id'] for datum in data]

        return material_ids

    def mp_structure(self, material_id):

        struct = self.mpr.get_structure_by_material_id(material_id)
        struct = SpacegroupAnalyzer(
            struct).get_conventional_standard_structure()

        return struct

    def make_structures(self, search):
        material_ids = self.find_access_strings(search)

        structures = []
        for ID in material_ids:
            struct = self.mp_structure(ID)
            structures.append(struct)

        return structures
Esempio n. 2
0
    def get_mp_structure(cls, mpid):
        """
        Get a structure from MP.

        :param mpid: Materials Project id.
        :return: Structure
        """
        m = MPRester()
        return m.get_structure_by_material_id(mpid)
Esempio n. 3
0
def submit_tests(names=None, params=None):
    sma = SubmissionMongoAdapter.auto_load()

    # note: TiO2 is duplicated twice purposely, duplicate check should catch this
    compounds = {
        "Si": 149,
        "Al": 134,
        "ZnO": 2133,
        "FeO": 18905,
        "LiCoO2": 601860,
        "LiFePO4": 585433,
        "GaAs": 2534,
        "Ge": 32,
        "PbTe": 19717,
        "YbO": 1216,
        "SiC": 567551,
        "Fe3C": 510623,
        "SiO2": 547211,
        "Na2O": 2352,
        "InSb (unstable)": 10148,
        "Sb2O5": 1705,
        "N2O5": 554368,
        "BaTiO3": 5020,
        "Rb2O": 1394,
        "TiO2": 554278,
        "TiO2 (2)": 554278,
        'BaNbTePO8': 560794,
        "AgCl": 22922,
        "AgCl (2)": 570858,
        "SiO2 (2)": 555211,
        "Mg2SiO4": 2895,
        "CO2": 20066,
        "PbSO4": 22298,
        "SrTiO3": 5532,
        "FeAl": 2658,
        "AlFeCo2": 10884,
        "NaCoO2": 554427,
        "ReO3": 547271,
        "LaH2": 24153,
        "SiH3I": 28538,
        "LiBH4": 30209,
        "H8S5N2": 28143,
        "LiOH": 23856,
        "SrO2": 2697,
        "Mn": 35,
        "Hg4Pt": 2312,
        "PdF4": 13868,
        "Gd2WO6": 651333,
        'MnO2': 19395,
        'VO2': 504800
    }

    mpr = MPRester()

    for name, sid in compounds.iteritems():
        if not names or name in names:
            sid = mpr.get_materials_id_from_task_id("mp-{}".format(sid))
            s = mpr.get_structure_by_material_id(sid, final=False)

            snl = StructureNL(s, 'Anubhav Jain <*****@*****.**>')

            parameters = {'priority': 10} if name == 'Si' else None
            if params:
                parameters.update(params)
            sma.submit_snl(snl, '*****@*****.**', parameters=parameters)
    comp = Composition(phase).as_dict()

    file_dir = './' + phase + '/'

    # checking if path already exists - if not create it
    if not os.path.exists(file_dir):
        os.makedirs(file_dir)
    else:
        print(f'{file_dir} already exists\n-----')

    # writing materials ID in file
    mid_file = open(file_dir + 'material-ID', 'w')

    struct = mpr.get_structure_by_material_id(stable_phases[phase],
                                              final=False,
                                              conventional_unit_cell=True)
    # getting space group of structure
    spacegroup = struct.get_space_group_info()
    #   prova = mpr.get_entry_by_material_id(stable_phases[phase] , inc_structure = 'final').as_dict()

    print(
        f'Structure acquired :\n - Reduced formula = {phase} , Space group = {spacegroup},  Materials ID = {stable_phases[phase]}  \n --------'
    )
    #print(struct)
    print('')
    list_file.write(f'{phase} : {spacegroup}   {stable_phases[phase]}\n')
    mid_file.write(f'{stable_phases[phase]}')
    mid_file.close()

    # POSCAR
Esempio n. 5
0
rest = MPRester('XaCJrv4nBIeuy3kd')

params_dict = {}
structures = {}

psps = os.listdir(
    '/home/bcomer3/sparc/ase_sparc/pysparcx/sparc/pseudos/LDA_pseudos/')
available_psps = [a.split('.')[0] for a in psps]

# metals
metals = ['Al', 'Ru', 'Cu', 'Bi']

for metal in metals:
    struc_l = rest.get_entries(metal, sort_by_e_above_hull=True)
    struc_l = struc_l[0]
    struct = rest.get_structure_by_material_id(struc_l.entry_id)
    atoms = AseAtomsAdaptor.get_atoms(struct)  # switch to ASE
    for millers in [(1, 1, 1)]:
        slab = surface(atoms, millers, 4, vacuum=6)
        slab *= (2, 2, 1)
        n_metal = metal
        if millers == (1, 1, 1):
            if metal == 'Cu':
                add_adsorbate(slab, molecule('CO'), 2.5, (0, 1.64))
                n_metal += '_COads'

        structure = AseAtomsAdaptor.get_structure(slab)
        add_to_dict(structure, n_metal, millers)

metals = ['In', 'Rb', 'Sr', 'Te']
Esempio n. 6
0
File: data.py Progetto: w6ye/cgcnn
class MPData(Dataset):
    """
    The MPData dataset is a wrapper for a dataset from Materials Project.


    atom_init.json: a JSON file that stores the initialization vector for each
    element.
    ID.cif: a CIF file that recodes the crystal structure, where ID is the
    unique ID for the crystal.
    Parameters
    ----------
    criteria: dict
        Mongo-like query language for MP structures
    atom_init_file_dir: str
        dir of the atom_init_file.json
    max_num_nbr: int
        The maximum number of neighbors while constructing the crystal graph
    radius: float
        The cutoff radius for searching neighbors
    dmin: float
        The minimum distance for constructing GaussianDistance
    step: float
        The step size for constructing GaussianDistance
    random_seed: int
        Random seed for shuffling the dataset
    Returns
    -------
    atom_fea: torch.Tensor shape (n_i, atom_fea_len)
    nbr_fea: torch.Tensor shape (n_i, M, nbr_fea_len)
    nbr_fea_idx: torch.LongTensor shape (n_i, M)
    target: torch.Tensor shape (1, )
    cif_id: str or int
    """
    def __init__(self,
                 criteria,
                 atom_init_file_dir,
                 api_key="VIqD4QUxH6wNpyc5",
                 max_num_nbr=12,
                 radius=8,
                 dmin=0,
                 step=0.2,
                 random_seed=123):
        self.api = MPRester(api_key)
        mp_list = [
            i['material_id']
            for i in self.api.query(criteria=criteria,
                                    properties=['material_id'])
        ]
        self.max_num_nbr, self.radius = max_num_nbr, radius
        atom_init_file = atom_init_file_dir
        self.ari = AtomCustomJSONInitializer(atom_init_file)
        self.gdf = GaussianDistance(dmin=dmin, dmax=self.radius, step=step)

        self.id_prop_data = [(target, cif_id)
                             for target, cif_id in enumerate(mp_list)]

    def __len__(self):
        return len(self.id_prop_data)

    @functools.lru_cache(maxsize=None)
    def __getitem__(self, idx):
        target, cif_id = self.id_prop_data[idx]
        crystal = self.api.get_structure_by_material_id(cif_id)
        atom_fea = np.vstack([
            self.ari.get_atom_fea(crystal[i].specie.number)
            for i in range(len(crystal))
        ])
        atom_fea = torch.Tensor(atom_fea)
        all_nbrs = crystal.get_all_neighbors(self.radius, include_index=True)
        all_nbrs = [sorted(nbrs, key=lambda x: x[1]) for nbrs in all_nbrs]
        nbr_fea_idx = np.array([
            list(
                map(lambda x: x[2], nbr[:self.max_num_nbr])
                for nbr in all_nbrs)
        ])
        nbr_fea = np.array([list(map(lambda x: x[1], nbr[: self.max_num_nbr])) \
                            for nbr in all_nbrs]
                           )
        atom_fea = torch.Tensor(atom_fea)
        nbr_fea = torch.Tensor(nbr_fea)
        nbr_fea_idx = torch.LongTensor(nbr_fea_idx)
        target = torch.Tensor([float(target)])
        return (atom_fea, nbr_fea, nbr_fea_idx), target, cif_id
Esempio n. 7
0
    def cif_lib_build(self, crystal_system, size_limit=None):
        ''' function to build cif and pdf library based on space group symbol
        
        Parameters
        ----------
        crystal_system: str
            name of crystal system. It capitalized, like CUBIC.
            space group symbol will be generated by get_symbol_list method
        size_list : int
            optional. Uppder limit of data pulled out per symbol
        '''
        self.crystal_system = crystal_system
        space_group_symbol = self.get_symbol_list(crystal_system) 
        if isinstance(space_group_symbol, list):
            space_group_symbol_set = space_group_symbol
        else:
            space_group_symbol_set = list(spac_group_symbol)
        ## changing dir
        data_dir = os.path.join(self.working_dir, crystal_system)
        self.data_dir = data_dir
        self._makedirs(data_dir)
        os.chdir(data_dir)
        if os.getcwd() == data_dir:
            print('Library will be built at %s' % data_dir)
        else:
            e = 'Werid, return'
            raise RuntimeError(e)
        
        # summary lists
        missed_list = [] # reference
        m_id_list = [] # reference for searchs have been done in the past
        time_info = time.strftime('%Y-%m-%d')
        # create dirs, cif and calculated dir
        cif_dir = os.path.join(data_dir, 'cif_data')
        self._makedirs(cif_dir)
        self.cif_dir = cif_dir

        # looping
        for space_group_symbol in space_group_symbol_set:
            print('Building library with space_group symbol: {}'.format(space_group_symbol))
            ## search query
            m = MPRester(self.API_key)
            search = m.query(criteria = {"spacegroup.symbol": space_group_symbol},
                            properties = ["material_id"])
            if search:
                ## crazy looping
                if size_limit:
                    dim = 400 # 400 data sets per symbol
                else:
                    dim = len(search)
                print('Pull out %s data sets' % dim)
                print('Now, starts to save cif and compute pdf...')
                
                for i in range(dim):
                    # part 1: grab cif files from data base
                    m_id = search[i]['material_id']
                    m_id_list.append(m_id)
                    m_struc = m.get_structure_by_material_id(m_id)
                    m_formula = m_struc.formula
                    m_name = m_formula.replace(' ', '') # material name
                    
                    cif_w = CifWriter(m_struc)
                    cif_name = '{}_{}.cif'.format(space_group_symbol, m_name)
                    cif_w_name = os.path.join(cif_dir, cif_name)                   
 
                    if os.path.isfile(cif_w_name):
                        print('already have {}, skip'.format(cif_name))
                        pass # skip files already exist
                    else:
                        cif_w.write_file(cif_w_name)
                        print('{} has been saved'.format(cif_name))
            else:
                print('Hmm, no reasult. Something wrong')
                missed_list.append(space_group_symbol)
                pass
        
        m_id_list_name = '{}_{}_material_id.txt'.format(crystal_system, time_info)
        m_id_list_w_name = os.path.join(data_dir, m_id_list_name)
        np.savetxt(m_id_list_w_name, m_id_list)
        print('''SUMMARY: for {} cystsal sytem,
Symbols {} can't be found from data base'''.format(crystal_system, missed_list))
        return cif_dir       
Esempio n. 8
0
from pymatgen.io.pwscf import PWInput
from pymatgen import MPRester, Structure
mpr = MPRester()
s: Structure = mpr.get_structure_by_material_id('mp-550893')
s.lattice
s.make_supercell([[-1, -1, 1], [-1, 1, -1], [1, -1, -1]])
pwin = PWInput(s,
               pseudo={
                   'Hf': 'Hf.pbe-spn-kjpaw_psl.1.0.0.UPF',
                   'O': 'O.pbe-n-kjpaw_psl.1.0.0.UPF'
               },
               kpoints_grid=(6, 6, 6))
pwin.write_file('Hf-scf.in')
#this is to build a database for cnn to use
import pandas as pd
from pymatgen import Structure
from pymatgen import MPRester
import matplotlib.pyplot as plt
api_key = 'x3NlvC67Z9tPykwGz'
mpr = MPRester(api_key)
df = pd.read_excel(
    r'D:\FYP_files\database\data_after_processing\CGCNN_bulkmodulus_traindata.xlsx'
)  #this is how to get the cif files
for i in range(
        0, 13110
):  #this is the number of data in 2019/12/1, there must be more datas
    structure = mpr.get_structure_by_material_id("%s" % df.iat[i, 0])
    structure.to(
        "cif", "D:/FYP_files/Deep_learning/cgcnn-master/data/example/%s.cif" %
        df.iat[i, 0])
    print(i)
# python main.py --train-ratio 0.6 --val-ratio 0.2 --test-ratio 0.2 data/sample-regression
# python predict.py pre-trained/formation-energy-per-atom.pth.tar data/sample-regression
#python init.py --idx 2
Esempio n. 10
0
        # plot(np.array(bs.bands[sp])[iband-3,:].T-bs.efermi) # from MP
        plot(en, color='b')  # interpolated by BoltzTraP
    show()


if __name__ == "__main__":
    # user inputs
    PbTe_id = 'mp-19717'  # valence_idx = 9
    Si_id = 'mp-149'  # valence_idx = 4
    GaAs_id = 'mp-2534'  # valence_idx = ?
    SnSe2_id = "mp-665"

    Si_bs = api.get_bandstructure_by_material_id(Si_id)
    bs = Vasprun('GaAs_28electron_ncsf_line_vasprun.xml').get_band_structure(
        kpoints_filename='GaAs_28electron_KPOINTS', line_mode=True)
    GaAs_st = api.get_structure_by_material_id(GaAs_id)

    bs.structure = GaAs_st
    # Si_bs.structure = api.get_structure_by_material_id(Si_id)
    Si_bs.structure = Vasprun("../test_files/Si/vasprun.xml").final_structure
    print(bs.get_sym_eq_kpoints([0.5, 0.5, 0.5]))
    print(bs.get_sym_eq_kpoints([0.5, 0., 0.5]))

    # vbm_idx = bs.get_vbm()['band_index'][Spin.up][0]
    vbm_idx, _ = get_bindex_bspin(Si_bs.get_vbm(), is_cbm=False)
    print('vbm band index (vbm_idx): {}'.format(vbm_idx))
    ibands = [1, 2]  # in this notation, 1 is the last valence band
    ibands = [i + vbm_idx for i in ibands]

    PbTe_coeff_file = '../test_files/PbTe/fort.123'
    Si_coeff_file = "../test_files/Si/Si_fort.123"
Esempio n. 11
0
                options.dimension = len(system)
        for entry in mp_entries:
            accept = False
            if type(system) is list:
                if len(entry.composition) >= options.dimension:
                    eng = pd.get_e_above_hull(entry)
                    if eng <= options.cutoff:
                        accept = True
            else:
                eng = entry.energy_per_atom
                accept = True
            if accept:
                struc = output_struc(entry, eng, tol=1e-2)
                strucs.append(struc)
    else:
        strucs.append(mpr.get_structure_by_material_id(options.id))

    if options.format == 'poscar':
        filename = 'MPR.vasp'
    else:
        filename = 'MPR.cif'

    if os.path.isfile(filename):
        os.remove(filename)

    for struc in strucs:
        if options.format == 'poscar':
            content = struc.to(fmt='poscar')
        else:
            content = str(CifWriter(struc, symprec=0.01))
        with open(filename, 'a+') as f:
Esempio n. 12
0
    PlotDict = {}
    for index in MI_List:
        for key in MI_lib.keys():
            if any((index == x).all() for x in MI_lib[key]):
                if key not in PlotDict.keys():
                    PlotDict[key] = 0
                PlotDict[key] += 1
                print(index, MI_lib[key])

    import matplotlib.pyplot as plt

    plt.bar(PlotDict.keys(), PlotDict.values(), color='g')
    plt.show()


def MillerIndexLibrary(structure):
    MI_lib = {}
    UniqueIndices = get_symmetrically_distinct_miller_indices(structure,
                                                              max_index=4)
    for Index in UniqueIndices:
        MI_lib[str(Index)] = get_sym_fam(
            structure).get_equivalent_miller_indices(Index)
    return MI_lib


MPR = MPRester("2d5wyVmhDCpPMAkq")
S = MPR.get_structure_by_material_id('mp-1143', conventional_unit_cell='True')
print(S)
MI_lib = MillerIndexLibrary(S)
print(MI_lib)
surfscreen(S, MI_lib)
Esempio n. 13
0
    def v_ij(self, ri, rj, arr):
        a_ij = 1
        beta = 0.33675
        n = 22.956
        c = 4.8381
        d = 2.0417
        r_ij = np.linalg.norm(ri, rj)
        ksi = lambda: sum([
            self.fc(norm(ri, rk)) * g_theta(Functional.get_angle(ri, rj, rk)) *
            math.exp(self.lambda2**3 * (norm(ri, rj) - norm(ri, rk))**3)
            for rk in arr
        ])
        b_ij = lambda: 1 + beta**n * ksi()**n
        g_theta = lambda theta: 1 + c**2 / d**2 - c**2 / (d**2 +
                                                          (math.cos(theta))**2)

        return self.fc(r_ij) * (a_ij * b_ij() * self.fa(r_ij))


mpr = MPRester('DhmFQPuibZo8JtXn')
s: Structure = mpr.get_structure_by_material_id('mp-149')
for i in s.get_all_neighbors(3, True):
    for j in i:
        print(j)
#f = Functional()
#x = np.logspace(-5, 2, 1000)
#y = [f.fc(r) for r in x]
#plt.plot(x, y)
#plt.show()
Esempio n. 14
0
q_pool = []
for x,y in enumerate(q):
    q_pool.append([q[x]['energy_per_atom'],q[x]['volume'],q[x]['material_id'],q[x]['pretty_formula']])

q_pool = sorted(q_pool, key = lambda x:x[0], reverse=True)

q_min = [] 
for m,n in enumerate(q_pool):
    min_ = q_pool[-1][0]
    if q_pool[m][0] - min_ <= 0.05:
        q_min.append(q_pool[m])

q_min = sorted(q_min, key = lambda x:x[1], reverse=True)
print('Min energy struct')
print(q_min[-1])
mp_structure = mpr.get_structure_by_material_id(q_min[-1][2],conventional_unit_cell=True)
ase_atoms = bridge.get_atoms(mp_structure)
ase_atoms.write('POSCAR_'+str(q_min[-1][3])+"_"+str(q_min[-1][2]),format='vasp')


'''    
for no, entry in enumerate(pm_atom_list):
    ase_atoms = bridge.get_atoms(entry)
    mk_dir = str(name)+'-'+str(pm_mat_id[no])
    os.makedirs(mk_dir)
    os.chdir(mk_dir)
    ase_atoms = bridge.get_atoms(entry)
    ase_atoms.write('POSCAR',format='vasp')
    vol_k = int(15**3/entry.volume)
    k=pm_vasp.Kpoints.automatic_density_by_vol(structure=entry,kppvol=vol_k)
    k.write_file('KPOINTS')
num_fin = len(df_entries)

createFolder('results/plots/pourbaix')

with open('results/pbx_analysis.log', 'w') as f:

    for idx in range(num_ini, num_fin):

        formula = df_entries['formula'][idx]
        mpid = df_entries['mp_id'][idx]

        print('%03d_%s' % (idx + 1.0, formula))
        f.writelines('%03d_%s\n' % (idx + 1.0, formula))

        try:
            struc = mpr.get_structure_by_material_id(mpid)
            elements = [str(atom) for atom in struc.species[:2]]

            entries = mpr.get_pourbaix_entries(elements)
            entry_ids = [e for e in entries if e.entry_id == mpid]
            if len(entry_ids) == 1:
                pbx = PourbaixDiagram(entries)
                plotter = PourbaixPlotter(pbx)
                entry = entry_ids[0]
                plt = plotter.plot_entry_stability(entry)
                plt.savefig('results/plots/pourbaix/%03d_%s.png' %
                            (idx + 1.0, formula),
                            dpi=300)
            elif len(entry_ids) > 1:
                f.writelines('%03d_%s: number of entry > 1 \n' %
                             (idx + 1.0, formula))
Esempio n. 16
0
 def get_mp_structure(cls, mpid):
     m = MPRester()
     return m.get_structure_by_material_id(mpid)
Esempio n. 17
0
def compute_environments(chemenv_configuration):
    string_sources = {'cif': {'string': 'a Cif file', 'regexp': '.*\.cif$'},
                      'mp': {'string': 'the Materials Project database', 'regexp': 'mp-[0-9]+$'}}
    questions = {'c': 'cif'}
    if chemenv_configuration.has_materials_project_access:
        questions['m'] = 'mp'
    lgf = LocalGeometryFinder()
    lgf.setup_parameters()
    allcg = AllCoordinationGeometries()
    strategy_class = strategies_class_lookup[chemenv_configuration.package_options['default_strategy']['strategy']]
    #TODO: Add the possibility to change the parameters and save them in the chemenv_configuration
    default_strategy = strategy_class()
    default_strategy.setup_options(chemenv_configuration.package_options['default_strategy']['strategy_options'])
    max_dist_factor = chemenv_configuration.package_options['default_max_distance_factor']
    firsttime = True
    while True:
        if len(questions) > 1:
            found = False
            print('Enter the source from which the structure is coming or <q> to quit :')
            for key_character, qq in questions.items():
                print(' - <{}> for a structure from {}'.format(key_character, string_sources[qq]['string']))
            test = input(' ... ')
            if test == 'q':
                break
            if test not in list(questions.keys()):
                for key_character, qq in questions.items():
                    if re.match(string_sources[qq]['regexp'], str(test)) is not None:
                        found = True
                        source_type = qq
                if not found:
                    print('Wrong key, try again ...')
                    continue
            else:
                source_type = questions[test]
        else:
            found = False
            source_type = list(questions.values())[0]
        if found and len(questions) > 1:
            input_source = test
        if source_type == 'cif':
            if not found:
                input_source = input('Enter path to cif file : ')
            cp = CifParser(input_source)
            structure = cp.get_structures()[0]
        elif source_type == 'mp':
            if not found:
                input_source = input('Enter materials project id (e.g. "mp-1902") : ')
            a = MPRester(chemenv_configuration.materials_project_api_key)
            structure = a.get_structure_by_material_id(input_source)
        lgf.setup_structure(structure)
        print('Computing environments for {} ... '.format(structure.composition.reduced_formula))
        se = lgf.compute_structure_environments_detailed_voronoi(maximum_distance_factor=max_dist_factor)
        print('Computing environments finished')
        while True:
            test = input('See list of environments determined for each (unequivalent) site ? '
                         '("y" or "n", "d" with details, "g" to see the grid) : ')
            strategy = default_strategy
            if test in ['y', 'd', 'g']:
                strategy.set_structure_environments(se)
                for eqslist in se.equivalent_sites:
                    site = eqslist[0]
                    isite = se.structure.index(site)
                    try:
                        if strategy.uniquely_determines_coordination_environments:
                            ces = strategy.get_site_coordination_environments(site)
                        else:
                            ces = strategy.get_site_coordination_environments_fractions(site)
                    except NeighborsNotComputedChemenvError:
                        continue
                    if ces is None:
                        continue
                    if len(ces) == 0:
                        continue
                    comp = site.species_and_occu
                    #ce = strategy.get_site_coordination_environment(site)
                    if strategy.uniquely_determines_coordination_environments:
                        ce = ces[0]
                        if ce is None:
                            continue
                        thecg = allcg.get_geometry_from_mp_symbol(ce[0])
                        mystring = 'Environment for site #{} {} ({}) : {} ({})\n'.format(str(isite),
                                                                                         comp.get_reduced_formula_and_factor()[0],
                                                                                         str(comp),
                                                                                         thecg.name,
                                                                                         ce[0])
                    else:
                        mystring = 'Environments for site #{} {} ({}) : \n'.format(str(isite),
                                                                                   comp.get_reduced_formula_and_factor()[0],
                                                                                   str(comp))
                        for ce in ces:
                            cg = allcg.get_geometry_from_mp_symbol(ce[0])
                            csm = ce[1]['other_symmetry_measures']['csm_wcs_ctwcc']
                            mystring += ' - {} ({}): {:.2f} % (csm : {:2f})\n'.format(cg.name, cg.mp_symbol,
                                                                                      100.0*ce[2],
                                                                                      csm)
                    if test in ['d', 'g'] and strategy.uniquely_determines_coordination_environments:
                        if thecg.mp_symbol != UNCLEAR_ENVIRONMENT_SYMBOL:
                            mystring += '  <Continuous symmetry measures>  '
                            mingeoms = se.ce_list[isite][thecg.coordination_number][0].minimum_geometries()
                            for mingeom in mingeoms:
                                csm = mingeom[1]['other_symmetry_measures']['csm_wcs_ctwcc']
                                mystring += '{} : {:.2f}       '.format(mingeom[0], csm)
                    print(mystring)
            if test == 'g':
                test = input('Enter index of site(s) for which you want to see the grid of parameters : ')
                indices = list(map(int, test.split()))
                print(indices)
                for isite in indices:
                    se.plot_environments(isite, additional_condition=se.AC.ONLY_ACB)
            if no_vis:
                test = input('Go to next structure ? ("y" to do so)')
                if test == 'y':
                    break
                continue
            test = input('View structure with environments ? ("y" for the unit cell or "m" for a supercell or "n") : ')
            if test in ['y', 'm']:
                if test == 'm':
                    mydeltas = []
                    test = input('Enter multiplicity (e.g. 3 2 2) : ')
                    nns = test.split()
                    for i0 in range(int(nns[0])):
                        for i1 in range(int(nns[1])):
                            for i2 in range(int(nns[2])):
                                mydeltas.append(np.array([1.0*i0, 1.0*i1, 1.0*i2], np.float))
                else:
                    mydeltas = [np.zeros(3, np.float)]
                if firsttime:
                    vis = StructureVis(show_polyhedron=False, show_unit_cell=True)
                    vis.show_help = False
                    firsttime = False
                vis.set_structure(se.structure)
                strategy.set_structure_environments(se)
                for isite, site in enumerate(se.structure):
                    try:
                        ces = strategy.get_site_coordination_environments(site)
                    except NeighborsNotComputedChemenvError:
                        continue
                    if len(ces) == 0:
                        continue
                    ce = strategy.get_site_coordination_environment(site)
                    if ce is not None and ce[0] != UNCLEAR_ENVIRONMENT_SYMBOL:
                        for mydelta in mydeltas:
                            psite = PeriodicSite(site._species, site._fcoords + mydelta, site._lattice,
                                                 properties=site._properties)
                            vis.add_site(psite)
                            neighbors = strategy.get_site_neighbors(psite)
                            draw_cg(vis, psite, neighbors, cg=lgf.cg.get_geometry_from_mp_symbol(ce[0]),
                                    perm=ce[1]['permutation'])
                vis.show()
            test = input('Go to next structure ? ("y" to do so) : ')
            if test == 'y':
                break
        print('')
Esempio n. 18
0
from pymatgen.io.pwscf import PWInput
from pymatgen import MPRester

mpr = MPRester()
s = mpr.get_structure_by_material_id('mp-20459')
# s.to('POSCAR', 'POSCAR')
PWInput.from_file()
pwin = PWInput(s,
               pseudo={
                   'Pb': 'Pb.pbe-dn-kjpaw_psl.1.0.0.UPF',
                   'Ti': 'Ti.pbe-spn-kjpaw_psl.1.0.0.UPF',
                   'O': 'O.pbe-n-kjpaw_psl.1.0.0.UPF'
               },
               kpoints_grid=(6, 6, 4),
               control={
                   'outdir': 'output',
                   'prefix': 'scf'
               })
pwin.write_file('PTO-scf.in')
Esempio n. 19
0
 def get_mp_structure(cls, mpid):
     m = MPRester()
     return m.get_structure_by_material_id(mpid)
Esempio n. 20
0
params_dict = {}
structures = {}

psps = os.listdir('/home/bcomer3/sparc/ase_sparc/pysparcx/sparc/pseudos/LDA_pseudos/')
available_psps = [a.split('.')[0] for a in psps]



# metals
metals = ['Pt', 'Sc', 'La', 'Na', 'Au', 'Os', 'V', 'Zn', 'Bi', 'Co', 'Pd']
sizes = [(4,2,2), (4,3,2), (3,1,1), (3,2,1), (1,1,7), (2,2,2), (2,1,1),(2,2,1), (1,1,1), (2,1,1), (2,2,1)]

for size, metal in zip(sizes, metals):
    struc_l = rest.get_entries(metal, sort_by_e_above_hull=True)
    struc_l = struc_l[0]
    struct = rest.get_structure_by_material_id(struc_l.entry_id) 
    if metal == 'Pt':
        struct.add_site_property('magmom', [0] * len(struct))
    struct *= size
    if metal in ['Pt', 'Sc']:
        del struct[0]
    if metal == 'Hf':
        del struct[50]
        del struct[35]
        del struct[100]
        #print(len(struct))
    if metal == 'Sc':
        print(len(struct))
    add_to_dict(struct)

# oxides
Esempio n. 21
0
class CompositionToStructureFromMP(ConversionFeaturizer):
    """
    Featurizer to get a Structure object from Materials Project using the
    composition alone. The most stable entry from Materials Project is selected,
    or NaN if no entry is found in the Materials Project.

    Args:
        target_col_id (str or None): The column in which the converted data will
            be written. If the column already exists then an error will be
            thrown unless `overwrite_data` is set to `True`. If `target_col_id`
            begins with an underscore the data will be written to the column:
            `"{}_{}".format(col_id, target_col_id[1:])`, where `col_id` is the
            column being featurized. If `target_col_id` is set to None then
            the data will be written "in place" to the `col_id` column (this
            will only work if `overwrite_data=True`).
        overwrite_data (bool): Overwrite any data in `target_column` if it
            exists.
        map_key (str): Materials API key

    """
    def __init__(self,
                 target_col_id='structure',
                 overwrite_data=False,
                 mapi_key=None):
        super().__init__(target_col_id, overwrite_data)
        self.mpr = MPRester(mapi_key)
        self.set_n_jobs(1)

    def featurize(self, comp):
        """
        Get the most stable structure from Materials Project
        Args:
            comp (`pymatgen.core.composition.Composition`): A composition.

        Returns:
            (`pymatgen.core.structure.Structure`): A Structure object.
        """

        entries = self.mpr.get_data(comp.reduced_formula,
                                    prop="energy_per_atom")
        if len(entries) > 0:
            most_stable_entry = \
            sorted(entries, key=lambda e: e['energy_per_atom'])[0]
            s = self.mpr.get_structure_by_material_id(
                most_stable_entry["material_id"])
            return [s]

        return [float("nan")]

    def citations(self):
        return [
            "@article{doi:10.1063/1.4812323, author = {Jain,Anubhav and Ong,"
            "Shyue Ping  and Hautier,Geoffroy and Chen,Wei and Richards, "
            "William Davidson  and Dacek,Stephen and Cholia,Shreyas "
            "and Gunter,Dan  and Skinner,David and Ceder,Gerbrand "
            "and Persson,Kristin A. }, title = {Commentary: The Materials "
            "Project: A materials genome approach to accelerating materials "
            "innovation}, journal = {APL Materials}, volume = {1}, number = "
            "{1}, pages = {011002}, year = {2013}, doi = {10.1063/1.4812323}, "
            "URL = {https://doi.org/10.1063/1.4812323}, "
            "eprint = {https://doi.org/10.1063/1.4812323}}",
            "@article{Ong2015, author = {Ong, Shyue Ping and Cholia, "
            "Shreyas and Jain, Anubhav and Brafman, Miriam and Gunter, Dan "
            "and Ceder, Gerbrand and Persson, Kristin a.}, doi = "
            "{10.1016/j.commatsci.2014.10.037}, issn = {09270256}, "
            "journal = {Computational Materials Science}, month = {feb}, "
            "pages = {209--215}, publisher = {Elsevier B.V.}, title = "
            "{{The Materials Application Programming Interface (API): A simple, "
            "flexible and efficient API for materials data based on "
            "REpresentational State Transfer (REST) principles}}, "
            "url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025614007113}, "
            "volume = {97}, year = {2015} } "
        ]

    def implementors(self):
        return ["Anubhav Jain"]
Esempio n. 22
0
from pymatgen import MPRester, Structure
import sys

mpr = MPRester('DhmFQPuibZo8JtXn')
s: Structure = mpr.get_structure_by_material_id(sys.argv[1])
s.to('POSCAR', 'POSCAR')
Esempio n. 23
0
from pymatgen import MPRester, Structure
from pymatgen.command_line.gulp_caller import GulpCaller, GulpIO
from matplotlib import pyplot

mpr = MPRester()
mono: Structure = mpr.get_structure_by_material_id('mp-352')
ortho: Structure = mpr.get_structure_by_material_id('mp-685097')
tetra: Structure = mpr.get_structure_by_material_id('mp-1018721')
gio = GulpIO()
gc = GulpCaller()
for i in [mono, ortho, tetra]:
    arr = []
    arr2 = []
    i.apply_strain(-.05)
    for j in range(15):
        gin = gio.buckingham_input(i, ['conv'], library='morse.lib', alib=True)
        gout = gc.run(gin)
        arr.append(i.density)
        arr2.append(gio.get_energy(gout))
        i.apply_strain(-.01)
    i.to('POSCAR', i.get_space_group_info()[0].replace('/', '_') + '.vasp')
    if i.get_space_group_info()[0] == 'P4_2/nmc':
        pyplot.plot(arr, [r * 2 for r in arr2],
                    label=i.get_space_group_info()[0])
    else:
        pyplot.plot(arr, arr2, label=i.get_space_group_info()[0])
pyplot.legend()
pyplot.show()
Esempio n. 24
0
class CompositionToStructureFromMP(ConversionFeaturizer):
    """
    Featurizer to get a Structure object from Materials Project using the
    composition alone. The most stable entry from Materials Project is selected,
    or NaN if no entry is found in the Materials Project.

    Args:
        target_col_id (str or None): The column in which the converted data will
            be written. If the column already exists then an error will be
            thrown unless `overwrite_data` is set to `True`. If `target_col_id`
            begins with an underscore the data will be written to the column:
            `"{}_{}".format(col_id, target_col_id[1:])`, where `col_id` is the
            column being featurized. If `target_col_id` is set to None then
            the data will be written "in place" to the `col_id` column (this
            will only work if `overwrite_data=True`).
        overwrite_data (bool): Overwrite any data in `target_column` if it
            exists.
        map_key (str): Materials API key

    """

    def __init__(self, target_col_id='structure', overwrite_data=False,
                 mapi_key=None):
        super().__init__(target_col_id, overwrite_data)
        self.mpr = MPRester(mapi_key)

    def featurize(self, comp):
        """
        Get the most stable structure from Materials Project
        Args:
            comp (`pymatgen.core.composition.Composition`): A composition.

        Returns:
            (`pymatgen.core.structure.Structure`): A Structure object.
        """

        entries = self.mpr.get_data(comp.reduced_formula, prop="energy_per_atom")
        if len(entries) > 0:
            most_stable_entry = \
            sorted(entries, key=lambda e: e['energy_per_atom'])[0]
            s = self.mpr.get_structure_by_material_id(
                most_stable_entry["material_id"])
            return[s]
        
        return [float("nan")]

    def citations(self):
        return [
            "@article{doi:10.1063/1.4812323, author = {Jain,Anubhav and Ong,"
            "Shyue Ping  and Hautier,Geoffroy and Chen,Wei and Richards, "
            "William Davidson  and Dacek,Stephen and Cholia,Shreyas "
            "and Gunter,Dan  and Skinner,David and Ceder,Gerbrand "
            "and Persson,Kristin A. }, title = {Commentary: The Materials "
            "Project: A materials genome approach to accelerating materials "
            "innovation}, journal = {APL Materials}, volume = {1}, number = "
            "{1}, pages = {011002}, year = {2013}, doi = {10.1063/1.4812323}, "
            "URL = {https://doi.org/10.1063/1.4812323}, "
            "eprint = {https://doi.org/10.1063/1.4812323}}",
            "@article{Ong2015, author = {Ong, Shyue Ping and Cholia, "
            "Shreyas and Jain, Anubhav and Brafman, Miriam and Gunter, Dan "
            "and Ceder, Gerbrand and Persson, Kristin a.}, doi = "
            "{10.1016/j.commatsci.2014.10.037}, issn = {09270256}, "
            "journal = {Computational Materials Science}, month = {feb}, "
            "pages = {209--215}, publisher = {Elsevier B.V.}, title = "
            "{{The Materials Application Programming Interface (API): A simple, "
            "flexible and efficient API for materials data based on "
            "REpresentational State Transfer (REST) principles}}, "
            "url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025614007113}, "
            "volume = {97}, year = {2015} } "]

    def implementors(self):
        return ["Anubhav Jain"]
Esempio n. 25
0
def compute_environments(chemenv_configuration):
    string_sources = {
        'cif': {
            'string': 'a Cif file',
            'regexp': '.*\.cif$'
        },
        'mp': {
            'string': 'the Materials Project database',
            'regexp': 'mp-[0-9]+$'
        }
    }
    questions = {'c': 'cif'}
    if chemenv_configuration.has_materials_project_access:
        questions['m'] = 'mp'
    lgf = LocalGeometryFinder()
    lgf.setup_parameters()
    allcg = AllCoordinationGeometries()
    strategy_class = strategies_class_lookup[
        chemenv_configuration.package_options['default_strategy']['strategy']]
    #TODO: Add the possibility to change the parameters and save them in the chemenv_configuration
    default_strategy = strategy_class()
    default_strategy.setup_options(
        chemenv_configuration.package_options['default_strategy']
        ['strategy_options'])
    max_dist_factor = chemenv_configuration.package_options[
        'default_max_distance_factor']
    firsttime = True
    while True:
        if len(questions) > 1:
            found = False
            print(
                'Enter the source from which the structure is coming or <q> to quit :'
            )
            for key_character, qq in questions.items():
                print(' - <{}> for a structure from {}'.format(
                    key_character, string_sources[qq]['string']))
            test = input(' ... ')
            if test == 'q':
                break
            if test not in list(questions.keys()):
                for key_character, qq in questions.items():
                    if re.match(string_sources[qq]['regexp'],
                                str(test)) is not None:
                        found = True
                        source_type = qq
                if not found:
                    print('Wrong key, try again ...')
                    continue
            else:
                source_type = questions[test]
        else:
            found = False
            source_type = list(questions.values())[0]
        if found and len(questions) > 1:
            input_source = test
        if source_type == 'cif':
            if not found:
                input_source = input('Enter path to cif file : ')
            cp = CifParser(input_source)
            structure = cp.get_structures()[0]
        elif source_type == 'mp':
            if not found:
                input_source = input(
                    'Enter materials project id (e.g. "mp-1902") : ')
            a = MPRester(chemenv_configuration.materials_project_api_key)
            structure = a.get_structure_by_material_id(input_source)
        lgf.setup_structure(structure)
        print('Computing environments for {} ... '.format(
            structure.composition.reduced_formula))
        se = lgf.compute_structure_environments(
            maximum_distance_factor=max_dist_factor)
        print('Computing environments finished')
        while True:
            test = input(
                'See list of environments determined for each (unequivalent) site ? '
                '("y" or "n", "d" with details, "g" to see the grid) : ')
            strategy = default_strategy
            if test in ['y', 'd', 'g']:
                strategy.set_structure_environments(se)
                for eqslist in se.equivalent_sites:
                    site = eqslist[0]
                    isite = se.structure.index(site)
                    try:
                        if strategy.uniquely_determines_coordination_environments:
                            ces = strategy.get_site_coordination_environments(
                                site)
                        else:
                            ces = strategy.get_site_coordination_environments_fractions(
                                site)
                    except NeighborsNotComputedChemenvError:
                        continue
                    if ces is None:
                        continue
                    if len(ces) == 0:
                        continue
                    comp = site.species_and_occu
                    #ce = strategy.get_site_coordination_environment(site)
                    if strategy.uniquely_determines_coordination_environments:
                        ce = ces[0]
                        if ce is None:
                            continue
                        thecg = allcg.get_geometry_from_mp_symbol(ce[0])
                        mystring = 'Environment for site #{} {} ({}) : {} ({})\n'.format(
                            str(isite),
                            comp.get_reduced_formula_and_factor()[0],
                            str(comp), thecg.name, ce[0])
                    else:
                        mystring = 'Environments for site #{} {} ({}) : \n'.format(
                            str(isite),
                            comp.get_reduced_formula_and_factor()[0],
                            str(comp))
                        for ce in ces:
                            cg = allcg.get_geometry_from_mp_symbol(ce[0])
                            csm = ce[1]['other_symmetry_measures'][
                                'csm_wcs_ctwcc']
                            mystring += ' - {} ({}): {:.2f} % (csm : {:2f})\n'.format(
                                cg.name, cg.mp_symbol, 100.0 * ce[2], csm)
                    if test in [
                            'd', 'g'
                    ] and strategy.uniquely_determines_coordination_environments:
                        if thecg.mp_symbol != UNCLEAR_ENVIRONMENT_SYMBOL:
                            mystring += '  <Continuous symmetry measures>  '
                            mingeoms = se.ce_list[isite][
                                thecg.
                                coordination_number][0].minimum_geometries()
                            for mingeom in mingeoms:
                                csm = mingeom[1]['other_symmetry_measures'][
                                    'csm_wcs_ctwcc']
                                mystring += '{} : {:.2f}       '.format(
                                    mingeom[0], csm)
                    print(mystring)
            if test == 'g':
                test = input(
                    'Enter index of site(s) for which you want to see the grid of parameters : '
                )
                indices = list(map(int, test.split()))
                print(indices)
                for isite in indices:
                    se.plot_environments(isite,
                                         additional_condition=se.AC.ONLY_ACB)
            if no_vis:
                test = input('Go to next structure ? ("y" to do so)')
                if test == 'y':
                    break
                continue
            test = input(
                'View structure with environments ? ("y" for the unit cell or "m" for a supercell or "n") : '
            )
            if test in ['y', 'm']:
                if test == 'm':
                    mydeltas = []
                    test = input('Enter multiplicity (e.g. 3 2 2) : ')
                    nns = test.split()
                    for i0 in range(int(nns[0])):
                        for i1 in range(int(nns[1])):
                            for i2 in range(int(nns[2])):
                                mydeltas.append(
                                    np.array([1.0 * i0, 1.0 * i1, 1.0 * i2],
                                             np.float))
                else:
                    mydeltas = [np.zeros(3, np.float)]
                if firsttime:
                    vis = StructureVis(show_polyhedron=False,
                                       show_unit_cell=True)
                    vis.show_help = False
                    firsttime = False
                vis.set_structure(se.structure)
                strategy.set_structure_environments(se)
                for isite, site in enumerate(se.structure):
                    try:
                        ces = strategy.get_site_coordination_environments(site)
                    except NeighborsNotComputedChemenvError:
                        continue
                    if len(ces) == 0:
                        continue
                    ce = strategy.get_site_coordination_environment(site)
                    if ce is not None and ce[0] != UNCLEAR_ENVIRONMENT_SYMBOL:
                        for mydelta in mydeltas:
                            psite = PeriodicSite(site._species,
                                                 site._fcoords + mydelta,
                                                 site._lattice,
                                                 properties=site._properties)
                            vis.add_site(psite)
                            neighbors = strategy.get_site_neighbors(psite)
                            draw_cg(vis,
                                    psite,
                                    neighbors,
                                    cg=lgf.allcg.get_geometry_from_mp_symbol(
                                        ce[0]),
                                    perm=ce[1]['permutation'])
                vis.show()
            test = input('Go to next structure ? ("y" to do so) : ')
            if test == 'y':
                break
        print('')
Esempio n. 26
-1
def submit_tests(names=None, params=None):
    sma = SubmissionMongoAdapter.auto_load()

    # note: TiO2 is duplicated twice purposely, duplicate check should catch this
    compounds = {"Si": 149, "Al": 134, "ZnO": 2133, "FeO": 18905,
                 "LiCoO2": 601860, "LiFePO4": 585433, "GaAs": 2534, "Ge": 32, "PbTe": 19717,
                 "YbO": 1216, "SiC": 567551, "Fe3C": 510623, "SiO2": 547211, "Na2O": 2352,
                 "InSb (unstable)": 10148, "Sb2O5": 1705, "N2O5": 554368, "BaTiO3": 5020,
                 "Rb2O": 1394, "TiO2": 554278, "TiO2 (2)": 554278, 'BaNbTePO8': 560794,
                 "AgCl": 22922, "AgCl (2)": 570858, "SiO2 (2)": 555211, "Mg2SiO4": 2895, "CO2": 20066,
                 "PbSO4": 22298, "SrTiO3": 5532, "FeAl": 2658, "AlFeCo2": 10884, "NaCoO2": 554427,
                 "ReO3": 547271, "LaH2": 24153, "SiH3I": 28538, "LiBH4": 30209, "H8S5N2": 28143,
                 "LiOH": 23856, "SrO2": 2697, "Mn": 35, "Hg4Pt": 2312,
                 "PdF4": 13868, "Gd2WO6": 651333, 'MnO2': 19395, 'VO2': 504800}

    mpr = MPRester()

    for name, sid in compounds.iteritems():
        if not names or name in names:
            sid = mpr.get_materials_id_from_task_id("mp-{}".format(sid))
            s = mpr.get_structure_by_material_id(sid, final=False)

            snl = StructureNL(s, 'Anubhav Jain <*****@*****.**>')

            parameters = {'priority': 10} if name == 'Si' else None
            if params:
                parameters.update(params)
            sma.submit_snl(snl, '*****@*****.**', parameters=parameters)