Esempio n. 1
0
def fetch_materials_data(out_file):
    # properties of interest
    properties = [
        "material_id", "icsd_ids", "unit_cell_formula", "pretty_formula",
        "spacegroup", "cif", "volume", "nsites", "elements", "band_gap"
    ]

    # MaterialsProject API settings
    my_API_key = "gxTAyXSm2GvCdWer"
    m = MPRester(api_key=my_API_key)

    # query data with calculated band structures
    mp_data = m.query(
        criteria={
            # set filters
        },
        properties=properties)

    data_origin = []
    for entry in mp_data:
        plist = []
        for _, val in entry.items():
            plist.append(val)
        data_origin.append(plist)

    data_origin = pd.DataFrame(data_origin)
    data_origin.to_csv(out_file,
                       sep=';',
                       index=False,
                       header=properties,
                       mode='w')
Esempio n. 2
0
def get_structures(apiKey, elements):
    """Gets structures from Materials Project database.

    Uses a Materials Project API key to query the database with a list of
    elements. Gets Cu K-alpha diffraction pattern, material id, and spacegroup
    info for each model.

    Parameters
    ----------
    `apiKey` : str
               This is your API key from the MaterialsProject.
    `elements` : list of str
                 Include a list of elements in the sample here.

    Returns
    -------
    `models` : list of dicts
               Contains X-ray diffraction patterns, material ids, and space
               group information about the elements queried.

    """

    mpr = MPRester(apiKey)
    numElements = len(elements)
    models = mpr.query(criteria={"elements": {"$all": [*elements]},
                                 "nelements": numElements},
                       properties=['xrd.Cu', 'material_id', 'spacegroup'])
    return models
Esempio n. 3
0
def import_materials(mp_ids, api_key=None):
    """
    Given a list of material ids, returns a list of Material objects with all
    available properties from the Materials Project.
    Args:
        mp_ids (list<str>): list of material ids whose information will be retrieved.
        api_key (str): api key to be used to conduct the query.
    Returns:
        (list<Material>): list of material objects with associated data.
    """
    mpr = MPRester(api_key)
    to_return = []
    query = mpr.query(criteria={"task_id": {
        '$in': mp_ids
    }},
                      properties=AVAILABLE_MP_PROPERTIES)
    for data in query:
        # properties of one mp-id
        mat = Material()
        tag_string = data['task_id']
        mat.add_property(Symbol('structure', data['structure'], [tag_string]))
        mat.add_property(
            Symbol('lattice_unit_cell', data['structure'].lattice.matrix,
                   [tag_string]))
        for key in data:
            if not data[
                    key] is None and key in PROPNET_FROM_MP_NAME_MAPPING.keys(
                    ):
                prop_type = DEFAULT_SYMBOL_TYPES[
                    PROPNET_FROM_MP_NAME_MAPPING[key]]
                p = Symbol(prop_type, data[key], [tag_string])
                mat.add_property(p)
        to_return.append(mat)
    return to_return
Esempio n. 4
0
def download(key):
    """
    download(key)

    Downloads the dataset matching the optical 
    property of interest. 

    Inputs:
         key-      The API key for downloading data 
                   from the Materials Project database. 

    Outputs:
         1-        List of requested material properties
                   to be trained on.
    """
    api = key[0]
    m = MPRester(api)
    criteria = {"elements": {"$all": ["O"]}}
    for props in key[1:]:
        properties = ["structure", "%s" % props]
        print("\nFetching %s data ..." % props)
        result = m.query(criteria, properties)
        logging.info("Convert to dataframe ...")
        props_data = pd.DataFrame(result)
        logging.info("Pickle :)")
        props_data.to_pickle("%s_data.pkl" % props)
    return key[1:]
Esempio n. 5
0
def get_ids(api_key="Di2IZMunaeR8vr9w", name_list=None):
    """
    support_proprerity = ['energy', 'energy_per_atom', 'volume', 'formation_energy_per_atom', 'nsites',
    'unit_cell_formula','pretty_formula', 'is_hubbard', 'elements', 'nelements', 'e_above_hull', 'hubbards',
    'is_compatible', 'spacegroup', 'task_ids',  'band_gap', 'density', 'icsd_id', 'icsd_ids', 'cif',
    'total_magnetization','material_id', 'oxide_type', 'tags', 'elasticity']
    """
    """
    $gt	>,  $gte >=,  $lt <,  $lte <=,  $ne !=,  $in,  $nin (not in),  $or,  $and,  $not,  $nor ,  $all	
    """
    m = MPRester(api_key)
    ids = m.query(
        criteria={
            # 'pretty_formula': {"$in": name_list},
            'nelements': {
                "$lt": 3
            },
            # 'spacegroup.number': {"$in": [225]},
            # 'nsites': {"$lt": 5},
            # 'formation_energy_per_atom': {"$lt": 0},
            # "elements": {"$in": ["Al", "Co", "Cr", "Cu", "Fe", 'Ni'], "$all": "O"},
            # "elements": {"$in": list(combinations(["Al", "Co", "Cr", "Cu", "Fe", 'Ni'], 5))}
        },
        properties=["material_id"])
    print("number %s" % len(ids))
    return ids
Esempio n. 6
0
def mp_filter(criteria, return_elements=False):
    """Get a list of materials project mpids that match a set of given criteria.
    The criteria should be in the format used for a MP query.
    Args:
        criteria (dict): Criteria that can be used in an MPRester query
        return_elements (bool): Also return the elements for that MP entry
    """
    m = MPRester(os.environ.get("MP_API_KEY"))
    if return_elements:
        properties = ['task_id', 'elements']
        struc_filter = m.query(criteria, properties)
        return struc_filter
    else:
        properties = ['task_id']
        struc_filter = m.query(criteria, properties)
        id_list = [i['task_id'] for i in struc_filter]
        return id_list
Esempio n. 7
0
class MPDataRetrieval(BaseDataRetrieval):
    """
    Retrieves data from the Materials Project database.
    """
    def __init__(self, api_key=None):
        """
        Args:
            api_key: (str) Your Materials Project API key, or None if you've
                set up your pymatgen config.
        """
        self.mprester = MPRester(api_key=api_key)

    def api_link(self):
        return "https://materialsproject.org/wiki/index.php/The_Materials_API"

    def get_dataframe(self, criteria, properties, index_mpid=True, **kwargs):
        """
        Gets data from MP in a dataframe format. See api_link for more details.

        Args:
            all arguments including criteria, properties and index_mpid are the
            same as in get_data

        Returns (pandas.Dataframe):
        """
        data = self.get_data(criteria=criteria,
                             properties=properties,
                             index_mpid=index_mpid,
                             **kwargs)
        df = pd.DataFrame(data, columns=properties)
        if index_mpid:
            df = df.set_index("material_id")
        return df

    def get_data(self, criteria, properties, mp_decode=False, index_mpid=True):
        """
        Args:
            criteria: (str/dict) see MPRester.query() for a description of this
                parameter. String examples: "mp-1234", "Fe2O3", "Li-Fe-O',
                "\\*2O3". Dict example: {"band_gap": {"$gt": 1}}

            properties: (list) see MPRester.query() for a description of this
                parameter. Example: ["formula", "formation_energy_per_atom"]

            mp_decode: (bool) see MPRester.query() for a description of this
                parameter. Whether to decode to a Pymatgen object where
                possible.

            index_mpid: (bool) Whether to set the materials_id as the dataframe
                index.

        Returns ([dict]):
            a list of jsons that match the criteria and contain properties
        """
        if index_mpid and "material_id" not in properties:
            properties.append("material_id")
        data = self.mprester.query(criteria, properties, mp_decode)
        return data
Esempio n. 8
0
def from_mp(mp_id, api_key, crystal=None, lattice_type=None, outfile=None):
    """
    This function retrieves the elastic tensor provided by the materials project database. 
    Please provide an API key generated from https://materialsproject.org/dashboard

    Parameters
    ----------
    mp_id : str
        material id in materials project database.
        e.g. ``mp_id = "mp-13"``
    api_key : str
        API key generated by materials project data base. https://materialsproject.org/dashboard
    crystal : TYPE, optional
        DESCRIPTION. The default is None.
    lattice_type : TYPE, optional
        DESCRIPTION. The default is None.
    outfile : TYPE, optional
        DESCRIPTION. The default is None.

    Returns
    -------
    None.

    """
    try:
        from pymatgen import MPRester
    except:
        print("To use this functionality please install pymatgen")

    # welcome message
    printer.print_mechelastic()
    crystal_type = crystal
    mpr = MPRester(api_key)
    data = mpr.query(
        criteria={"material_id": mp_id},
        properties=["formula", "elasticity", "structure"],
    )[0]
    elastic_tensor = array(data["elasticity"]["elastic_tensor_original"])
    mp_structure = data["structure"]
    symbols = [x for x in mp_structure.symbol_set]
    positions = mp_structure.frac_coords
    lattice = array(mp_structure.lattice.matrix)
    structure = Structure(symbols, positions, lattice)

    # elastic constants calculation for 3D materials
    elastic_properties = ElasticProperties(
        elastic_tensor, structure, crystal_type,)
    elastic_properties.print_properties()

    # other
    # else: We don't need this
    #     elastic_bulk.elastic_const_bulk(
    #         cnew, snew, crystal, cell, density, natoms, totalmass
    #     )

    print("\nThanks! See you later. ")
    return
def getCompounds(apiKey):
    mpr = MPRester(apiKey)
    data = mpr.query({'elasticity': {
        '$exists': True
    }}, [
        'material_id', 'full_formula', 'elasticity',
        'formation_energy_per_atom', 'band_gap', 'spacegroup',
        'energy_per_atom'
    ])
    return (data)
Esempio n. 10
0
class MPDataRetrieval:
    """
    MPDataRetrieval is used to retrieve data from the Materials Project
    database, print the results, and convert them into an indexed Pandas
    dataframe.
    """
    def __init__(self, api_key=None):
        """
        Args:
            api_key: (str) Your Materials Project API key, or None if you've
                set up your pymatgen config.
        """

        self.mprester = MPRester(api_key=api_key)

    def get_dataframe(self,
                      criteria,
                      properties,
                      mp_decode=False,
                      index_mpid=True):
        """
        Gets data from MP in a dataframe format.
        See API docs at
        https://materialsproject.org/wiki/index.php/The_Materials_API
        for more details.

        Args:
            criteria: (str/dict) see MPRester.query() for a description of this
                parameter. String examples: "mp-1234", "Fe2O3", "Li-Fe-O',
                "\\*2O3". Dict example: {"band_gap": {"$gt": 1}}

            properties: (list) see MPRester.query() for a description of this
                parameter. Example: ["formula", "formation_energy_per_atom"]

            mp_decode: (bool) see MPRester.query() for a description of this
                parameter. Whether to decode to a Pymatgen object where
                possible.

            index_mpid: (bool) Whether to set the materials_id as the dataframe
                index.

        Returns: A pandas Dataframe object

        """

        if index_mpid and "material_id" not in properties:
            properties.append("material_id")

        data = self.mprester.query(criteria, properties, mp_decode)
        df = pd.DataFrame(data, columns=properties)

        if index_mpid:
            df = df.set_index("material_id")

        return df
Esempio n. 11
0
 def load_compounds(self, api_key, properties, filename=None):
     
     mpr = MPRester(api_key)
     print("Loading Compounds....")
     all_compounds_data = mpr.query({}, properties=properties)
     self.all_compounds = self.clean_and_check_data(all_compounds_data)
     
     if filename is not None:
         file = open(filename, 'wb')
         pickle.dump(all_compounds, file)
         file.close()
Esempio n. 12
0
def fetch_materials_data(root_dir):
    # properties of interest
    properties = [ 
        "material_id", "icsd_ids", "cif",
        "unit_cell_formula", "pretty_formula",
        "spacegroup", "crystal_system",
        "volume", "nsites", "elements", "nelements",
        "energy", "energy_per_atom", 
        "formation_energy_per_atom", "e_above_hull",
        "band_gap", "elasticity", "density", 
        "total_magnetization",
        "warnings", "tags"
    ]

    # MaterialsProject API settings
    my_API_key = "YOUR_MP_API_KEY"
    m = MPRester(api_key=my_API_key)

    # query all materials data
    query_all = m.query(criteria={}, properties=properties)
    MPdata_all = pd.DataFrame(entry.values() for entry in query_all)
    MPdata_all.columns = properties

    # write cif to file
    for _, irow in MPdata_all[["material_id", "cif"]].iterrows():
        cif_file = os.path.join(root_dir, irow["material_id"] + ".cif")
        with open(cif_file, 'w') as f:
            f.write(irow["cif"])
    MPdata_all = MPdata_all.drop(columns=["cif"])

    # materials with calculated band structures
    query_band = m.query(criteria={"has": "bandstructure"},
                         properties=["material_id"])
    band_filenames = [list(entry.values())[0] for entry in query_band]
    MPdata_all['has_band_structure'] = MPdata_all["material_id"].isin(band_filenames)
    
    # write properties to file
    out_file = os.path.join(root_dir, "MPdata_all.csv")
    MPdata_all.to_csv(out_file, sep=';', index=False, header=MPdata_all.columns, mode='w')
Esempio n. 13
0
def fetch_materials_data(out_file):
    # properties of interest
    properties = [
        "material_id",
        "icsd_ids",
        "unit_cell_formula",
        "pretty_formula",
        "spacegroup",
        "cif",
        "volume",
        "nsites",
        "elements",
        "nelements",
        "energy",
        "energy_per_atom",
        "formation_energy_per_atom",
        "e_above_hull",
        "band_gap",
        "density",
        "total_magnetization",
        "elasticity",
        "is_hubbard",
        "hubbards",
        "warnings",
        "tags",
    ]

    # MaterialsProject API settings
    my_API_key = "gxTAyXSm2GvCdWer"
    m = MPRester(api_key=my_API_key)

    # query data with calculated band structures
    mp_data = m.query(criteria={
        "has": "bandstructure",
    },
                      properties=properties)

    data_origin = []
    for entry in mp_data:
        plist = []
        for _, val in entry.items():
            plist.append(val)
        data_origin.append(plist)

    data_origin = pd.DataFrame(data_origin)
    data_origin.to_csv(out_file,
                       sep=';',
                       index=False,
                       header=properties,
                       mode='w')
Esempio n. 14
0
def materials_from_formula(formula, api_key=None):
    """
    Given a material chemical formula, returns all Material objects with a matching formula
    with all their available properties from the Materials Project.
    Args:
        formula (str): material's formula
        api_key (str): api key to be used to conduct the query.
    Returns:
        (list<Material>): all materials with matching formula
    """
    mpr = MPRester(api_key)
    query_results = mpr.query(criteria={'pretty_formula': formula},
                              properties=['task_id'])
    mpids = [entry['task_id'] for entry in query_results]
    return import_materials(mpids, api_key)
Esempio n. 15
0
def mp_filter(criteria, api_key=None):
    """Get a list of Materials Project task ids that match a set of given criteria.
    The criteria should be in the format used for a MP query.
    TODO DWD: Move to more appropriate place. This is not oxidation state specific.
    Args:
        criteria (dict): Criteria that can be used in an MPRester query
        api_key (str): Materials Project API key (from your MP dashboard)
    """
    if not api_key:
        print('You need to supply an api key.')
    else:
        m = MPRester(os.environ.get("MP_API_KEY"))
        properties = ['task_id']
        struc_filter = m.query(criteria, properties)
        id_list = [i['task_id'] for i in struc_filter]
        return id_list
Esempio n. 16
0
def download_mp_data(form, spc_num, id, pbe, mbj, gw, path):
    mpr = MPRester('z9dAjdwO95SWgsUZ')
    data = mpr.query({'pretty_formula': form}, ['material_id', 'pretty_formula', 'spacegroup', 'band_gap', 'cif'])
    t = None

    for c in data:
        if c['pretty_formula'] == form and c['spacegroup']['number'] == spc_num:
            t = (c['material_id'], c['pretty_formula'], c['spacegroup']['number'], c['band_gap'], pbe, mbj, gw, str(id))
            cif_file = open(path + '/' + c['material_id'] + '.cif', 'w')
            cif_file.write(c['cif'])

    if t is None:
        print(id, form, spc_num)
        return None
    else:
        return t
def RetrieveData(elements, properties, private_key):
    #Import the MPRester API library
    from pymatgen import MPRester

    #Specify private key for MP database
    mpr = MPRester(private_key)

    #Query MP-DB for all materials ids of binary alloys of transition metals. Returns a list of dictionaries.
    entries = mpr.query({
        "elements": {
            "$in": elements
        },
        "nelements": 2
    }, properties)

    return entries
Esempio n. 18
0
def do_query(args):
    m = MPRester()
    try:
        criteria = json.loads(args.criteria)
    except json.decoder.JSONDecodeError:
        criteria = args.criteria
    if args.structure:
        count = 0
        for d in m.query(criteria, properties=["structure", "task_id"]):
            s = d["structure"]
            formula = re.sub("\s+", "", s.formula)
            if args.structure == "poscar":
                fname = "POSCAR.%s_%s" % (d["task_id"], formula)
            else:
                fname = "%s-%s.%s" % (d["task_id"], formula, args.structure)
            s.to(filename=fname)
            count += 1
        print("%d structures written!" % count)
    elif args.entries:
        entries = m.get_entries(criteria)
        dumpfn(entries, args.entries)
        print("%d entries written to %s!" % (len(entries), args.entries))
    else:
        props = ["e_above_hull", "spacegroup"]
        props += args.data
        entries = m.get_entries(criteria, property_data=props)
        t = []
        headers = [
            "mp-id", "Formula", "Spacegroup", "E/atom (eV)",
            "E above hull (eV)"
        ] + args.data
        for e in entries:
            row = [
                e.entry_id, e.composition.reduced_formula,
                e.data["spacegroup"]["symbol"], e.energy_per_atom,
                e.data["e_above_hull"]
            ]
            row += [e.data[s] for s in args.data]

            t.append(row)

        t = sorted(t, key=lambda x: x[headers.index("E above hull (eV)")])
        print(tabulate(t, headers=headers, tablefmt="pipe", floatfmt=".3f"))
Esempio n. 19
0
def get_materials_list():
    """Fetch data (from local cache if available)."""
    try:
        _log.info('Trying data cache for materials')
        with open('materials_list.pickle') as f:
            return pickle.load(f)

    except IOError:
        _log.info('Fetching remote data')
        m = MPRester()
        materials_list = m.query(
            criteria={"elasticity": {"$exists": True}},
            properties=['pretty_formula', 'reduced_cell_formula', 'task_id',
                        "elasticity.K_VRH", "elasticity.K_VRH", 'volume',
                        'density', 'formation_energy_per_atom', 'nsites'])
        # Save for later
        with open('materials_list.pickle', 'w') as f:
            pickle.dump(materials_list, f)
        _log.info('Data loaded')
        return materials_list
Esempio n. 20
0
def do_query(args):
    m = MPRester()
    try:
        criteria = json.loads(args.criteria)
    except json.decoder.JSONDecodeError:
        criteria = args.criteria
    if args.structure:
        count = 0
        for d in m.query(criteria, properties=["structure", "task_id"]):
            s = d["structure"]
            formula = re.sub("\s+", "", s.formula)
            if args.structure == "poscar":
                fname = "POSCAR.%s_%s" % (d["task_id"], formula)
            else:
                fname = "%s-%s.%s" % (d["task_id"], formula, args.structure)
            s.to(filename=fname)
            count += 1
        print("%d structures written!" % count)
    elif args.entries:
        entries = m.get_entries(criteria)
        dumpfn(entries, args.entries)
        print("%d entries written to %s!" % (len(entries), args.entries))
    else:
        props = ["e_above_hull", "spacegroup"]
        props += args.data
        entries = m.get_entries(criteria, property_data=props)
        t = []
        headers = ["mp-id", "Formula", "Spacegroup", "E/atom (eV)",
                   "E above hull (eV)"] + args.data
        for e in entries:
            row = [e.entry_id, e.composition.reduced_formula,
                   e.data["spacegroup"]["symbol"],
                   e.energy_per_atom, e.data["e_above_hull"]]
            row += [e.data[s] for s in args.data]

            t.append(row)

        t = sorted(t, key=lambda x: x[headers.index("E above hull (eV)")])
        print(tabulate(t, headers=headers, tablefmt="pipe", floatfmt=".3f"))
Esempio n. 21
0
def run(mpfile, **kwargs):
    from pymatgen import MPRester, Composition
    import pandas as pd

    input_file = mpfile.document['_hdata'].pop('input_file')
    file_path = os.path.join(os.environ['HOME'], 'work', input_file)
    if not os.path.exists(file_path):
        return 'Please upload', file_path
    df_dct = pd.read_excel(file_path)
    columns_units = [
        ('A-Site', ''), ('B-Site', ''), ('a', 'Å'),
        ('Eᶠ|ABO₃', 'eV'), ('Eᶠ|Yᴮ', 'eV'), ('Eᶠ|Vᴼ', 'eV'),
        ('Eᶠ|Hᵢ', 'eV'), ('ΔEᵢ|Yᴮ-Hᵢ', 'eV')
    ]
    columns = df_dct.columns
    mpr = MPRester(endpoint="http://materialsproject.org:8080/rest/v2")

    for row_idx, row in df_dct.iterrows():
        formula = '{}{}O3'.format(row[columns[0]], row[columns[1]])
        comp = Composition(formula)
        crit = {"reduced_cell_formula": comp.to_reduced_dict, "nsites": 5}
        docs = mpr.query(criteria=crit, properties=["task_id", "volume"])
        if len(docs) > 1:
            volume = row[columns[2]]**3
            volumes = pd.np.array([r['volume'] for r in docs])
            idx = pd.np.abs(volumes-volume).argmin()
            identifier = docs[idx]['task_id']
            continue
        elif not docs:
            print formula, 'not found on MP'
            continue
        else:
            identifier = docs[0]['task_id']
        print formula, '->', identifier
        d = RecursiveDict()
        for col, (key, unit) in zip(columns, columns_units):
            d[key] = clean_value(row[col], unit)
        mpfile.add_hierarchical_data(nest_dict(d, ['data']), identifier=identifier)
Esempio n. 22
0
        'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'La', 'Ce', 'Pr', 'Nd', 'Pm',
        'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Ac', 'Th',
        'Pa', 'U', 'Np', 'Pu'
    ]

    # search_key in material project, including elasticity, piezo
    search_key = 'elasticity'

    data = mpr.query(criteria={
        'elements': {
            '$in': element_list
        },
        'has_bandstructure': True,
        search_key: {
            '$exists': True
        },
    },
                     properties=[
                         'material_id', 'pretty_formula', 'nelements',
                         'nsites', 'is_hubbard', 'is_compatible', 'volume',
                         'density', 'energy_per_atom',
                         'formation_energy_per_atom', 'structure', search_key
                     ])

    if search_key == 'elasticity':
        new_file = open('./training/' + search_key + '/' + search_key + '.csv',
                        'w',
                        encoding='utf-8')
        csv_writer = csv.writer(new_file)
        new_file_warnings = open(
            './training/elasticity/elasticity_warnings.csv',
Esempio n. 23
0
def run(mpfile, hosts=None, download=False):
    mpr = MPRester()
    fpath = f"{project}.xlsx"

    if download or not os.path.exists(fpath):

        figshare_id = 1546772
        url = "https://api.figshare.com/v2/articles/{}".format(figshare_id)
        print("get figshare article {}".format(figshare_id))
        r = requests.get(url)
        figshare = json.loads(r.content)
        print("version =",
              figshare["version"])  # TODO set manually in "other"?

        print("read excel from figshare into DataFrame")
        df_dct = None
        for d in figshare["files"]:
            if "xlsx" in d["name"]:
                # Dict of DataFrames is returned, with keys representing sheets
                df_dct = read_excel(d["download_url"], sheet_name=None)
                break
        if df_dct is None:
            print("no excel sheet found on figshare")
            return

        print("save excel to disk")
        writer = ExcelWriter(fpath)
        for sheet, df in df_dct.items():
            df.to_excel(writer, sheet)
        writer.save()

    else:
        df_dct = read_excel(fpath, sheet_name=None)

    print(len(df_dct), "sheets loaded.")

    print("looping hosts ...")
    host_info = df_dct["Host Information"]
    host_info.set_index(host_info.columns[0], inplace=True)
    host_info.dropna(inplace=True)

    for idx, host in enumerate(host_info):
        if hosts is not None:
            if isinstance(hosts, int) and idx + 1 > hosts:
                break
            elif isinstance(hosts, list) and not host in hosts:
                continue

        print("get mp-id for {}".format(host))
        mpid = None
        for doc in mpr.query(criteria={"pretty_formula": host},
                             properties={"task_id": 1}):
            if "decomposes_to" not in doc["sbxd"][0]:
                mpid = doc["task_id"]
                break
        if mpid is None:
            print("mp-id for {} not found".format(host))
            continue

        print("add host info for {}".format(mpid))
        hdata = host_info[host].to_dict(into=RecursiveDict)
        for k in list(hdata.keys()):
            v = hdata.pop(k)
            ks = k.split()
            if ks[0] not in hdata:
                hdata[ks[0]] = RecursiveDict()
            unit = ks[-1][1:-1] if ks[-1].startswith("[") else ""
            subkey = "_".join(ks[1:-1] if unit else ks[1:]).split(",")[0]
            if subkey == "lattice_constant":
                unit = "Å"
            try:
                hdata[ks[0]][subkey] = clean_value(
                    v, unit.replace("angstrom", "Å"))
            except ValueError:
                hdata[ks[0]][subkey] = v
        hdata["formula"] = host
        df = df_dct["{}-X".format(host)]
        rows = list(isnull(df).any(1).nonzero()[0])
        if rows:
            cells = df.iloc[rows].dropna(how="all").dropna(
                axis=1)[df.columns[0]]
            note = cells.iloc[0].replace("following", cells.iloc[1])[:-1]
            hdata["note"] = note
            df.drop(rows, inplace=True)
        mpfile.add_hierarchical_data(nest_dict(hdata, ["data"]),
                                     identifier=mpid)

        print("add table for D₀/Q data for {}".format(mpid))
        df.set_index(df["Solute element number"], inplace=True)
        df.drop("Solute element number", axis=1, inplace=True)
        df.columns = df.iloc[0]
        df.index.name = "index"
        df.drop("Solute element name", inplace=True)
        df = df.T.reset_index()
        if str(host) == "Fe":
            df_D0_Q = df[[
                "Solute element name",
                "Solute D0, paramagnetic [cm^2/s]",
                "Solute Q, paramagnetic [eV]",
            ]]
        elif hdata["Host"]["crystal_structure"] == "HCP":
            df_D0_Q = df[[
                "Solute element name",
                "Solute D0 basal [cm^2/s]",
                "Solute Q basal [eV]",
            ]]
        else:
            df_D0_Q = df[[
                "Solute element name", "Solute D0 [cm^2/s]", "Solute Q [eV]"
            ]]
        df_D0_Q.columns = ["Solute", "D₀ [cm²/s]", "Q [eV]"]
        anums = [z[el] for el in df_D0_Q["Solute"]]
        df_D0_Q.insert(0, "Z", Series(anums, index=df_D0_Q.index))
        df_D0_Q.sort_values("Z", inplace=True)
        df_D0_Q.reset_index(drop=True, inplace=True)
        mpfile.add_data_table(mpid, df_D0_Q, "D₀_Q")

        if hdata["Host"]["crystal_structure"] == "BCC":

            print("add table for hop activation barriers for {} (BCC)".format(
                mpid))
            columns_E = ([
                "Hop activation barrier, E_{} [eV]".format(i)
                for i in range(2, 5)
            ] + [
                "Hop activation barrier, E'_{} [eV]".format(i)
                for i in range(3, 5)
            ] + [
                "Hop activation barrier, E''_{} [eV]".format(i)
                for i in range(3, 5)
            ] + [
                "Hop activation barrier, E_{} [eV]".format(i)
                for i in range(5, 7)
            ])
            df_E = df[["Solute element name"] + columns_E]
            df_E.columns = (["Solute"] +
                            ["E{} [eV]".format(i) for i in ["₂", "₃", "₄"]] +
                            ["E`{} [eV]".format(i) for i in ["₃", "₄"]] +
                            ["E``{} [eV]".format(i) for i in ["₃", "₄"]] +
                            ["E{} [eV]".format(i) for i in ["₅", "₆"]])
            mpfile.add_data_table(mpid, df_E, "hop_activation_barriers")

            print("add table for hop attempt frequencies for {} (BCC)".format(
                mpid))
            columns_v = ([
                "Hop attempt frequency, v_{} [THz]".format(i)
                for i in range(2, 5)
            ] + [
                "Hop attempt frequency, v'_{} [THz]".format(i)
                for i in range(3, 5)
            ] + [
                "Hop attempt frequency, v''_{} [THz]".format(i)
                for i in range(3, 5)
            ] + [
                "Hop attempt frequency, v_{} [THz]".format(i)
                for i in range(5, 7)
            ])
            df_v = df[["Solute element name"] + columns_v]
            df_v.columns = (["Solute"] +
                            ["v{} [THz]".format(i) for i in ["₂", "₃", "₄"]] +
                            ["v`{} [THz]".format(i) for i in ["₃", "₄"]] +
                            ["v``{} [THz]".format(i) for i in ["₃", "₄"]] +
                            ["v{} [THz]".format(i) for i in ["₅", "₆"]])
            mpfile.add_data_table(mpid, df_v, "hop_attempt_frequencies")

        elif hdata["Host"]["crystal_structure"] == "FCC":

            print("add table for hop activation barriers for {} (FCC)".format(
                mpid))
            columns_E = [
                "Hop activation barrier, E_{} [eV]".format(i) for i in range(5)
            ]
            df_E = df[["Solute element name"] + columns_E]
            df_E.columns = ["Solute"] + [
                "E{} [eV]".format(i) for i in ["₀", "₁", "₂", "₃", "₄"]
            ]
            mpfile.add_data_table(mpid, df_E, "hop_activation_barriers")

            print("add table for hop attempt frequencies for {} (FCC)".format(
                mpid))
            columns_v = [
                "Hop attempt frequency, v_{} [THz]".format(i) for i in range(5)
            ]
            df_v = df[["Solute element name"] + columns_v]
            df_v.columns = ["Solute"] + [
                "v{} [THz]".format(i) for i in ["₀", "₁", "₂", "₃", "₄"]
            ]
            mpfile.add_data_table(mpid, df_v, "hop_attempt_frequencies")

        elif hdata["Host"]["crystal_structure"] == "HCP":

            print("add table for hop activation barriers for {} (HCP)".format(
                mpid))
            columns_E = [
                "Hop activation barrier, E_X [eV]",
                "Hop activation barrier, E'_X [eV]",
                "Hop activation barrier, E_a [eV]",
                "Hop activation barrier, E'_a [eV]",
                "Hop activation barrier, E_b [eV]",
                "Hop activation barrier, E'_b [eV]",
                "Hop activation barrier, E_c [eV]",
                "Hop activation barrier, E'_c [eV]",
            ]
            df_E = df[["Solute element name"] + columns_E]
            df_E.columns = ["Solute"] + [
                "Eₓ [eV]",
                "E`ₓ [eV]",
                "Eₐ [eV]",
                "E`ₐ [eV]",
                "E_b [eV]",
                "E`_b [eV]",
                "Eꪱ [eV]",
                "E`ꪱ [eV]",
            ]
            mpfile.add_data_table(mpid, df_E, "hop_activation_barriers")

            print("add table for hop attempt frequencies for {} (HCP)".format(
                mpid))
            columns_v = ["Hop attempt frequency, v_a [THz]"
                         ] + ["Hop attempt frequency, v_X [THz]"]
            df_v = df[["Solute element name"] + columns_v]
            df_v.columns = ["Solute"] + ["vₐ [THz]"] + ["vₓ [THz]"]
            mpfile.add_data_table(mpid, df_v, "hop_attempt_frequencies")

    print("DONE")
Esempio n. 24
0
    def cif_lib_build(self, crystal_system, size_limit=None):
        ''' function to build cif and pdf library based on space group symbol
        
        Parameters
        ----------
        crystal_system: str
            name of crystal system. It capitalized, like CUBIC.
            space group symbol will be generated by get_symbol_list method
        size_list : int
            optional. Uppder limit of data pulled out per symbol
        '''
        self.crystal_system = crystal_system
        space_group_symbol = self.get_symbol_list(crystal_system) 
        if isinstance(space_group_symbol, list):
            space_group_symbol_set = space_group_symbol
        else:
            space_group_symbol_set = list(spac_group_symbol)
        ## changing dir
        data_dir = os.path.join(self.working_dir, crystal_system)
        self.data_dir = data_dir
        self._makedirs(data_dir)
        os.chdir(data_dir)
        if os.getcwd() == data_dir:
            print('Library will be built at %s' % data_dir)
        else:
            e = 'Werid, return'
            raise RuntimeError(e)
        
        # summary lists
        missed_list = [] # reference
        m_id_list = [] # reference for searchs have been done in the past
        time_info = time.strftime('%Y-%m-%d')
        # create dirs, cif and calculated dir
        cif_dir = os.path.join(data_dir, 'cif_data')
        self._makedirs(cif_dir)
        self.cif_dir = cif_dir

        # looping
        for space_group_symbol in space_group_symbol_set:
            print('Building library with space_group symbol: {}'.format(space_group_symbol))
            ## search query
            m = MPRester(self.API_key)
            search = m.query(criteria = {"spacegroup.symbol": space_group_symbol},
                            properties = ["material_id"])
            if search:
                ## crazy looping
                if size_limit:
                    dim = 400 # 400 data sets per symbol
                else:
                    dim = len(search)
                print('Pull out %s data sets' % dim)
                print('Now, starts to save cif and compute pdf...')
                
                for i in range(dim):
                    # part 1: grab cif files from data base
                    m_id = search[i]['material_id']
                    m_id_list.append(m_id)
                    m_struc = m.get_structure_by_material_id(m_id)
                    m_formula = m_struc.formula
                    m_name = m_formula.replace(' ', '') # material name
                    
                    cif_w = CifWriter(m_struc)
                    cif_name = '{}_{}.cif'.format(space_group_symbol, m_name)
                    cif_w_name = os.path.join(cif_dir, cif_name)                   
 
                    if os.path.isfile(cif_w_name):
                        print('already have {}, skip'.format(cif_name))
                        pass # skip files already exist
                    else:
                        cif_w.write_file(cif_w_name)
                        print('{} has been saved'.format(cif_name))
            else:
                print('Hmm, no reasult. Something wrong')
                missed_list.append(space_group_symbol)
                pass
        
        m_id_list_name = '{}_{}_material_id.txt'.format(crystal_system, time_info)
        m_id_list_w_name = os.path.join(data_dir, m_id_list_name)
        np.savetxt(m_id_list_w_name, m_id_list)
        print('''SUMMARY: for {} cystsal sytem,
Symbols {} can't be found from data base'''.format(crystal_system, missed_list))
        return cif_dir       
Esempio n. 25
0
from pymatgen import MPRester

mpr = MPRester("78OAi0lR9kdkyiAi")


mpids = ['mp-1021516', 'mp-9580'] # replace with your list of missing material ids

results = mpr.query({"task_ids": {"$in": mpids}}, ["task_id"])

assert len(results) == len(mpids)
    elif not job['is_ordered']:
        print 'REJECTED WORKFLOW FOR {} - invalid structure (disordered)'.format(
            snl.structure.formula)
    else:
        return True
    return False


if __name__ == '__main__':
    create_mincoll()
    mp_unique_comps = set()
    pf_unique_comps = set()
    coll = db['pauling_file_mpmin']
    new_coll = db['pf_to_mp']
    new_coll.drop()
    mp_comps = mpr.query(criteria={}, properties=["snl_final.reduced_cell_formula_abc"])
    print 'Total number of MP comps = {}'.format(len(mp_comps))
    for mp_comp in mp_comps:
        mp_unique_comps.add(mp_comp["snl_final.reduced_cell_formula_abc"])
    print 'Number of unique MP comps = {}'.format(len(mp_unique_comps))
    x = 0
    for doc in coll.find().batch_size(75):
        x += 1
        if x % 1000 == 0:
            print x
        # if x > 1:
        #     break
        pf_unique_comps.add(doc['metadata']['_structure']['reduced_cell_formula_abc'])
        if doc['metadata']['_structure']['reduced_cell_formula_abc'] not in mp_unique_comps:
            new_coll.insert(doc_to_snl(doc).as_dict())
            # with open('PaulingFile_example.json', 'w') as outfile:
Esempio n. 27
0
from pymatgen import MPRester
from pprint import pprint
import os

JINNYAPI = os.environ['materials_project']
m = MPRester(JINNYAPI)

data = m.query({'piezo': {
    '$exists': True
}}, ['material_id', 'pretty_formula', 'piezo'])
pprint(data)
Esempio n. 28
0
data = m.query(criteria={
    "spacegroup.number": {
        "$in": [
            75, 76, 77, 78, 79, 80, 81, 82, 89, 90, 91, 92, 93, 94, 95, 96, 97,
            98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
            112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 168, 169,
            170, 171, 172, 173, 174, 177, 178, 179, 180, 181, 182, 183, 184,
            185, 186, 187, 188, 189, 190, 195, 196, 197, 198, 207, 208, 209,
            210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220
        ]
    },
    "band_gap": 0,
    "magnetic_type": {
        "$in": ["FM", "AFM", "FiM"]
    },
    "nelements": {
        "$lte": 3
    },
    "elements": {
        "$in": SPT1
    },
    "elements": {
        "$nin": Not_SPT1
    }
},
               properties=[
                   "pretty_formula", "material_id",
                   "formation_energy_per_atom", "unit_cell_formula",
                   "spacegroup", "structure", "magnetic_type",
                   "total_magnetization"
               ],
               chunk_size=0)
Esempio n. 29
0
def test():
    from pymatgen import MPRester, Composition
    m = MPRester('DhmFQPuibZo8JtXn')
    results = m.query("**O", ['density', 'task_id', 'structure'])
    print(len(results))
Esempio n. 30
0
from pymatgen.io.zeoone import get_voronoi_nodes, get_void_volume_surfarea, get_high_accuracy_voronoi_nodes
try:
    from zeo.netstorage import AtomNetwork, VoronoiNetwork
    from zeo.area_volume import volume, surface_area
    from zeo.cluster import get_nearest_largest_diameter_highaccuracy_vornode,\
            generate_simplified_highaccuracy_voronoi_network, \
            prune_voronoi_network_close_node
    zeo_found = True
except ImportError:
    zeo_found = False		 

m = MPRester(key)

#def get_POSCAR(elements, interstitial, supercell_size, ):

results = m.query("Fe", ['structure'])
print(type(results[2]['structure']))
#Mg_cell = mg.Lattice.hexagonal(3.184, 5.249)

#print(Mg_cell.lengths_and_angles)

#Mg_Lattice = mg.Structure(Mg_cell, ["Mg","Mg"], [[.333333333,.66666666666,.25], [.66666666666,.33333333333333,.75]])
print(results[2]['structure'])
Mg_Lattice=results[2]['structure']
#Mg_Lattice = results[0]

Mg_Interstitial = point_defects.Interstitial(Mg_Lattice, {u"Fe":0}, {u"Fe":1.26}, 'voronoi_vertex',accuracy=u'Normal',symmetry_flag=True,oxi_state=False)

print(Mg_Interstitial.enumerate_defectsites())
print(Mg_Interstitial.defectsite_count())
Esempio n. 31
0
def get_avg_Z_num(material, elem_list):
	Z_list = []
	for element in elem_list:
		Z_list += [log(Element(element).Z)]
	return np.average(Z_list)

def get_sd_X(material, elem_list):
	X_list = []
	for element in elem_list:
		X_list += [log(Element(element).X)]
	return np.std(X_list)

key = os.environ['MAPI_KEY']
m = MPRester(key)	

materials_list = m.query(criteria={"elasticity": {"$exists": True}}, properties=['pretty_formula', 'reduced_cell_formula', "elasticity.K_VRH", 'volume', 'density', 'formation_energy_per_atom', 'formation_energy_per_atom', 'nsites'])


def vectorize_and_catalog(materials):
	vector_list = []
	catalog = {}
	for material in materials:
		element_list = element_lister(material)
		vector = [get_ln_volume(material, element_list), get_c_energy_per_atom(material, element_list), get_avg_Z_num(material, element_list), get_sd_X(material, element_list)]
		vector_list += [vector]
		catalog[tuple(vector)] = material
	return vector_list, catalog

def vector_to_material(vector):
	return catalog[tuple(vector)]
Esempio n. 32
0
from __future__ import division
import numpy as np  
import matplotlib.pyplot as plt
from pymatgen import MPRester 

# import/truncate raw data (volume, density, energies, etc)
	m = MPRester("ID")
	data = m.query(criteria={"elasticity": {"$exists": True}},
                         	properties=["pretty_formula", "volume", "K_VRH"])

		# for now, import parameters and also bulk modulus (known), in future we will use parameters to select bulk moduli to be calculated

		# subfunction for formatting 


# define desired objectives and bounds/tolerances (GPa)
	tolcost = 1e-5
	kdes = 205


# define tuning/mating parameters 
	theta = 1/2
	w1 = 1


# create objective function
	cost = lambda k: w1*((kdes-k)/kdes)**2 


# randomly sample data and calculate costs
Esempio n. 33
0
class MPDataRetrieval(BaseDataRetrieval):
    """
    Retrieves data from the Materials Project database.

    If you use this data retrieval class, please additionally cite:

    Ong, S.P., Cholia, S., Jain, A., Brafman, M., Gunter, D., Ceder, G.,
    Persson, K.A., 2015. The Materials Application Programming Interface
    (API): A simple, flexible and efficient API for materials data based on
    REpresentational State Transfer (REST) principles. Computational
    Materials Science 97, 209–215.
    https://doi.org/10.1016/j.commatsci.2014.10.037

    """

    def __init__(self, api_key=None):
        """
        Args:
            api_key: (str) Your Materials Project API key, or None if you've
                set up your pymatgen config.
        """
        self.mprester = MPRester(api_key=api_key)

    def api_link(self):
        return "https://materialsproject.org/wiki/index.php/The_Materials_API"

    def get_dataframe(self, criteria, properties, index_mpid=True, **kwargs):
        """
        Gets data from MP in a dataframe format. See api_link for more details.

        Args:
            criteria (dict): the same as in get_data
            properties ([str]): the same properties supported as in get_data
                plus: "structure", "initial_structure", "final_structure",
                "bandstructure" (line mode), "bandstructure_uniform",
                "phonon_bandstructure", "phonon_ddb", "phonon_bandstructure",
                "phonon_dos". Note that for a long list of compounds, it may
                take a long time to retrieve some of these objects.
            index_mpid (bool): the same as in get_data
            kwargs (dict): the same keyword arguments as in get_data

        Returns (pandas.Dataframe):
        """
        data = self.get_data(criteria=criteria, properties=properties,
                             index_mpid=index_mpid, **kwargs)
        df = pd.DataFrame(data, columns=properties)
        for prop in ["dos", "phonon_dos",
                     "phonon_bandstructure", "phonon_ddb"]:
            if prop in properties:
                df[prop] = self.try_get_prop_by_material_id(
                    prop=prop, material_id_list=df["material_id"].values)
        if "bandstructure" in properties:
            df["bandstructure"] = self.try_get_prop_by_material_id(
                prop="bandstructure",
                material_id_list=df["material_id"].values,
                line_mode=True)
        if "bandstructure_uniform" in properties:
            df["bandstructure_uniform"] = self.try_get_prop_by_material_id(
                prop="bandstructure",
                material_id_list=df["material_id"].values,
                line_mode=False)
        if index_mpid:
            df = df.set_index("material_id")
        return df

    def get_data(self, criteria, properties, mp_decode=False, index_mpid=True):
        """
        Args:
            criteria: (str/dict) see MPRester.query() for a description of this
                parameter. String examples: "mp-1234", "Fe2O3", "Li-Fe-O',
                "\\*2O3". Dict example: {"band_gap": {"$gt": 1}}

            properties: (list) see MPRester.query() for a description of this
                parameter. Example: ["formula", "formation_energy_per_atom"]

            mp_decode: (bool) see MPRester.query() for a description of this
                parameter. Whether to decode to a Pymatgen object where
                possible.

            index_mpid: (bool) Whether to set the materials_id as the dataframe
                index.

        Returns ([dict]):
            a list of jsons that match the criteria and contain properties
        """
        if index_mpid and "material_id" not in properties:
            properties.append("material_id")
        data = self.mprester.query(criteria, properties, mp_decode)
        return data

    def try_get_prop_by_material_id(self, prop, material_id_list, **kwargs):
        """
        Call the relevant get_prop_by_material_id. "prop" is a property such
        as bandstructure that is not readily available in supported properties
        of the get_data function but via the get_bandstructure_by_material_id
        method for example.

        Args:
            prop (str): the name of the property. Options are:
                "bandstructure", "dos", "phonon_dos", "phonon_bandstructure",
                "phonon_ddb"
            material_id_list ([str]): list of material_id of compounds
            kwargs (dict): other keyword arguments that get_*_by_material_id
                may have; e.g. line_mode in get_bandstructure_by_material_id

        Returns ([target prop object or NaN]):
            If the target property is not available for a certain material_id,
            NaN is returned.
        """
        method = getattr(self.mprester, "get_{}_by_material_id".format(prop))
        props = []
        for material_id in material_id_list:
            try:
                props.append(method(material_id=material_id, **kwargs))
            except MPRestError:
                props.append(float('NaN'))
        return props
Esempio n. 34
0
def run(mpfile, hosts=None, download=False, **kwargs):
    #mpfile.unique_mp_cat_ids = False
    from pymatgen import MPRester
    mpr = MPRester()

    fpath = os.path.join(os.environ['HOME'], 'work', 'dilute_solute_diffusion.xlsx')

    if download or not os.path.exists(fpath):

        figshare_id = mpfile.hdata.general['info']['figshare_id']
        url = 'https://api.figshare.com/v2/articles/{}'.format(figshare_id)
        print 'get figshare article {}'.format(figshare_id)
        r = requests.get(url)
        figshare = json.loads(r.content)
        mpfile.document['_hdata']['version'] = figshare['version']

        print 'read excel from figshare into DataFrame'
        df_dct = None
        for d in figshare['files']:
            if 'xlsx' in d['name']:
                # Dict of DataFrames is returned, with keys representing sheets
                df_dct = read_excel(d['download_url'], sheet_name=None)
                break
        if df_dct is None:
            print 'no excel sheet found on figshare'
            return

        print 'save excel to disk'
        writer = ExcelWriter(fpath)
        for sheet, df in df_dct.items():
            df.to_excel(writer, sheet)
        writer.save()

    else:
        df_dct = read_excel(fpath, sheet_name=None)

    print len(df_dct), 'sheets loaded.'

    print 'looping hosts ...'
    host_info = df_dct['Host Information']
    host_info.set_index(host_info.columns[0], inplace=True)
    host_info.dropna(inplace=True)

    for idx, host in enumerate(host_info):
        if hosts is not None:
            if isinstance(hosts, int) and idx+1 > hosts:
                break
            elif isinstance(hosts, list) and not host in hosts:
                continue

        print 'get mp-id for {}'.format(host)
        mpid = None
        for doc in mpr.query(
            criteria={'pretty_formula': host},
            properties={'task_id': 1}
        ):
            if doc['sbxd'][0]['decomposes_to'] is None:
                mpid = doc['task_id']
                break
        if mpid is None:
            print 'mp-id for {} not found'.format(host)
            continue

        print 'add host info for {}'.format(mpid)
        hdata = host_info[host].to_dict(into=RecursiveDict)
        for k in hdata.keys():
            v = hdata.pop(k)
            ks = k.split()
            if ks[0] not in hdata:
                hdata[ks[0]] = RecursiveDict()
            unit = ks[-1][1:-1] if ks[-1].startswith('[') else ''
            subkey = '_'.join(ks[1:-1] if unit else ks[1:]).split(',')[0]
            if subkey == "lattice_constant":
                unit = u'Å'
            try:
                hdata[ks[0]][subkey] = clean_value(v, unit.replace('angstrom', u'Å'))
            except ValueError:
                hdata[ks[0]][subkey] = v
        hdata['formula'] = host
        df = df_dct['{}-X'.format(host)]
        rows = list(isnull(df).any(1).nonzero()[0])
        if rows:
            cells = df.ix[rows].dropna(how='all').dropna(axis=1)[df.columns[0]]
            note = cells.iloc[0].replace('following', cells.iloc[1])[:-1]
            hdata['note'] = note
            df.drop(rows, inplace=True)
        mpfile.add_hierarchical_data(nest_dict(hdata, ['data']), identifier=mpid)

        print 'add table for D₀/Q data for {}'.format(mpid)
        df.set_index(df['Solute element number'], inplace=True)
        df.drop('Solute element number', axis=1, inplace=True)
        df.columns = df.ix[0]
        df.index.name = 'index'
        df.drop('Solute element name', inplace=True)
        df = df.T.reset_index()
        if str(host) == 'Fe':
            df_D0_Q = df[[
                'Solute element name', 'Solute D0, paramagnetic [cm^2/s]',
                'Solute Q, paramagnetic [eV]'
            ]]
        elif hdata['Host']['crystal_structure'] == 'HCP':
            df_D0_Q = df[['Solute element name', 'Solute D0 basal [cm^2/s]', 'Solute Q basal [eV]']]
        else:
            df_D0_Q = df[['Solute element name', 'Solute D0 [cm^2/s]', 'Solute Q [eV]']]
        df_D0_Q.columns = ['El.', 'D₀ [cm²/s]', 'Q [eV]']
        mpfile.add_data_table(mpid, df_D0_Q, 'D₀_Q')

        if hdata['Host']['crystal_structure'] == 'BCC':

            print 'add table for hop activation barriers for {} (BCC)'.format(mpid)
            columns_E = [
                'Hop activation barrier, E_{} [eV]'.format(i) for i in range(2,5)
            ] + [
                "Hop activation barrier, E'_{} [eV]".format(i) for i in range(3,5)
            ] + [
                "Hop activation barrier, E''_{} [eV]".format(i) for i in range(3,5)
            ] + [
                'Hop activation barrier, E_{} [eV]'.format(i) for i in range(5,7)
            ]
            df_E = df[['Solute element name'] + columns_E]
            df_E.columns = ['El.'] + [
                'E{} [eV]'.format(i) for i in ['₂', '₃', '₄']
            ] + [
                'E`{} [eV]'.format(i) for i in ['₃', '₄']
            ] + [
                'E``{} [eV]'.format(i) for i in ['₃', '₄']
            ] + [
                'E{} [eV]'.format(i) for i in ['₅', '₆']
            ]
            mpfile.add_data_table(mpid, df_E, 'hop_activation_barriers')

            print 'add table for hop attempt frequencies for {} (BCC)'.format(mpid)
            columns_v = [
                'Hop attempt frequency, v_{} [THz]'.format(i) for i in range(2,5)
            ] + [
                "Hop attempt frequency, v'_{} [THz]".format(i) for i in range(3,5)
            ] + [
                "Hop attempt frequency, v''_{} [THz]".format(i) for i in range(3,5)
            ] + [
                'Hop attempt frequency, v_{} [THz]'.format(i) for i in range(5,7)
            ]
            df_v = df[['Solute element name'] + columns_v]
            df_v.columns = ['El.'] + [
                'v{} [THz]'.format(i) for i in ['₂', '₃', '₄']
            ] + [
                'v``{} [THz]'.format(i) for i in ['₃', '₄']
            ] + [
                'v``{} [THz]'.format(i) for i in ['₃', '₄']
            ] + [
                'v{} [THz]'.format(i) for i in ['₅', '₆']
            ]
            mpfile.add_data_table(mpid, df_v, 'hop_attempt_frequencies')

        elif hdata['Host']['crystal_structure'] == 'FCC':

            print 'add table for hop activation barriers for {} (FCC)'.format(mpid)
            columns_E = ['Hop activation barrier, E_{} [eV]'.format(i) for i in range(5)]
            df_E = df[['Solute element name'] + columns_E]
            df_E.columns = ['El.'] + ['E{} [eV]'.format(i) for i in ['₀', '₁', '₂', '₃', '₄']]
            mpfile.add_data_table(mpid, df_E, 'hop_activation_barriers')

            print 'add table for hop attempt frequencies for {} (FCC)'.format(mpid)
            columns_v = ['Hop attempt frequency, v_{} [THz]'.format(i) for i in range(5)]
            df_v = df[['Solute element name'] + columns_v]
            df_v.columns = ['El.'] + ['v{} [THz]'.format(i) for i in ['₀', '₁', '₂', '₃', '₄']]
            mpfile.add_data_table(mpid, df_v, 'hop_attempt_frequencies')

        elif hdata['Host']['crystal_structure'] == 'HCP':

            print 'add table for hop activation barriers for {} (HCP)'.format(mpid)
            columns_E = [
                "Hop activation barrier, E_X [eV]", "Hop activation barrier, E'_X [eV]",
                "Hop activation barrier, E_a [eV]", "Hop activation barrier, E'_a [eV]",
                "Hop activation barrier, E_b [eV]", "Hop activation barrier, E'_b [eV]",
                "Hop activation barrier, E_c [eV]", "Hop activation barrier, E'_c [eV]"
            ]
            df_E = df[['Solute element name'] + columns_E]
            df_E.columns = ['El.'] + [
                'Eₓ [eV]', 'E`ₓ [eV]', 'Eₐ [eV]', 'E`ₐ [eV]',
                'E_b [eV]', 'E`_b [eV]', 'Eꪱ [eV]', 'E`ꪱ [eV]'
            ]
            mpfile.add_data_table(mpid, df_E, 'hop_activation_barriers')

            print 'add table for hop attempt frequencies for {} (HCP)'.format(mpid)
            columns_v = ['Hop attempt frequency, v_a [THz]'] + ['Hop attempt frequency, v_X [THz]']
            df_v = df[['Solute element name'] + columns_v]
            df_v.columns = ['El.'] + ['vₐ [THz]'] + ['vₓ [THz]']
            mpfile.add_data_table(mpid, df_v, 'hop_attempt_frequencies')

            print mpfile
    print 'DONE'
Esempio n. 35
0
    "3m", "6", "-6", "622", "6mm", "-6m2", "23", "432", "-43m"
]

#find centro and non-centro materials based on pt grps
cen_data = []
for item in centrosymm:
    cen_data.append(
        mpr.query(criteria={
            "has": {
                "$all": ["diel", "elasticity"]
            },
            "band_gap": {
                "$gt": 0.5
            },
            "spacegroup.point_group": {
                "$all": [item]
            },
            "e_above_hull": {
                "$lt": 0.1
            },
            "nelements": {
                "$gt": 1
            }
        },
                  properties=["diel.e_total"]))

i = 0
print()
print()
print("centrosymmetric structures:")
for item in cen_data:
    print("point group %s, len: %i" % (centrosymm[i], len(item)))
Esempio n. 36
0
for comp in comps:
    print(comp)
    try:
        entries = mpr.get_entries_in_chemsys(comp)
    except:
        continue
    if len(entries) == 0:
        continue
#    pd = PhaseDiagram(entries)
#    data = collections.defaultdict(list)
    for e in entries:
        com = e.entry_id
        prop = mpr.query(criteria={"task_id": com}, properties=[\
        "formation_energy_per_atom", \
        "energy_per_atom", \
        "spacegroup", \
        "pretty_formula", \
        "cif"])

        form_energy = prop[0]['formation_energy_per_atom']
        energy = prop[0]['energy_per_atom']
        sp = prop[0]['spacegroup']['symbol']
        name = prop[0]['pretty_formula']
        struct = prop[0]['cif']
        cif_name = './structure/' + com + '_' + name + '.cif'
        Comps.add_component(name, energy, sp, struct, cif_name)

        fcif = open(cif_name, 'w')
        fcif.write(struct)
        fcif.close()
Comps.get_formation_energy()
MATERIAL_API_KEY = os.getenv('MATERIAL_API_KEY')

mpr = MPRester(MATERIAL_API_KEY)
mpid_list = []

with open('mpid_list.csv', 'r') as f:
    reader = csv.reader(f, delimiter=',')
    for line in reader:
        mpid = line[0]
        mpid_list.append(mpid)

len(mpid_list)  # 243

###############################################################################
entries_from_list = mpr.query(criteria={"material_id": {
    "$in": mpid_list
}},
                              properties=["pretty_formula", "e_above_hull"])
len(entries_from_list)  # 243

entries = sorted(entries_from_list, key=lambda e: e['e_above_hull'])

###############################################################################

createFolder('models')

# insert the number of index for modeling here
num_ini = 30
num_fin = 35

with open('models/adsorbate_modeling_%03d_%03d.log' % (num_ini + 1, num_fin),
          'w') as f:
Esempio n. 38
0
# This script performs a blanket search for all systems with elasticity data. 

from pymatgen import MPRester
import numpy as np
import os
key = os.environ['MAPI_KEY']

# Assuming you've done `export MAPI_KEY="USER_API_KEY"` at the command line
# See materialsproject.org/dashboard to get your API key
m = MPRester(key)
data = m.query(criteria={"elasticity": {"$exists": True}},
                         properties=["pretty_formula", "elasticity.elastic_tensor"])



Esempio n. 39
0
import pandas as pd
import matplotlib.pyplot as plt
import csv
import multiprocessing as mp
import pickle
import tqdm
import time

mat_api_key = 'JWV6Fi4f6VfxROtHO2uP'

mpr = MPRester(mat_api_key)

print("Loading Compounds....")
all_compounds = mpr.query({},
                          properties=[
                              "task_id", "pretty_formula", 'e_above_hull',
                              'elements', 'volume',
                              'formation_energy_per_atom', 'band_gap'
                          ])

criteria = float(input("Enter Stable Phase Criteria in meV: "))


def find_stable_phases(compound):
    '''
    find all compounds with e_above_hull within given range of zero
    '''
    if abs(compound['e_above_hull']) < criteria / 1000:
        return compound


print('Finding Stable Phases....')
Esempio n. 40
0
# Assuming you've done `export MAPI_KEY="USER_API_KEY"` at the command line
# See materialsproject.org/dashboard to get your API key

from pymatgen import MPRester
import numpy as np
import os
key = os.environ['MAPI_KEY']
m = MPRester(key)


e_cutoff = m.query("mp-46", 
	["elasticity.calculations.energy_cutoff"])[0]['elasticity.calculations.energy_cutoff'] # units (eV)

file = open("INCAR", "w")
file.write("LWAVE = .FALSE.\n")
file.write("LCHARG= .FALSE.\n")
file.write("PREC    = Accurate\n")
file.write("LREAL   = AUTO\n")
file.write("ADDGRID = .TRUE.\n")
file.write("POTIM   = 0.1\n")
file.write("SIGMA   = 0.05\n")
file.write("IBRION  = 2\n")
file.write("NSW     = 100\n")
file.write("ENCUT   ={0:3d}\n".format(int(e_cutoff)))
file.write("EDIFF   = 1e-8\n")
file.write("EDIFFG  = -1e-3\n")
file.write("ISIF    = 3\n")
file.close()

Esempio n. 41
0
    MP_KEY = 'cRelC34nhXp1wf5H'
    mp_dr = MPRester(MP_KEY)
    # query
    criteria = {
        "nelements": {
            "$gte": 1
        },
        "band_gap": {
            "$gt": 0
        },
        "e_above_hull": {
            "$lt": 0.000001
        },
    }
    # property
    properties = ['material_id', 'band_gap', 'cif']
    data = mp_dr.query(criteria=criteria, properties=properties)
    list_id_and_band_gap = [[
        value['material_id'].strip("mp-"
                                   "vc-"), value['band_gap']
    ] for value in data]
    with open("data.csv", "w") as f:
        writer = csv.writer(f, lineterminator='\n')
        writer.writerows(list_id_and_band_gap)

    for value in data:
        with open("{}.cif".format(value['material_id'].strip("mp-"
                                                             "vc-")),
                  mode='w') as f:
            f.write(value['cif'])
Esempio n. 42
0
class MaterialsProjectImporter(DbImporter):
    """
    Database importer for the Materials Project.
    """

    _properties = 'structure'
    _supported_keywords = None

    def __init__(self, **kwargs):
        """
        Instantiate the MaterialsProjectImporter by setting up the Materials API (MAPI)
        connection details.
        """
        self.setup_db(**kwargs)

    def setup_db(self, **kwargs):
        """
        Setup the required parameters to the REST API
        """
        try:
            api_key = kwargs['api_key']
        except KeyError:
            try:
                api_key = os.environ['PMG_MAPI_KEY']
            except KeyError as exc:
                raise_from(
                    KeyError(
                        'API key not supplied and PMG_MAPI_KEY environment '
                        'variable not set. Either pass it when initializing the class, '
                        'or set the environment variable PMG_MAPI_KEY to your API key.'
                    ), exc)
            api_key = None

        self._api_key = api_key
        self._verify_api_key()
        self._mpr = MPRester(self._api_key)

    def _verify_api_key(self):
        """
        Verify the supplied API key by issuing a request to Materials Project.
        """
        response = requests.get(
            'https://www.materialsproject.org/rest/v1/api_check',
            headers={'X-API-KEY': self._api_key})
        response_content = response.json()  # a dict
        if 'error' in response_content:
            raise RuntimeError(response_content['error'])
        if not response_content['valid_response']:
            raise RuntimeError(
                'Materials Project did not give a valid response for the API key check.'
            )
        if not response_content['api_key_valid']:
            raise RuntimeError(
                'Your API key for Materials Project is not valid.')

    @property
    def api_key(self):
        """
        Return the API key configured for the importer
        """
        return self._api_key

    @property
    def properties(self):
        """
        Return the properties that will be queried
        """
        return self._properties

    @property
    def get_supported_keywords(self):
        """
        Returns the list of all supported query keywords

        :return: list of strings
        """
        return self._supported_keywords

    def query(self, **kwargs):
        """
        Query the database with a given dictionary of query parameters for a given properties

        :param query: a dictionary with the query parameters
        :param properties: the properties to query
        """
        try:
            query = kwargs['query']
        except AttributeError:
            raise AttributeError(
                'Make sure the supplied dictionary has `query` as a key. This '
                'should contain a dictionary with the right query needed.')
        try:
            properties = kwargs['properties']
        except AttributeError:
            raise AttributeError(
                'Make sure the supplied dictionary has `properties` as a key.')

        if not isinstance(query, dict):
            raise TypeError('The query argument should be a dictionary')

        if properties is None:
            properties = self._properties

        if properties != 'structure':
            raise ValueError('Unsupported properties: {}'.format(properties))

        results = []
        properties_list = ['material_id', 'cif']
        for entry in self._find(query, properties_list):
            results.append(entry)
        search_results = MaterialsProjectSearchResults(
            results, return_class=MaterialsProjectCifEntry)

        return search_results

    def _find(self, query, properties):
        """
        Query the database with a given dictionary of query parameters

        :param query: a dictionary with the query parameters
        """
        for entry in self._mpr.query(criteria=query, properties=properties):
            yield entry
Esempio n. 43
0
def get_tensor(name):
	m = MPRester(key)
	tensor = m.query(criteria={"elasticity": {"$exists": True}, "pretty_formula": name},
                         properties=["elasticity.elastic_tensor"])
	return tensor