Esempio n. 1
0
def get_hessian_of_constraint(constraint, wrt1=None, wrt2=None, nlp=None):
    constraints = [constraint]
    if wrt1 is None and wrt2 is None:
        variables = list(
            identify_variables(constraint.expr, include_fixed=False))
        wrt1 = variables
        wrt2 = variables
    elif wrt1 is not None and wrt2 is not None:
        variables = wrt1 + wrt2
    elif wrt1 is not None:  # but wrt2 is None
        wrt2 = wrt1
        variables = wrt1
    else:
        # wrt2 is not None and wrt1 is None
        wrt1 = wrt2
        variables = wrt1

    if nlp is None:
        block = create_subsystem_block(constraints, variables=variables)
        # Could fix input_vars so I don't evaluate the Hessian with respect
        # to variables I don't care about...

        # HUGE HACK: Variables not included in a constraint are not written
        # to the nl file, so we cannot take the derivative with respect to
        # them, even though we know this derivative is zero. To work around,
        # we make sure all variables appear on the block in the form of a
        # dummy constraint. Then we can take derivatives of any constraint
        # with respect to them. Conveniently, the extract_submatrix_
        # call deals with extracting the variables and constraint we care
        # about, in the proper order.
        block._dummy_var = Var()
        block._dummy_con = Constraint(expr=sum(variables) == block._dummy_var)
        block._obj = Objective(expr=0.0)
        nlp = PyomoNLP(block)

    saved_duals = nlp.get_duals()
    saved_obj_factor = nlp.get_obj_factor()
    temp_duals = np.zeros(len(saved_duals))

    # NOTE: This makes some assumption about how the Lagrangian is constructed.
    # TODO: Define the convention we assume and convert if necessary.
    idx = nlp.get_constraint_indices(constraints)[0]
    temp_duals[idx] = 1.0
    nlp.set_duals(temp_duals)
    nlp.set_obj_factor(0.0)

    # NOTE: The returned matrix preserves explicit zeros. I.e. it contains
    # coordinates for every entry that could possibly be nonzero.
    submatrix = nlp.extract_submatrix_hessian_lag(wrt1, wrt2)

    nlp.set_obj_factor(saved_obj_factor)
    nlp.set_duals(saved_duals)
    return submatrix
Esempio n. 2
0
    def calculate_duals(self):
        """Get duals of the current model

        :return: self.duals
        :rtype: dict
        """

        # For testing - very slow and should not be used!
        if self.kkt_method == 'pynumero':

            nlp = PyomoNLP(self.model_object)
            varList = nlp.get_pyomo_variables()
            conList = nlp.get_pyomo_constraints()
            duals = nlp.get_duals()

            J = nlp.extract_submatrix_jacobian(pyomo_variables=varList,
                                               pyomo_constraints=conList)
            H = nlp.extract_submatrix_hessian_lag(pyomo_variables_rows=varList,
                                                  pyomo_variables_cols=varList)
            J = csc_matrix(J)

            var_index_names = [v.name for v in varList]
            con_index_names = [v.name for v in conList]

            dummy_constraints = [
                f'{self.global_constraint_name}[{k}]'
                for k in self.parameter_set
            ]
            jac_row_ind = [con_index_names.index(d) for d in dummy_constraints]
            duals_imp = [duals[i] for i in jac_row_ind]

            self.duals = dict(zip(self.parameter_set, duals_imp))
            if self.verbose:
                print(f'The pynumero results are:')
                print(self.duals)

        else:

            self.duals = {
                key: self.model_object.dual[getattr(
                    self.model_object, self.global_constraint_name)[key]]
                for key, val in getattr(self.model_object,
                                        self.global_param_name).items()
            }

            if self.verbose:
                print('The duals are:')
                print(self.duals)

        self.delete_sol_files()

        return self.duals
def _get_kkt_matrix(model):
    """This uses pynumero to get the Hessian and Jacobian in order to build the
    KKT matrix
    
    Args:
        model (pyomo ConcreteModel): the current model used in the inner 
            problem optimization
            
    Returns:
        KKT (pandas.DataFrame): KKT matrix for the current iteration
        
        var_index_names (list): list of variable names
        
        con_index_names (list): list of constraint names
    
    """
    nlp = PyomoNLP(model)
    varList = nlp.get_pyomo_variables()
    conList = nlp.get_pyomo_constraints()
    duals = nlp.get_duals()
    
    J = nlp.extract_submatrix_jacobian(pyomo_variables=varList, pyomo_constraints=conList)
    H = nlp.extract_submatrix_hessian_lag(pyomo_variables_rows=varList, pyomo_variables_cols=varList)
    
    var_index_names = [v.name for v in varList]
    con_index_names = [v.name for v in conList]

    J_df = pd.DataFrame(J.todense(), columns=var_index_names, index=con_index_names)
    H_df = pd.DataFrame(H.todense(), columns=var_index_names, index=var_index_names)
    
    var_index_names = pd.DataFrame(var_index_names)
    
    KKT_up = pd.merge(H_df, J_df.transpose(), left_index=True, right_index=True)
    KKT = pd.concat((KKT_up, J_df))
    KKT = KKT.fillna(0)
    
    return KKT, var_index_names, con_index_names
Esempio n. 4
0
    def test_compare_evaluations(self):
        A1 = 5
        A2 = 10
        c1 = 3
        c2 = 4
        N = 6
        dt = 1

        m = create_pyomo_model(A1, A2, c1, c2, N, dt)
        solver = pyo.SolverFactory('ipopt')
        solver.options['linear_solver'] = 'mumps'
        status = solver.solve(m, tee=False)
        m_nlp = PyomoNLP(m)

        mex = create_pyomo_external_grey_box_model(A1, A2, c1, c2, N, dt)
        # mex_nlp = PyomoGreyBoxNLP(mex)
        mex_nlp = PyomoNLPWithGreyBoxBlocks(mex)

        # get the variable and constraint order and create the maps
        # reliable order independent comparisons
        m_x_order = m_nlp.primals_names()
        m_c_order = m_nlp.constraint_names()
        mex_x_order = mex_nlp.primals_names()
        mex_c_order = mex_nlp.constraint_names()

        x1list = [
            'h1[0]', 'h1[1]', 'h1[2]', 'h1[3]', 'h1[4]', 'h1[5]', 'h2[0]',
            'h2[1]', 'h2[2]', 'h2[3]', 'h2[4]', 'h2[5]', 'F1[1]', 'F1[2]',
            'F1[3]', 'F1[4]', 'F1[5]', 'F2[1]', 'F2[2]', 'F2[3]', 'F2[4]',
            'F2[5]', 'F12[0]', 'F12[1]', 'F12[2]', 'F12[3]', 'F12[4]',
            'F12[5]', 'Fo[0]', 'Fo[1]', 'Fo[2]', 'Fo[3]', 'Fo[4]', 'Fo[5]'
        ]
        x2list = [
            'egb.inputs[h1_0]', 'egb.inputs[h1_1]', 'egb.inputs[h1_2]',
            'egb.inputs[h1_3]', 'egb.inputs[h1_4]', 'egb.inputs[h1_5]',
            'egb.inputs[h2_0]', 'egb.inputs[h2_1]', 'egb.inputs[h2_2]',
            'egb.inputs[h2_3]', 'egb.inputs[h2_4]', 'egb.inputs[h2_5]',
            'egb.inputs[F1_1]', 'egb.inputs[F1_2]', 'egb.inputs[F1_3]',
            'egb.inputs[F1_4]', 'egb.inputs[F1_5]', 'egb.inputs[F2_1]',
            'egb.inputs[F2_2]', 'egb.inputs[F2_3]', 'egb.inputs[F2_4]',
            'egb.inputs[F2_5]', 'egb.outputs[F12_0]', 'egb.outputs[F12_1]',
            'egb.outputs[F12_2]', 'egb.outputs[F12_3]', 'egb.outputs[F12_4]',
            'egb.outputs[F12_5]', 'egb.outputs[Fo_0]', 'egb.outputs[Fo_1]',
            'egb.outputs[Fo_2]', 'egb.outputs[Fo_3]', 'egb.outputs[Fo_4]',
            'egb.outputs[Fo_5]'
        ]
        x1_x2_map = dict(zip(x1list, x2list))
        x1idx_x2idx_map = {
            i: mex_x_order.index(x1_x2_map[m_x_order[i]])
            for i in range(len(m_x_order))
        }

        c1list = [
            'h1bal[1]', 'h1bal[2]', 'h1bal[3]', 'h1bal[4]', 'h1bal[5]',
            'h2bal[1]', 'h2bal[2]', 'h2bal[3]', 'h2bal[4]', 'h2bal[5]',
            'F12con[0]', 'F12con[1]', 'F12con[2]', 'F12con[3]', 'F12con[4]',
            'F12con[5]', 'Focon[0]', 'Focon[1]', 'Focon[2]', 'Focon[3]',
            'Focon[4]', 'Focon[5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c2list = [
            'egb.h1bal_1', 'egb.h1bal_2', 'egb.h1bal_3', 'egb.h1bal_4',
            'egb.h1bal_5', 'egb.h2bal_1', 'egb.h2bal_2', 'egb.h2bal_3',
            'egb.h2bal_4', 'egb.h2bal_5', 'egb.output_constraints[F12_0]',
            'egb.output_constraints[F12_1]', 'egb.output_constraints[F12_2]',
            'egb.output_constraints[F12_3]', 'egb.output_constraints[F12_4]',
            'egb.output_constraints[F12_5]', 'egb.output_constraints[Fo_0]',
            'egb.output_constraints[Fo_1]', 'egb.output_constraints[Fo_2]',
            'egb.output_constraints[Fo_3]', 'egb.output_constraints[Fo_4]',
            'egb.output_constraints[Fo_5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c1_c2_map = dict(zip(c1list, c2list))
        c1idx_c2idx_map = {
            i: mex_c_order.index(c1_c2_map[m_c_order[i]])
            for i in range(len(m_c_order))
        }

        # get the primals from m and put them in the correct order for mex
        m_x = m_nlp.get_primals()
        mex_x = np.zeros(len(m_x))
        for i in range(len(m_x)):
            mex_x[x1idx_x2idx_map[i]] = m_x[i]

        # get the duals from m and put them in the correct order for mex
        m_lam = m_nlp.get_duals()
        mex_lam = np.zeros(len(m_lam))
        for i in range(len(m_x)):
            mex_lam[c1idx_c2idx_map[i]] = m_lam[i]

        mex_nlp.set_primals(mex_x)
        mex_nlp.set_duals(mex_lam)

        m_obj = m_nlp.evaluate_objective()
        mex_obj = mex_nlp.evaluate_objective()
        self.assertAlmostEqual(m_obj, mex_obj, places=4)

        m_gobj = m_nlp.evaluate_grad_objective()
        mex_gobj = mex_nlp.evaluate_grad_objective()
        check_vectors_specific_order(self, m_gobj, m_x_order, mex_gobj,
                                     mex_x_order, x1_x2_map)

        m_c = m_nlp.evaluate_constraints()
        mex_c = mex_nlp.evaluate_constraints()
        check_vectors_specific_order(self, m_c, m_c_order, mex_c, mex_c_order,
                                     c1_c2_map)

        m_j = m_nlp.evaluate_jacobian()
        mex_j = mex_nlp.evaluate_jacobian().todense()
        check_sparse_matrix_specific_order(self, m_j, m_c_order, m_x_order,
                                           mex_j, mex_c_order, mex_x_order,
                                           c1_c2_map, x1_x2_map)

        m_h = m_nlp.evaluate_hessian_lag()
        mex_h = mex_nlp.evaluate_hessian_lag()
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)

        mex_h = 0 * mex_h
        mex_nlp.evaluate_hessian_lag(out=mex_h)
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)
Esempio n. 5
0
    def get_kkt_info(self):
        """Takes the model and uses PyNumero to get the jacobian and Hessian
        information as dataframes
        
        Args:
            model_object (pyomo ConcreteModel): A pyomo model instance of the current
                problem (used in calculating the reduced Hessian)
    
            method (str): defaults to k_aug, method by which to obtain optimization
                results
    
        Returns:
            
            kkt_data (dict): dictionary with the following structure:
                
                    {
                    'J': J,   # Jacobian
                    'H': H,   # Hessian
                    'var_ind': var_index_names, # Variable index
                    'con_ind': con_index_names, # Constraint index
                    'duals': duals, # Duals
                    }
            
        """
        self.get_file_info()

        if self.kkt_method == 'pynumero':

            nlp = PyomoNLP(self.model_object)
            varList = nlp.get_pyomo_variables()
            conList = nlp.get_pyomo_constraints()
            duals = nlp.get_duals()

            J = nlp.extract_submatrix_jacobian(pyomo_variables=varList,
                                               pyomo_constraints=conList)
            H = nlp.extract_submatrix_hessian_lag(pyomo_variables_rows=varList,
                                                  pyomo_variables_cols=varList)
            J = csc_matrix(J)

            var_index_names = [v.name for v in varList]
            con_index_names = [v.name for v in conList]

        elif self.kkt_method == 'k_aug':

            kaug = SolverFactory('k_aug')

            kaug.options["deb_kkt"] = ""
            kaug.solve(self.model_object, tee=False)

            hess = pd.read_csv('hess_debug.in',
                               delim_whitespace=True,
                               header=None,
                               skipinitialspace=True)
            hess.columns = ['irow', 'jcol', 'vals']
            hess.irow -= 1
            hess.jcol -= 1
            os.unlink('hess_debug.in')

            jac = pd.read_csv('jacobi_debug.in',
                              delim_whitespace=True,
                              header=None,
                              skipinitialspace=True)
            m = jac.iloc[0, 0]
            n = jac.iloc[0, 1]
            jac.drop(index=[0], inplace=True)
            jac.columns = ['irow', 'jcol', 'vals']
            jac.irow -= 1
            jac.jcol -= 1
            os.unlink('jacobi_debug.in')

            #try:
            #    duals = read_duals(stub + '.sol')
            #except:
            duals = None

            J = coo_matrix((jac.vals, (jac.irow, jac.jcol)), shape=(m, n))
            Hess_coo = coo_matrix((hess.vals, (hess.irow, hess.jcol)),
                                  shape=(n, n))
            H = Hess_coo + triu(Hess_coo, 1).T

            var_index_names = pd.read_csv(self.sol_files['col'],
                                          sep=';',
                                          header=None)  # dummy sep
            con_index_names = pd.read_csv(self.sol_files['row'],
                                          sep=';',
                                          header=None)  # dummy sep

            var_index_names = [var_name for var_name in var_index_names[0]]
            con_index_names = [
                con_name for con_name in con_index_names[0].iloc[:-1]
            ]
            con_index_number = {v: k for k, v in enumerate(con_index_names)}

        self.delete_sol_files()

        self.kkt_data = {
            'J': J,
            'H': H,
            'var_ind': var_index_names,
            'con_ind': con_index_names,
            'duals': duals,
        }

        return None
Esempio n. 6
0
    def get_kkt_info(self):
        """Takes the model and uses PyNumero or k_aug to get the jacobian and Hessian
        information as dataframes. This is done in place and does not return anything.

        kkt_data (dict): dictionary with the following structure:

                {
                'J': J,   # Jacobian
                'H': H,   # Hessian
                'var_ind': var_index_names, # Variable index
                'con_ind': con_index_names, # Constraint index
                'duals': duals, # Duals
                }

        :return: None

        """
        self.get_file_info()

        if self.kkt_method == 'pynumero':

            nlp = PyomoNLP(self.model_object)
            varList = nlp.get_pyomo_variables()
            conList = nlp.get_pyomo_constraints()
            duals = nlp.get_duals()

            J = nlp.extract_submatrix_jacobian(pyomo_variables=varList,
                                               pyomo_constraints=conList)
            H = nlp.extract_submatrix_hessian_lag(pyomo_variables_rows=varList,
                                                  pyomo_variables_cols=varList)
            J = csc_matrix(J)

            var_index_names = [v.name for v in varList]
            con_index_names = [v.name for v in conList]

        elif self.kkt_method == 'k_aug':

            kaug = SolverFactory('k_aug')

            kaug.options["print_kkt"] = ""
            kaug.solve(self.model_object, tee=True)

            kaug_files = Path('GJH')
            var_index_names = pd.read_csv(self.sol_files['col'],
                                          sep=';',
                                          header=None)  # dummy sep
            con_index_names = pd.read_csv(self.sol_files['row'],
                                          sep=';',
                                          header=None)  # dummy sep

            var_index_names = [var_name for var_name in var_index_names[0]]
            con_index_names = [
                con_name for con_name in con_index_names[0].iloc[:-1]
            ]
            # con_index_number = {v: k for k, v in enumerate(con_index_names)}

            n = len(var_index_names)
            m = len(con_index_names)

            print(f'size: vars: {n}, cons {m}')

            hess_file = kaug_files.joinpath('H_print.txt')
            hess = pd.read_csv(hess_file,
                               delim_whitespace=True,
                               header=None,
                               skipinitialspace=True)

            hess.columns = ['irow', 'jcol', 'vals']
            hess.irow -= 1
            hess.jcol -= 1
            # os.unlink(f'{kaug_files}hess_debug.in')

            jac_file = kaug_files.joinpath('A_print.txt')
            jac = pd.read_csv(jac_file,
                              delim_whitespace=True,
                              header=None,
                              skipinitialspace=True)

            jac.columns = ['irow', 'jcol', 'vals']
            jac.irow -= 1
            jac.jcol -= 1
            # os.unlink(f'{kaug_files}jacobi_debug.in')

            # try:
            #    duals = read_duals(stub + '.sol')
            # except:
            duals = None

            J = coo_matrix((jac.vals, (jac.jcol, jac.irow)), shape=(m, n))
            Hess_coo = coo_matrix((hess.vals, (hess.irow, hess.jcol)),
                                  shape=(n, n))
            H = Hess_coo + triu(Hess_coo, 1).T

            print('This sizes of H and J')
            print(H.shape)
            print(J.shape)

        self.delete_sol_files()

        self.kkt_data = {
            'J': J,
            'H': H,
            'var_ind': var_index_names,
            'con_ind': con_index_names,
            'duals': duals,
        }

        return None