Esempio n. 1
0
    def test_estimate_channel_multiple_rx(self):
        Nsc = 24
        size = Nsc
        Nr = 3  # Number of receive antennas
        num_taps_to_keep = 15

        cover_codes = [np.array([-1, 1]), np.array([1, 1])]
        user1_seq = DmrsUeSequence(RootSequence(root_index=25, size=size),
                                   1,
                                   cover_code=cover_codes[0])
        user2_seq = DmrsUeSequence(RootSequence(root_index=25, size=size),
                                   4,
                                   cover_code=cover_codes[0])

        ue1_channel_estimator = CazacBasedWithOCCChannelEstimator(user1_seq)

        speed_terminal = 3 / 3.6  # Speed in m/s
        fcDbl = 2.6e9  # Central carrier frequency (in Hz)
        subcarrier_bandwidth = 15e3  # Subcarrier bandwidth (in Hz)
        wave_length = 3e8 / fcDbl  # Carrier wave length
        Fd = speed_terminal / wave_length  # Doppler Frequency
        Ts = 1. / (Nsc * subcarrier_bandwidth)  # Sampling interval
        L = 16  # Number of jakes taps

        # Create the fading generators and set multiple receive antennas
        jakes1 = JakesSampleGenerator(Fd, Ts, L, shape=(Nr, 1))
        jakes2 = JakesSampleGenerator(Fd, Ts, L, shape=(Nr, 1))

        # Create a TDL channel object for each user
        tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx)
        tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx)

        # Generate channel that would corrupt the transmit signal.
        tdlchannel1.generate_impulse_response(1)
        tdlchannel2.generate_impulse_response(1)

        # Get the generated impulse response
        impulse_response1 = tdlchannel1.get_last_impulse_response()
        impulse_response2 = tdlchannel2.get_last_impulse_response()

        # Get the corresponding frequency response
        freq_resp_1 = impulse_response1.get_freq_response(Nsc)
        H1 = freq_resp_1[:, :, 0, 0].T
        freq_resp_2 = impulse_response2.get_freq_response(Nsc)
        H2 = freq_resp_2[:, :, 0, 0].T

        # Sequence of the users
        r1 = user1_seq.seq_array()
        r2 = user2_seq.seq_array()

        # Received signal (in frequency domain) of user 1
        Y1 = H1[:, np.newaxis, :] * r1[np.newaxis, :, :]
        Y2 = H2[:, np.newaxis, :] * r2[np.newaxis, :, :]
        Y = Y1 + Y2  # Dimension: `Nr x cover_code_size x num_elements`

        # Calculate expected estimated channel for user 1
        cover_code1 = cover_codes[0]
        Y_with_cover_code = \
            (cover_code1[0] * Y[:,0,:] + cover_code1[1] * Y[:,1,:]) / 2.0
        ":type: np.ndarray"

        r1_no_cover_code = r1[0] * cover_code1[0]

        y1 = np.fft.ifft(np.conj(r1_no_cover_code[np.newaxis]) *
                         Y_with_cover_code,
                         size,
                         axis=1)
        tilde_h1_espected = y1[:, 0:(num_taps_to_keep + 1)]
        tilde_H1_espected = np.fft.fft(tilde_h1_espected, Nsc, axis=1)

        # Test the CazacBasedWithOCCChannelEstimator estimation

        H1_estimated = ue1_channel_estimator.estimate_channel_freq_domain(
            Y, num_taps_to_keep, extra_dimension=True)
        np.testing.assert_array_almost_equal(H1_estimated, tilde_H1_espected)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H1 - tilde_H1_espected)
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.shape),
                                       decimal=2)
Esempio n. 2
0
    def test_estimate_channel_with_dmrs(self):
        Nsc = 24
        size = Nsc

        cover_codes = [np.array([-1, 1]), np.array([1, 1])]
        user1_seq = DmrsUeSequence(root_seq=RootSequence(root_index=17,
                                                         size=size),
                                   n_cs=1,
                                   cover_code=cover_codes[0])
        user2_seq = DmrsUeSequence(root_seq=RootSequence(root_index=17,
                                                         size=size),
                                   n_cs=4,
                                   cover_code=cover_codes[1])

        ue1_channel_estimator = CazacBasedWithOCCChannelEstimator(user1_seq)

        speed_terminal = 3 / 3.6  # Speed in m/s
        fcDbl = 2.6e9  # Central carrier frequency (in Hz)
        subcarrier_bandwidth = 15e3  # Subcarrier bandwidth (in Hz)
        wave_length = 3e8 / fcDbl  # Carrier wave length
        Fd = speed_terminal / wave_length  # Doppler Frequency
        Ts = 1. / (Nsc * subcarrier_bandwidth)  # Sampling interval
        L = 16  # Number of jakes taps

        jakes1 = JakesSampleGenerator(Fd, Ts, L)
        jakes2 = JakesSampleGenerator(Fd, Ts, L)

        # Create a TDL channel object for each user
        tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx)
        tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx)

        # Generate channel that would corrupt the transmit signal.
        tdlchannel1.generate_impulse_response(1)
        tdlchannel2.generate_impulse_response(1)

        # Get the generated impulse response
        impulse_response1 = tdlchannel1.get_last_impulse_response()
        impulse_response2 = tdlchannel2.get_last_impulse_response()

        # Get the corresponding frequency response
        freq_resp_1 = impulse_response1.get_freq_response(Nsc)
        H1 = freq_resp_1[:, 0]
        freq_resp_2 = impulse_response2.get_freq_response(Nsc)
        H2 = freq_resp_2[:, 0]

        # Sequence of the users
        r1 = user1_seq.seq_array()
        r2 = user2_seq.seq_array()

        # Received signal (in frequency domain) of user 1
        Y1 = H1 * r1
        Y2 = H2 * r2
        Y = Y1 + Y2

        # Calculate expected estimated channel for user 1
        cover_code1 = cover_codes[0]
        Y_with_cover_code = \
            (cover_code1[0] * Y[0] + cover_code1[1] * Y[1]) / 2.0
        ":type: np.ndarray"
        r1_no_cover_code = r1[0] * cover_code1[0]

        y1 = np.fft.ifft(np.conj(r1_no_cover_code) * Y_with_cover_code, size)
        tilde_h1 = y1[0:4]
        tilde_H1 = np.fft.fft(tilde_h1, Nsc)

        # Test the CazacBasedWithOCCChannelEstimator estimation
        np.testing.assert_array_almost_equal(
            ue1_channel_estimator.estimate_channel_freq_domain(
                Y, 3, extra_dimension=True), tilde_H1)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H1 - tilde_H1)
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.size),
                                       decimal=2)
Esempio n. 3
0
    def test_estimate_channel_without_comb_pattern(self):
        Nsc = 300  # 300 subcarriers
        size = Nsc  # The size is also 300, since there is no comb pattern
        Nzc = 139

        user1_seq = SrsUeSequence(
            RootSequence(root_index=25, size=size, Nzc=Nzc), 1)
        user2_seq = SrsUeSequence(
            RootSequence(root_index=25, size=size, Nzc=Nzc), 4)

        # Set size_multiplier to 1, since we won't use the comb pattern
        ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq,
                                                           size_multiplier=1)

        speed_terminal = 3 / 3.6  # Speed in m/s
        fcDbl = 2.6e9  # Central carrier frequency (in Hz)
        subcarrier_bandwidth = 15e3  # Subcarrier bandwidth (in Hz)
        wave_length = 3e8 / fcDbl  # Carrier wave length
        Fd = speed_terminal / wave_length  # Doppler Frequency
        Ts = 1. / (Nsc * subcarrier_bandwidth)  # Sampling interval
        L = 16  # Number of jakes taps

        jakes1 = JakesSampleGenerator(Fd, Ts, L)
        jakes2 = JakesSampleGenerator(Fd, Ts, L)

        # Create a TDL channel object for each user
        tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx)
        tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx)

        # Generate channel that would corrupt the transmit signal.
        tdlchannel1.generate_impulse_response(1)
        tdlchannel2.generate_impulse_response(1)

        # Get the generated impulse response
        impulse_response1 = tdlchannel1.get_last_impulse_response()
        impulse_response2 = tdlchannel2.get_last_impulse_response()

        # Get the corresponding frequency response
        freq_resp_1 = impulse_response1.get_freq_response(Nsc)
        H1 = freq_resp_1[:, 0]
        freq_resp_2 = impulse_response2.get_freq_response(Nsc)
        H2 = freq_resp_2[:, 0]

        # Sequence of the users
        r1 = user1_seq.seq_array()
        r2 = user2_seq.seq_array()

        # Received signal (in frequency domain) of user 1
        Y1 = H1 * r1
        Y2 = H2 * r2
        Y = Y1 + Y2

        # Calculate expected estimated channel for user 1
        y1 = np.fft.ifft(np.conj(r1) * Y, size)
        tilde_h1 = y1[0:16]
        tilde_H1 = np.fft.fft(tilde_h1, Nsc)

        # Test the CazacBasedChannelEstimator estimation
        np.testing.assert_array_almost_equal(
            ue1_channel_estimator.estimate_channel_freq_domain(Y, 15),
            tilde_H1)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H1[50:-50] - tilde_H1[50:-50])
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.size),
                                       decimal=2)
Esempio n. 4
0
    def test_estimate_channel_multiple_rx(self):
        Nsc = 300  # 300 subcarriers
        size = Nsc // 2
        Nzc = 139

        user1_seq = SrsUeSequence(RootSequence(root_index=25,
                                               size=size,
                                               Nzc=Nzc),
                                  1,
                                  normalize=True)
        user2_seq = SrsUeSequence(RootSequence(root_index=25,
                                               size=size,
                                               Nzc=Nzc),
                                  4,
                                  normalize=True)

        ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq)

        speed_terminal = 3 / 3.6  # Speed in m/s
        fcDbl = 2.6e9  # Central carrier frequency (in Hz)
        subcarrier_bandwidth = 15e3  # Subcarrier bandwidth (in Hz)
        wave_length = 3e8 / fcDbl  # Carrier wave length
        Fd = speed_terminal / wave_length  # Doppler Frequency
        Ts = 1. / (Nsc * subcarrier_bandwidth)  # Sampling interval
        L = 16  # Number of jakes taps

        # Create the fading generators and set multiple receive antennas
        jakes1 = JakesSampleGenerator(Fd, Ts, L, shape=(3, 1))
        jakes2 = JakesSampleGenerator(Fd, Ts, L, shape=(3, 1))

        # Create a TDL channel object for each user
        tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx)
        tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx)

        # Generate channel that would corrupt the transmit signal.
        tdlchannel1.generate_impulse_response(1)
        tdlchannel2.generate_impulse_response(1)

        # Get the generated impulse response
        impulse_response1 = tdlchannel1.get_last_impulse_response()
        impulse_response2 = tdlchannel2.get_last_impulse_response()

        # Get the corresponding frequency response
        freq_resp_1 = impulse_response1.get_freq_response(Nsc)
        H1 = freq_resp_1[:, :, 0, 0]
        freq_resp_2 = impulse_response2.get_freq_response(Nsc)
        H2 = freq_resp_2[:, :, 0, 0]

        # Sequence of the users
        r1 = user1_seq.seq_array()
        r2 = user2_seq.seq_array()

        # Received signal (in frequency domain) of user 1
        comb_indexes = np.arange(0, Nsc, 2)
        Y1 = H1[comb_indexes, :] * r1[:, np.newaxis]
        Y2 = H2[comb_indexes, :] * r2[:, np.newaxis]
        Y = Y1 + Y2

        # Calculate expected estimated channel for user 1
        y1 = np.fft.ifft(r1.size * np.conj(r1[:, np.newaxis]) * Y,
                         size,
                         axis=0)
        tilde_h1_espected = y1[0:16]
        tilde_H1_espected = np.fft.fft(tilde_h1_espected, Nsc, axis=0)

        # Test the CazacBasedChannelEstimator estimation
        H1_estimated = ue1_channel_estimator.estimate_channel_freq_domain(
            Y.T, 15)
        np.testing.assert_array_almost_equal(H1_estimated, tilde_H1_espected.T)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H1[50:-50, :] - tilde_H1_espected[50:-50, :])
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.shape),
                                       decimal=2)
Esempio n. 5
0
    def test_estimate_channel_with_srs(self):
        Nsc = 300  # 300 subcarriers
        size = Nsc // 2
        Nzc = 139

        user1_seq = SrsUeSequence(RootSequence(root_index=25,
                                               size=size,
                                               Nzc=Nzc),
                                  1,
                                  normalize=True)
        user2_seq = SrsUeSequence(RootSequence(root_index=25,
                                               size=size,
                                               Nzc=Nzc),
                                  4,
                                  normalize=True)

        ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq)
        ue2_channel_estimator = CazacBasedChannelEstimator(user2_seq)

        speed_terminal = 3 / 3.6  # Speed in m/s
        fcDbl = 2.6e9  # Central carrier frequency (in Hz)
        subcarrier_bandwidth = 15e3  # Subcarrier bandwidth (in Hz)
        wave_length = 3e8 / fcDbl  # Carrier wave length
        Fd = speed_terminal / wave_length  # Doppler Frequency
        Ts = 1. / (Nsc * subcarrier_bandwidth)  # Sampling interval
        L = 16  # Number of jakes taps

        jakes1 = JakesSampleGenerator(Fd, Ts, L)
        jakes2 = JakesSampleGenerator(Fd, Ts, L)

        # Create a TDL channel object for each user
        tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx)
        tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx)

        # Generate channel that would corrupt the transmit signal.
        tdlchannel1.generate_impulse_response(1)
        tdlchannel2.generate_impulse_response(1)

        # Get the generated impulse response
        impulse_response1 = tdlchannel1.get_last_impulse_response()
        impulse_response2 = tdlchannel2.get_last_impulse_response()

        # Get the corresponding frequency response
        freq_resp_1 = impulse_response1.get_freq_response(Nsc)
        H1 = freq_resp_1[:, 0]
        freq_resp_2 = impulse_response2.get_freq_response(Nsc)
        H2 = freq_resp_2[:, 0]

        # Sequence of the users
        r1 = user1_seq.seq_array()
        r2 = user2_seq.seq_array()

        # Received signal (in frequency domain) of user 1
        comb_indexes = np.arange(0, Nsc, 2)
        Y1 = H1[comb_indexes] * r1
        Y2 = H2[comb_indexes] * r2
        Y = Y1 + Y2

        # xxxxxxxxxx USER 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        # Calculate expected estimated channel for user 1
        y1 = np.fft.ifft(r1.size * np.conj(r1) * Y, size)
        tilde_h1 = y1[0:16]
        tilde_H1 = np.fft.fft(tilde_h1, Nsc)

        # Test the CazacBasedChannelEstimator estimation
        np.testing.assert_array_almost_equal(
            ue1_channel_estimator.estimate_channel_freq_domain(Y, 15),
            tilde_H1)

        # Check that the estimated channel and the True channel have similar
        # norms
        self.assertAlmostEqual(np.linalg.norm(
            ue1_channel_estimator.estimate_channel_freq_domain(Y, 15)),
                               np.linalg.norm(H1),
                               delta=0.5)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H1[50:-50] - tilde_H1[50:-50])
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.size),
                                       decimal=2)
        # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

        # xxxxxxxxxx USER 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        # Calculate expected estimated channel for user 2
        y2 = np.fft.ifft(r2.size * np.conj(r2) * Y, size)
        tilde_h2 = y2[0:16]
        tilde_H2 = np.fft.fft(tilde_h2, Nsc)

        # Test the CazacBasedChannelEstimator estimation
        np.testing.assert_array_almost_equal(
            ue2_channel_estimator.estimate_channel_freq_domain(Y, 15),
            tilde_H2)

        # Check that the estimated channel and the True channel have similar
        # norms
        self.assertAlmostEqual(np.linalg.norm(
            ue2_channel_estimator.estimate_channel_freq_domain(Y, 15)),
                               np.linalg.norm(H2),
                               delta=0.5)

        # Test if true channel and estimated channel are similar. Since the
        # channel estimation error is higher at the first and last
        # subcarriers we will test only the inner 200 subcarriers
        error = np.abs(H2[50:-50] - tilde_H2[50:-50])
        ":type: np.ndarray"

        np.testing.assert_almost_equal(error / 2.,
                                       np.zeros(error.size),
                                       decimal=2)