def test_estimate_channel_multiple_rx(self): Nsc = 24 size = Nsc Nr = 3 # Number of receive antennas num_taps_to_keep = 15 cover_codes = [np.array([-1, 1]), np.array([1, 1])] user1_seq = DmrsUeSequence(RootSequence(root_index=25, size=size), 1, cover_code=cover_codes[0]) user2_seq = DmrsUeSequence(RootSequence(root_index=25, size=size), 4, cover_code=cover_codes[0]) ue1_channel_estimator = CazacBasedWithOCCChannelEstimator(user1_seq) speed_terminal = 3 / 3.6 # Speed in m/s fcDbl = 2.6e9 # Central carrier frequency (in Hz) subcarrier_bandwidth = 15e3 # Subcarrier bandwidth (in Hz) wave_length = 3e8 / fcDbl # Carrier wave length Fd = speed_terminal / wave_length # Doppler Frequency Ts = 1. / (Nsc * subcarrier_bandwidth) # Sampling interval L = 16 # Number of jakes taps # Create the fading generators and set multiple receive antennas jakes1 = JakesSampleGenerator(Fd, Ts, L, shape=(Nr, 1)) jakes2 = JakesSampleGenerator(Fd, Ts, L, shape=(Nr, 1)) # Create a TDL channel object for each user tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx) tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx) # Generate channel that would corrupt the transmit signal. tdlchannel1.generate_impulse_response(1) tdlchannel2.generate_impulse_response(1) # Get the generated impulse response impulse_response1 = tdlchannel1.get_last_impulse_response() impulse_response2 = tdlchannel2.get_last_impulse_response() # Get the corresponding frequency response freq_resp_1 = impulse_response1.get_freq_response(Nsc) H1 = freq_resp_1[:, :, 0, 0].T freq_resp_2 = impulse_response2.get_freq_response(Nsc) H2 = freq_resp_2[:, :, 0, 0].T # Sequence of the users r1 = user1_seq.seq_array() r2 = user2_seq.seq_array() # Received signal (in frequency domain) of user 1 Y1 = H1[:, np.newaxis, :] * r1[np.newaxis, :, :] Y2 = H2[:, np.newaxis, :] * r2[np.newaxis, :, :] Y = Y1 + Y2 # Dimension: `Nr x cover_code_size x num_elements` # Calculate expected estimated channel for user 1 cover_code1 = cover_codes[0] Y_with_cover_code = \ (cover_code1[0] * Y[:,0,:] + cover_code1[1] * Y[:,1,:]) / 2.0 ":type: np.ndarray" r1_no_cover_code = r1[0] * cover_code1[0] y1 = np.fft.ifft(np.conj(r1_no_cover_code[np.newaxis]) * Y_with_cover_code, size, axis=1) tilde_h1_espected = y1[:, 0:(num_taps_to_keep + 1)] tilde_H1_espected = np.fft.fft(tilde_h1_espected, Nsc, axis=1) # Test the CazacBasedWithOCCChannelEstimator estimation H1_estimated = ue1_channel_estimator.estimate_channel_freq_domain( Y, num_taps_to_keep, extra_dimension=True) np.testing.assert_array_almost_equal(H1_estimated, tilde_H1_espected) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H1 - tilde_H1_espected) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.shape), decimal=2)
def test_estimate_channel_with_dmrs(self): Nsc = 24 size = Nsc cover_codes = [np.array([-1, 1]), np.array([1, 1])] user1_seq = DmrsUeSequence(root_seq=RootSequence(root_index=17, size=size), n_cs=1, cover_code=cover_codes[0]) user2_seq = DmrsUeSequence(root_seq=RootSequence(root_index=17, size=size), n_cs=4, cover_code=cover_codes[1]) ue1_channel_estimator = CazacBasedWithOCCChannelEstimator(user1_seq) speed_terminal = 3 / 3.6 # Speed in m/s fcDbl = 2.6e9 # Central carrier frequency (in Hz) subcarrier_bandwidth = 15e3 # Subcarrier bandwidth (in Hz) wave_length = 3e8 / fcDbl # Carrier wave length Fd = speed_terminal / wave_length # Doppler Frequency Ts = 1. / (Nsc * subcarrier_bandwidth) # Sampling interval L = 16 # Number of jakes taps jakes1 = JakesSampleGenerator(Fd, Ts, L) jakes2 = JakesSampleGenerator(Fd, Ts, L) # Create a TDL channel object for each user tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx) tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx) # Generate channel that would corrupt the transmit signal. tdlchannel1.generate_impulse_response(1) tdlchannel2.generate_impulse_response(1) # Get the generated impulse response impulse_response1 = tdlchannel1.get_last_impulse_response() impulse_response2 = tdlchannel2.get_last_impulse_response() # Get the corresponding frequency response freq_resp_1 = impulse_response1.get_freq_response(Nsc) H1 = freq_resp_1[:, 0] freq_resp_2 = impulse_response2.get_freq_response(Nsc) H2 = freq_resp_2[:, 0] # Sequence of the users r1 = user1_seq.seq_array() r2 = user2_seq.seq_array() # Received signal (in frequency domain) of user 1 Y1 = H1 * r1 Y2 = H2 * r2 Y = Y1 + Y2 # Calculate expected estimated channel for user 1 cover_code1 = cover_codes[0] Y_with_cover_code = \ (cover_code1[0] * Y[0] + cover_code1[1] * Y[1]) / 2.0 ":type: np.ndarray" r1_no_cover_code = r1[0] * cover_code1[0] y1 = np.fft.ifft(np.conj(r1_no_cover_code) * Y_with_cover_code, size) tilde_h1 = y1[0:4] tilde_H1 = np.fft.fft(tilde_h1, Nsc) # Test the CazacBasedWithOCCChannelEstimator estimation np.testing.assert_array_almost_equal( ue1_channel_estimator.estimate_channel_freq_domain( Y, 3, extra_dimension=True), tilde_H1) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H1 - tilde_H1) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.size), decimal=2)
def test_estimate_channel_without_comb_pattern(self): Nsc = 300 # 300 subcarriers size = Nsc # The size is also 300, since there is no comb pattern Nzc = 139 user1_seq = SrsUeSequence( RootSequence(root_index=25, size=size, Nzc=Nzc), 1) user2_seq = SrsUeSequence( RootSequence(root_index=25, size=size, Nzc=Nzc), 4) # Set size_multiplier to 1, since we won't use the comb pattern ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq, size_multiplier=1) speed_terminal = 3 / 3.6 # Speed in m/s fcDbl = 2.6e9 # Central carrier frequency (in Hz) subcarrier_bandwidth = 15e3 # Subcarrier bandwidth (in Hz) wave_length = 3e8 / fcDbl # Carrier wave length Fd = speed_terminal / wave_length # Doppler Frequency Ts = 1. / (Nsc * subcarrier_bandwidth) # Sampling interval L = 16 # Number of jakes taps jakes1 = JakesSampleGenerator(Fd, Ts, L) jakes2 = JakesSampleGenerator(Fd, Ts, L) # Create a TDL channel object for each user tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx) tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx) # Generate channel that would corrupt the transmit signal. tdlchannel1.generate_impulse_response(1) tdlchannel2.generate_impulse_response(1) # Get the generated impulse response impulse_response1 = tdlchannel1.get_last_impulse_response() impulse_response2 = tdlchannel2.get_last_impulse_response() # Get the corresponding frequency response freq_resp_1 = impulse_response1.get_freq_response(Nsc) H1 = freq_resp_1[:, 0] freq_resp_2 = impulse_response2.get_freq_response(Nsc) H2 = freq_resp_2[:, 0] # Sequence of the users r1 = user1_seq.seq_array() r2 = user2_seq.seq_array() # Received signal (in frequency domain) of user 1 Y1 = H1 * r1 Y2 = H2 * r2 Y = Y1 + Y2 # Calculate expected estimated channel for user 1 y1 = np.fft.ifft(np.conj(r1) * Y, size) tilde_h1 = y1[0:16] tilde_H1 = np.fft.fft(tilde_h1, Nsc) # Test the CazacBasedChannelEstimator estimation np.testing.assert_array_almost_equal( ue1_channel_estimator.estimate_channel_freq_domain(Y, 15), tilde_H1) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H1[50:-50] - tilde_H1[50:-50]) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.size), decimal=2)
def test_estimate_channel_multiple_rx(self): Nsc = 300 # 300 subcarriers size = Nsc // 2 Nzc = 139 user1_seq = SrsUeSequence(RootSequence(root_index=25, size=size, Nzc=Nzc), 1, normalize=True) user2_seq = SrsUeSequence(RootSequence(root_index=25, size=size, Nzc=Nzc), 4, normalize=True) ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq) speed_terminal = 3 / 3.6 # Speed in m/s fcDbl = 2.6e9 # Central carrier frequency (in Hz) subcarrier_bandwidth = 15e3 # Subcarrier bandwidth (in Hz) wave_length = 3e8 / fcDbl # Carrier wave length Fd = speed_terminal / wave_length # Doppler Frequency Ts = 1. / (Nsc * subcarrier_bandwidth) # Sampling interval L = 16 # Number of jakes taps # Create the fading generators and set multiple receive antennas jakes1 = JakesSampleGenerator(Fd, Ts, L, shape=(3, 1)) jakes2 = JakesSampleGenerator(Fd, Ts, L, shape=(3, 1)) # Create a TDL channel object for each user tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx) tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx) # Generate channel that would corrupt the transmit signal. tdlchannel1.generate_impulse_response(1) tdlchannel2.generate_impulse_response(1) # Get the generated impulse response impulse_response1 = tdlchannel1.get_last_impulse_response() impulse_response2 = tdlchannel2.get_last_impulse_response() # Get the corresponding frequency response freq_resp_1 = impulse_response1.get_freq_response(Nsc) H1 = freq_resp_1[:, :, 0, 0] freq_resp_2 = impulse_response2.get_freq_response(Nsc) H2 = freq_resp_2[:, :, 0, 0] # Sequence of the users r1 = user1_seq.seq_array() r2 = user2_seq.seq_array() # Received signal (in frequency domain) of user 1 comb_indexes = np.arange(0, Nsc, 2) Y1 = H1[comb_indexes, :] * r1[:, np.newaxis] Y2 = H2[comb_indexes, :] * r2[:, np.newaxis] Y = Y1 + Y2 # Calculate expected estimated channel for user 1 y1 = np.fft.ifft(r1.size * np.conj(r1[:, np.newaxis]) * Y, size, axis=0) tilde_h1_espected = y1[0:16] tilde_H1_espected = np.fft.fft(tilde_h1_espected, Nsc, axis=0) # Test the CazacBasedChannelEstimator estimation H1_estimated = ue1_channel_estimator.estimate_channel_freq_domain( Y.T, 15) np.testing.assert_array_almost_equal(H1_estimated, tilde_H1_espected.T) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H1[50:-50, :] - tilde_H1_espected[50:-50, :]) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.shape), decimal=2)
def test_estimate_channel_with_srs(self): Nsc = 300 # 300 subcarriers size = Nsc // 2 Nzc = 139 user1_seq = SrsUeSequence(RootSequence(root_index=25, size=size, Nzc=Nzc), 1, normalize=True) user2_seq = SrsUeSequence(RootSequence(root_index=25, size=size, Nzc=Nzc), 4, normalize=True) ue1_channel_estimator = CazacBasedChannelEstimator(user1_seq) ue2_channel_estimator = CazacBasedChannelEstimator(user2_seq) speed_terminal = 3 / 3.6 # Speed in m/s fcDbl = 2.6e9 # Central carrier frequency (in Hz) subcarrier_bandwidth = 15e3 # Subcarrier bandwidth (in Hz) wave_length = 3e8 / fcDbl # Carrier wave length Fd = speed_terminal / wave_length # Doppler Frequency Ts = 1. / (Nsc * subcarrier_bandwidth) # Sampling interval L = 16 # Number of jakes taps jakes1 = JakesSampleGenerator(Fd, Ts, L) jakes2 = JakesSampleGenerator(Fd, Ts, L) # Create a TDL channel object for each user tdlchannel1 = TdlChannel(jakes1, channel_profile=COST259_TUx) tdlchannel2 = TdlChannel(jakes2, channel_profile=COST259_TUx) # Generate channel that would corrupt the transmit signal. tdlchannel1.generate_impulse_response(1) tdlchannel2.generate_impulse_response(1) # Get the generated impulse response impulse_response1 = tdlchannel1.get_last_impulse_response() impulse_response2 = tdlchannel2.get_last_impulse_response() # Get the corresponding frequency response freq_resp_1 = impulse_response1.get_freq_response(Nsc) H1 = freq_resp_1[:, 0] freq_resp_2 = impulse_response2.get_freq_response(Nsc) H2 = freq_resp_2[:, 0] # Sequence of the users r1 = user1_seq.seq_array() r2 = user2_seq.seq_array() # Received signal (in frequency domain) of user 1 comb_indexes = np.arange(0, Nsc, 2) Y1 = H1[comb_indexes] * r1 Y2 = H2[comb_indexes] * r2 Y = Y1 + Y2 # xxxxxxxxxx USER 1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Calculate expected estimated channel for user 1 y1 = np.fft.ifft(r1.size * np.conj(r1) * Y, size) tilde_h1 = y1[0:16] tilde_H1 = np.fft.fft(tilde_h1, Nsc) # Test the CazacBasedChannelEstimator estimation np.testing.assert_array_almost_equal( ue1_channel_estimator.estimate_channel_freq_domain(Y, 15), tilde_H1) # Check that the estimated channel and the True channel have similar # norms self.assertAlmostEqual(np.linalg.norm( ue1_channel_estimator.estimate_channel_freq_domain(Y, 15)), np.linalg.norm(H1), delta=0.5) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H1[50:-50] - tilde_H1[50:-50]) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.size), decimal=2) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx USER 2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Calculate expected estimated channel for user 2 y2 = np.fft.ifft(r2.size * np.conj(r2) * Y, size) tilde_h2 = y2[0:16] tilde_H2 = np.fft.fft(tilde_h2, Nsc) # Test the CazacBasedChannelEstimator estimation np.testing.assert_array_almost_equal( ue2_channel_estimator.estimate_channel_freq_domain(Y, 15), tilde_H2) # Check that the estimated channel and the True channel have similar # norms self.assertAlmostEqual(np.linalg.norm( ue2_channel_estimator.estimate_channel_freq_domain(Y, 15)), np.linalg.norm(H2), delta=0.5) # Test if true channel and estimated channel are similar. Since the # channel estimation error is higher at the first and last # subcarriers we will test only the inner 200 subcarriers error = np.abs(H2[50:-50] - tilde_H2[50:-50]) ":type: np.ndarray" np.testing.assert_almost_equal(error / 2., np.zeros(error.size), decimal=2)