def plot_costmaps():
    workspace = sample_circle_workspaces(nb_circles=4)
    grid_sparse = workspace.box.stacked_meshgrid(24)
    grid_dense = workspace.box.stacked_meshgrid(100)
    extent = workspace.box.extent_data()
    sdf = SignedDistanceWorkspaceMap(workspace)

    viewer = WorkspaceDrawer(workspace,
                             wait_for_keyboard=True,
                             rows=1,
                             cols=2,
                             scale=1.)

    viewer.set_drawing_axis(0)
    viewer.set_workspace(workspace)
    viewer.draw_ws_img(sdf(grid_dense).T)
    viewer.draw_ws_obstacles()

    viewer.set_drawing_axis(1)
    viewer.set_workspace(workspace)
    viewer.draw_ws_img(sdf(grid_sparse).T)
    viewer.draw_ws_obstacles()

    viewer.show_once()
Esempio n. 2
0
vx = RegressedPixelGridSpline(U.T, grid_sparse.resolution, grid_sparse.extent)
vy = RegressedPixelGridSpline(V.T, grid_sparse.resolution, grid_sparse.extent)
for i, j in itertools.product(range(X.shape[0]), range(X.shape[1])):
    p = np.array([X[i, j], Y[i, j]])
    vxx = vx.gradient(p)[0]
    vyy = vy.gradient(p)[1]
    div[i, j] = vxx + vyy

for i in range(iterations):
    if ROWS * COLS == 1 and i < iterations - 1:
        continue
    print("plot..")
    p_source = grid_sparse.world_to_grid(x_source)
    p = grid_sparse.grid_to_world(p_source)
    phi = phi.T
    phi = hd.distance(U, V, div, 1. / N).T
    renderer.set_drawing_axis(i)
    renderer.draw_ws_obstacles()
    renderer.draw_ws_point(p, color='r', shape='o')
    renderer.background_matrix_eval = False
    renderer.draw_ws_img(phi, interpolate="bicubic", color_style=plt.cm.hsv)
    f = RegressedPixelGridSpline(phi, grid_sparse.resolution,
                                 grid_sparse.extent)
    for i, j in itertools.product(range(X.shape[0]), range(X.shape[1])):
        g = f.gradient(np.array([X[i, j], Y[i, j]]))
        g /= np.linalg.norm(g)
        U[i, j] = g[0]
        V[i, j] = g[1]
    renderer._ax.quiver(X, Y, U, V, units='width')
renderer.show()
circles.append(Circle(origin=[.1, .25], radius=0.05))
circles.append(Circle(origin=[.2, .25], radius=0.05))
circles.append(Circle(origin=[.0, .25], radius=0.05))
circles.append(Circle(origin=[-.2, 0], radius=0.1))
workspace = Workspace()
workspace.obstacles = circles
X, Y = workspace.box.meshgrid(N)
occ = occupancy_map(N, workspace)
f = sdf(occ).T
U = -1 * np.gradient(f.T, axis=0).T
V = -1 * np.gradient(f.T, axis=1).T
phi = hd.distance_from_gradient(U, V, 1. / N, f)
phi -= phi.min()  # set min to 0 for comparison
f -= f.min()
# d = np.linalg.norm(phi - f)
# print(d)
renderer = WorkspaceDrawer(workspace, rows=1, cols=2)
renderer.set_drawing_axis(0)
renderer.draw_ws_obstacles()
renderer.draw_ws_img(sdf(occupancy_map(100, workspace)),
                     interpolate="none",
                     color_style=plt.cm.hsv)
renderer._ax.quiver(X, Y, U, V, units='width')
renderer._ax.set_title("original")
renderer.set_drawing_axis(1)
renderer.draw_ws_obstacles()
renderer.draw_ws_img(phi.T, interpolate="none", color_style=plt.cm.hsv)
renderer._ax.quiver(X, Y, U, V, units='width')
renderer._ax.set_title("recovered from vector field")
renderer.show()