def plot_costmaps(): workspace = sample_circle_workspaces(nb_circles=4) grid_sparse = workspace.box.stacked_meshgrid(24) grid_dense = workspace.box.stacked_meshgrid(100) extent = workspace.box.extent_data() sdf = SignedDistanceWorkspaceMap(workspace) viewer = WorkspaceDrawer(workspace, wait_for_keyboard=True, rows=1, cols=2, scale=1.) viewer.set_drawing_axis(0) viewer.set_workspace(workspace) viewer.draw_ws_img(sdf(grid_dense).T) viewer.draw_ws_obstacles() viewer.set_drawing_axis(1) viewer.set_workspace(workspace) viewer.draw_ws_img(sdf(grid_sparse).T) viewer.draw_ws_obstacles() viewer.show_once()
vx = RegressedPixelGridSpline(U.T, grid_sparse.resolution, grid_sparse.extent) vy = RegressedPixelGridSpline(V.T, grid_sparse.resolution, grid_sparse.extent) for i, j in itertools.product(range(X.shape[0]), range(X.shape[1])): p = np.array([X[i, j], Y[i, j]]) vxx = vx.gradient(p)[0] vyy = vy.gradient(p)[1] div[i, j] = vxx + vyy for i in range(iterations): if ROWS * COLS == 1 and i < iterations - 1: continue print("plot..") p_source = grid_sparse.world_to_grid(x_source) p = grid_sparse.grid_to_world(p_source) phi = phi.T phi = hd.distance(U, V, div, 1. / N).T renderer.set_drawing_axis(i) renderer.draw_ws_obstacles() renderer.draw_ws_point(p, color='r', shape='o') renderer.background_matrix_eval = False renderer.draw_ws_img(phi, interpolate="bicubic", color_style=plt.cm.hsv) f = RegressedPixelGridSpline(phi, grid_sparse.resolution, grid_sparse.extent) for i, j in itertools.product(range(X.shape[0]), range(X.shape[1])): g = f.gradient(np.array([X[i, j], Y[i, j]])) g /= np.linalg.norm(g) U[i, j] = g[0] V[i, j] = g[1] renderer._ax.quiver(X, Y, U, V, units='width') renderer.show()
circles.append(Circle(origin=[.1, .25], radius=0.05)) circles.append(Circle(origin=[.2, .25], radius=0.05)) circles.append(Circle(origin=[.0, .25], radius=0.05)) circles.append(Circle(origin=[-.2, 0], radius=0.1)) workspace = Workspace() workspace.obstacles = circles X, Y = workspace.box.meshgrid(N) occ = occupancy_map(N, workspace) f = sdf(occ).T U = -1 * np.gradient(f.T, axis=0).T V = -1 * np.gradient(f.T, axis=1).T phi = hd.distance_from_gradient(U, V, 1. / N, f) phi -= phi.min() # set min to 0 for comparison f -= f.min() # d = np.linalg.norm(phi - f) # print(d) renderer = WorkspaceDrawer(workspace, rows=1, cols=2) renderer.set_drawing_axis(0) renderer.draw_ws_obstacles() renderer.draw_ws_img(sdf(occupancy_map(100, workspace)), interpolate="none", color_style=plt.cm.hsv) renderer._ax.quiver(X, Y, U, V, units='width') renderer._ax.set_title("original") renderer.set_drawing_axis(1) renderer.draw_ws_obstacles() renderer.draw_ws_img(phi.T, interpolate="none", color_style=plt.cm.hsv) renderer._ax.quiver(X, Y, U, V, units='width') renderer._ax.set_title("recovered from vector field") renderer.show()