Esempio n. 1
0
def test_gaussian_hmm(num_steps):
    dim = 4

    def model(data):
        initialize = pyro.sample("initialize", dist.Dirichlet(torch.ones(dim)))
        with pyro.plate("states", dim):
            transition = pyro.sample("transition",
                                     dist.Dirichlet(torch.ones(dim, dim)))
            emission_loc = pyro.sample(
                "emission_loc", dist.Normal(torch.zeros(dim), torch.ones(dim)))
            emission_scale = pyro.sample(
                "emission_scale",
                dist.LogNormal(torch.zeros(dim), torch.ones(dim)))
        x = None
        with ignore_jit_warnings([("Iterating over a tensor", RuntimeWarning)
                                  ]):
            for t, y in pyro.markov(enumerate(data)):
                x = pyro.sample(
                    "x_{}".format(t),
                    dist.Categorical(
                        initialize if x is None else transition[x]),
                    infer={"enumerate": "parallel"})
                pyro.sample("y_{}".format(t),
                            dist.Normal(emission_loc[x], emission_scale[x]),
                            obs=y)

    def _get_initial_trace():
        guide = AutoDelta(
            poutine.block(model,
                          expose_fn=lambda msg: not msg["name"].startswith("x")
                          and not msg["name"].startswith("y")))
        elbo = TraceEnum_ELBO(max_plate_nesting=1)
        svi = SVI(model, guide, optim.Adam({"lr": .01}), elbo)
        for _ in range(100):
            svi.step(data)
        return poutine.trace(guide).get_trace(data)

    def _generate_data():
        transition_probs = torch.rand(dim, dim)
        emissions_loc = torch.arange(dim, dtype=torch.Tensor().dtype)
        emissions_scale = 1.
        state = torch.tensor(1)
        obs = [dist.Normal(emissions_loc[state], emissions_scale).sample()]
        for _ in range(num_steps):
            state = dist.Categorical(transition_probs[state]).sample()
            obs.append(
                dist.Normal(emissions_loc[state], emissions_scale).sample())
        return torch.stack(obs)

    data = _generate_data()
    nuts_kernel = NUTS(model,
                       max_plate_nesting=1,
                       jit_compile=True,
                       ignore_jit_warnings=True)
    if num_steps == 30:
        nuts_kernel.initial_trace = _get_initial_trace()
    mcmc = MCMC(nuts_kernel, num_samples=5, warmup_steps=5)
    mcmc.run(data)
Esempio n. 2
0
def test_gaussian_mixture_model(jit):
    K, N = 3, 1000

    def gmm(data):
        mix_proportions = pyro.sample("phi", dist.Dirichlet(torch.ones(K)))
        with pyro.plate("num_clusters", K):
            cluster_means = pyro.sample(
                "cluster_means", dist.Normal(torch.arange(float(K)), 1.))
        with pyro.plate("data", data.shape[0]):
            assignments = pyro.sample("assignments",
                                      dist.Categorical(mix_proportions))
            pyro.sample("obs",
                        dist.Normal(cluster_means[assignments], 1.),
                        obs=data)
        return cluster_means

    true_cluster_means = torch.tensor([1., 5., 10.])
    true_mix_proportions = torch.tensor([0.1, 0.3, 0.6])
    cluster_assignments = dist.Categorical(true_mix_proportions).sample(
        torch.Size((N, )))
    data = dist.Normal(true_cluster_means[cluster_assignments], 1.0).sample()
    nuts_kernel = NUTS(gmm,
                       max_plate_nesting=1,
                       jit_compile=jit,
                       ignore_jit_warnings=True)
    mcmc = MCMC(nuts_kernel, num_samples=300, warmup_steps=100)
    mcmc.run(data)
    samples = mcmc.get_samples()
    assert_equal(samples["phi"].mean(0).sort()[0],
                 true_mix_proportions,
                 prec=0.05)
    assert_equal(samples["cluster_means"].mean(0).sort()[0],
                 true_cluster_means,
                 prec=0.2)
Esempio n. 3
0
 def nuts_sampling(self, x_data, y_data, num_samples, warmup_steps):
     nuts_kernel = NUTS(self.model, target_accept_prob=0.99)
     mcmc = MCMC(nuts_kernel,
                 num_samples=num_samples,
                 warmup_steps=warmup_steps)
     mcmc.run(x_data, y_data)
     self.posterior_samples = mcmc.get_samples()
Esempio n. 4
0
def test_beta_binomial(hyperpriors):
    def model(data):
        with pyro.plate("plate_0", data.shape[-1]):
            alpha = pyro.sample(
                "alpha", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor(
                    [1., 1.])
            beta = pyro.sample(
                "beta", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor(
                    [1., 1.])
            beta_binom = BetaBinomialPair()
            with pyro.plate("plate_1", data.shape[-2]):
                probs = pyro.sample("probs", beta_binom.latent(alpha, beta))
                with pyro.plate("data", data.shape[0]):
                    pyro.sample("binomial",
                                beta_binom.conditional(
                                    probs=probs, total_count=total_count),
                                obs=data)

    true_probs = torch.tensor([[0.7, 0.4], [0.6, 0.4]])
    total_count = torch.tensor([[1000, 600], [400, 800]])
    num_samples = 80
    data = dist.Binomial(
        total_count=total_count,
        probs=true_probs).sample(sample_shape=(torch.Size((10, ))))
    hmc_kernel = NUTS(collapse_conjugate(model),
                      jit_compile=True,
                      ignore_jit_warnings=True)
    mcmc = MCMC(hmc_kernel, num_samples=num_samples, warmup_steps=50)
    mcmc.run(data)
    samples = mcmc.get_samples()
    posterior = posterior_replay(model, samples, data, num_samples=num_samples)
    assert_equal(posterior["probs"].mean(0), true_probs, prec=0.05)
Esempio n. 5
0
def test_gamma_poisson(hyperpriors):
    def model(data):
        with pyro.plate("latent_dim", data.shape[1]):
            alpha = pyro.sample(
                "alpha", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor(
                    [1., 1.])
            beta = pyro.sample(
                "beta", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor(
                    [1., 1.])
            gamma_poisson = GammaPoissonPair()
            rate = pyro.sample("rate", gamma_poisson.latent(alpha, beta))
            with pyro.plate("data", data.shape[0]):
                pyro.sample("obs", gamma_poisson.conditional(rate), obs=data)

    true_rate = torch.tensor([3., 10.])
    num_samples = 100
    data = dist.Poisson(rate=true_rate).sample(
        sample_shape=(torch.Size((100, ))))
    hmc_kernel = NUTS(collapse_conjugate(model),
                      jit_compile=True,
                      ignore_jit_warnings=True)
    mcmc = MCMC(hmc_kernel, num_samples=num_samples, warmup_steps=50)
    mcmc.run(data)
    samples = mcmc.get_samples()
    posterior = posterior_replay(model, samples, data, num_samples=num_samples)
    assert_equal(posterior["rate"].mean(0), true_rate, prec=0.3)
Esempio n. 6
0
def test_nuts_conjugate_gaussian(fixture, num_samples, warmup_steps,
                                 hmc_params, expected_means, expected_precs,
                                 mean_tol, std_tol):
    pyro.get_param_store().clear()
    nuts_kernel = NUTS(fixture.model, hmc_params['step_size'])
    mcmc_run = MCMC(nuts_kernel, num_samples, warmup_steps).run(fixture.data)
    for i in range(1, fixture.chain_len + 1):
        param_name = 'loc_' + str(i)
        marginal = EmpiricalMarginal(mcmc_run, sites=param_name)
        latent_loc = marginal.mean
        latent_std = marginal.variance.sqrt()
        expected_mean = torch.ones(fixture.dim) * expected_means[i - 1]
        expected_std = 1 / torch.sqrt(
            torch.ones(fixture.dim) * expected_precs[i - 1])

        # Actual vs expected posterior means for the latents
        logger.info('Posterior mean (actual) - {}'.format(param_name))
        logger.info(latent_loc)
        logger.info('Posterior mean (expected) - {}'.format(param_name))
        logger.info(expected_mean)
        assert_equal(rmse(latent_loc, expected_mean).item(),
                     0.0,
                     prec=mean_tol)

        # Actual vs expected posterior precisions for the latents
        logger.info('Posterior std (actual) - {}'.format(param_name))
        logger.info(latent_std)
        logger.info('Posterior std (expected) - {}'.format(param_name))
        logger.info(expected_std)
        assert_equal(rmse(latent_std, expected_std).item(), 0.0, prec=std_tol)
Esempio n. 7
0
def test_nuts_conjugate_gaussian(fixture, num_samples, warmup_steps,
                                 expected_means, expected_precs, mean_tol,
                                 std_tol):
    pyro.get_param_store().clear()
    nuts_kernel = NUTS(fixture.model)
    mcmc = MCMC(nuts_kernel, num_samples, warmup_steps)
    mcmc.run(fixture.data)
    samples = mcmc.get_samples()
    for i in range(1, fixture.chain_len + 1):
        param_name = 'loc_' + str(i)
        latent = samples[param_name]
        latent_loc = latent.mean(0)
        latent_std = latent.std(0)
        expected_mean = torch.ones(fixture.dim) * expected_means[i - 1]
        expected_std = 1 / torch.sqrt(
            torch.ones(fixture.dim) * expected_precs[i - 1])

        # Actual vs expected posterior means for the latents
        logger.debug('Posterior mean (actual) - {}'.format(param_name))
        logger.debug(latent_loc)
        logger.debug('Posterior mean (expected) - {}'.format(param_name))
        logger.debug(expected_mean)
        assert_equal(rmse(latent_loc, expected_mean).item(),
                     0.0,
                     prec=mean_tol)

        # Actual vs expected posterior precisions for the latents
        logger.debug('Posterior std (actual) - {}'.format(param_name))
        logger.debug(latent_std)
        logger.debug('Posterior std (expected) - {}'.format(param_name))
        logger.debug(expected_std)
        assert_equal(rmse(latent_std, expected_std).item(), 0.0, prec=std_tol)
Esempio n. 8
0
def run_pyro_nuts(data, pfile, n_samples, params):

    # import model, transformed_data functions (if exists) from pyro module

    model = import_by_string(pfile + ".model")
    assert model is not None, "model couldn't be imported"
    transformed_data = import_by_string(pfile + ".transformed_data")
    if transformed_data is not None:
        transformed_data(data)

    nuts_kernel = NUTS(model, step_size=0.0855)
    mcmc_run = MCMC(nuts_kernel,
                    num_samples=n_samples,
                    warmup_steps=int(n_samples / 2))
    posteriors = {k: [] for k in params}

    for trace, _ in mcmc_run._traces(data, params):
        for k in posteriors:
            posteriors[k].append(trace.nodes[k]['value'])

    #posteriors["sigma"] = list(map(torch.exp, posteriors["log_sigma"]))
    #del posteriors["log_sigma"]

    posterior_means = {
        k: torch.mean(torch.stack(posteriors[k]), 0)
        for k in posteriors
    }
    bb()
    return posterior_means
Esempio n. 9
0
def test_dirichlet_categorical(jit):
    def model(data):
        concentration = torch.tensor([1.0, 1.0, 1.0])
        p_latent = pyro.sample('p_latent', dist.Dirichlet(concentration))
        pyro.sample("obs", dist.Categorical(p_latent), obs=data)
        return p_latent

    true_probs = torch.tensor([0.1, 0.6, 0.3])
    data = dist.Categorical(true_probs).sample(
        sample_shape=(torch.Size((2000, ))))
    nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True)
    mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data)
    posterior = mcmc_run.marginal('p_latent').empirical['p_latent']
    assert_equal(posterior.mean, true_probs, prec=0.02)
Esempio n. 10
0
def test_categorical_dirichlet():
    def model(data):
        concentration = torch.tensor([1.0, 1.0, 1.0])
        p_latent = pyro.sample('p_latent', dist.Dirichlet(concentration))
        pyro.sample("obs", dist.Categorical(p_latent), obs=data)
        return p_latent

    true_probs = torch.tensor([0.1, 0.6, 0.3])
    data = dist.Categorical(true_probs).sample(
        sample_shape=(torch.Size((2000, ))))
    nuts_kernel = NUTS(model, adapt_step_size=True)
    mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data)
    posterior = EmpiricalMarginal(mcmc_run, sites='p_latent')
    assert_equal(posterior.mean, true_probs, prec=0.02)
Esempio n. 11
0
def test_normal_gamma():
    def model(data):
        rate = torch.tensor([1.0, 1.0])
        concentration = torch.tensor([1.0, 1.0])
        p_latent = pyro.sample('p_latent', dist.Gamma(rate, concentration))
        pyro.sample("obs", dist.Normal(3, p_latent), obs=data)
        return p_latent

    true_std = torch.tensor([0.5, 2])
    data = dist.Normal(3, true_std).sample(sample_shape=(torch.Size((2000, ))))
    nuts_kernel = NUTS(model, step_size=0.01)
    mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data)
    posterior = EmpiricalMarginal(mcmc_run, sites='p_latent')
    assert_equal(posterior.mean, true_std, prec=0.05)
Esempio n. 12
0
def test_bernoulli_beta():
    def model(data):
        alpha = torch.tensor([1.1, 1.1])
        beta = torch.tensor([1.1, 1.1])
        p_latent = pyro.sample("p_latent", dist.Beta(alpha, beta))
        pyro.sample("obs", dist.Bernoulli(p_latent), obs=data)
        return p_latent

    true_probs = torch.tensor([0.9, 0.1])
    data = dist.Bernoulli(true_probs).sample(
        sample_shape=(torch.Size((1000, ))))
    nuts_kernel = NUTS(model, step_size=0.02)
    mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=100).run(data)
    posterior = EmpiricalMarginal(mcmc_run, sites='p_latent')
    assert_equal(posterior.mean, true_probs, prec=0.02)
Esempio n. 13
0
def test_gamma_beta(jit):
    def model(data):
        alpha_prior = pyro.sample('alpha', dist.Gamma(concentration=1., rate=1.))
        beta_prior = pyro.sample('beta', dist.Gamma(concentration=1., rate=1.))
        pyro.sample('x', dist.Beta(concentration1=alpha_prior, concentration0=beta_prior), obs=data)

    true_alpha = torch.tensor(5.)
    true_beta = torch.tensor(1.)
    data = dist.Beta(concentration1=true_alpha, concentration0=true_beta).sample(torch.Size((5000,)))
    nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True)
    mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=200)
    mcmc.run(data)
    samples = mcmc.get_samples()
    assert_equal(samples["alpha"].mean(0), true_alpha, prec=0.08)
    assert_equal(samples["beta"].mean(0), true_beta, prec=0.05)
Esempio n. 14
0
def test_beta_bernoulli(step_size, adapt_step_size, adapt_mass_matrix, full_mass):
    def model(data):
        alpha = torch.tensor([1.1, 1.1])
        beta = torch.tensor([1.1, 1.1])
        p_latent = pyro.sample("p_latent", dist.Beta(alpha, beta))
        pyro.sample("obs", dist.Bernoulli(p_latent), obs=data)
        return p_latent

    true_probs = torch.tensor([0.9, 0.1])
    data = dist.Bernoulli(true_probs).sample(sample_shape=(torch.Size((1000,))))
    nuts_kernel = NUTS(model, step_size=step_size, adapt_step_size=adapt_step_size,
                       adapt_mass_matrix=adapt_mass_matrix, full_mass=full_mass)
    mcmc = MCMC(nuts_kernel, num_samples=400, warmup_steps=200)
    mcmc.run(data)
    samples = mcmc.get_samples()
    assert_equal(samples["p_latent"].mean(0), true_probs, prec=0.02)
Esempio n. 15
0
def test_gamma_normal(jit, use_multinomial_sampling):
    def model(data):
        rate = torch.tensor([1.0, 1.0])
        concentration = torch.tensor([1.0, 1.0])
        p_latent = pyro.sample('p_latent', dist.Gamma(rate, concentration))
        pyro.sample("obs", dist.Normal(3, p_latent), obs=data)
        return p_latent

    true_std = torch.tensor([0.5, 2])
    data = dist.Normal(3, true_std).sample(sample_shape=(torch.Size((2000, ))))
    nuts_kernel = NUTS(model,
                       use_multinomial_sampling=use_multinomial_sampling,
                       jit_compile=jit,
                       ignore_jit_warnings=True)
    mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data)
    posterior = mcmc_run.marginal('p_latent').empirical['p_latent']
    assert_equal(posterior.mean, true_std, prec=0.05)
Esempio n. 16
0
def test_logistic_regression():
    dim = 3
    true_coefs = torch.arange(1, dim + 1)
    data = torch.randn(2000, dim)
    labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

    def model(data):
        coefs_mean = torch.zeros(dim)
        coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(dim)))
        y = pyro.sample('y',
                        dist.Bernoulli(logits=(coefs * data).sum(-1)),
                        obs=labels)
        return y

    nuts_kernel = NUTS(model, step_size=0.0855)
    mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=100).run(data)
    posterior = EmpiricalMarginal(mcmc_run, sites='beta')
    assert_equal(rmse(true_coefs, posterior.mean).item(), 0.0, prec=0.1)
Esempio n. 17
0
def test_bernoulli_latent_model(jit):
    @poutine.broadcast
    def model(data):
        y_prob = pyro.sample("y_prob", dist.Beta(1., 1.))
        with pyro.plate("data", data.shape[0]):
            y = pyro.sample("y", dist.Bernoulli(y_prob))
            z = pyro.sample("z", dist.Bernoulli(0.65 * y + 0.1))
            pyro.sample("obs", dist.Normal(2. * z, 1.), obs=data)

    N = 2000
    y_prob = torch.tensor(0.3)
    y = dist.Bernoulli(y_prob).sample(torch.Size((N,)))
    z = dist.Bernoulli(0.65 * y + 0.1).sample()
    data = dist.Normal(2. * z, 1.0).sample()
    nuts_kernel = NUTS(model, max_plate_nesting=1, jit_compile=jit, ignore_jit_warnings=True)
    mcmc = MCMC(nuts_kernel, num_samples=600, warmup_steps=200)
    mcmc.run(data)
    samples = mcmc.get_samples()
    assert_equal(samples["y_prob"].mean(0), y_prob, prec=0.05)
Esempio n. 18
0
def test_gamma_beta(jit):
    def model(data):
        alpha_prior = pyro.sample('alpha', dist.Gamma(concentration=1.,
                                                      rate=1.))
        beta_prior = pyro.sample('beta', dist.Gamma(concentration=1., rate=1.))
        pyro.sample('x',
                    dist.Beta(concentration1=alpha_prior,
                              concentration0=beta_prior),
                    obs=data)

    true_alpha = torch.tensor(5.)
    true_beta = torch.tensor(1.)
    data = dist.Beta(concentration1=true_alpha,
                     concentration0=true_beta).sample(torch.Size((5000, )))
    nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True)
    mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=200).run(data)
    posterior = mcmc_run.marginal(['alpha', 'beta']).empirical
    assert_equal(posterior['alpha'].mean, true_alpha, prec=0.06)
    assert_equal(posterior['beta'].mean, true_beta, prec=0.05)
Esempio n. 19
0
def test_logistic_regression(jit, use_multinomial_sampling):
    dim = 3
    data = torch.randn(2000, dim)
    true_coefs = torch.arange(1., dim + 1.)
    labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

    def model(data):
        coefs_mean = torch.zeros(dim)
        coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(dim)))
        y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels)
        return y

    nuts_kernel = NUTS(model,
                       use_multinomial_sampling=use_multinomial_sampling,
                       jit_compile=jit,
                       ignore_jit_warnings=True)
    mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=100)
    mcmc.run(data)
    samples = mcmc.get_samples()
    assert_equal(rmse(true_coefs, samples["beta"].mean(0)).item(), 0.0, prec=0.1)