def test_gaussian_hmm(num_steps): dim = 4 def model(data): initialize = pyro.sample("initialize", dist.Dirichlet(torch.ones(dim))) with pyro.plate("states", dim): transition = pyro.sample("transition", dist.Dirichlet(torch.ones(dim, dim))) emission_loc = pyro.sample( "emission_loc", dist.Normal(torch.zeros(dim), torch.ones(dim))) emission_scale = pyro.sample( "emission_scale", dist.LogNormal(torch.zeros(dim), torch.ones(dim))) x = None with ignore_jit_warnings([("Iterating over a tensor", RuntimeWarning) ]): for t, y in pyro.markov(enumerate(data)): x = pyro.sample( "x_{}".format(t), dist.Categorical( initialize if x is None else transition[x]), infer={"enumerate": "parallel"}) pyro.sample("y_{}".format(t), dist.Normal(emission_loc[x], emission_scale[x]), obs=y) def _get_initial_trace(): guide = AutoDelta( poutine.block(model, expose_fn=lambda msg: not msg["name"].startswith("x") and not msg["name"].startswith("y"))) elbo = TraceEnum_ELBO(max_plate_nesting=1) svi = SVI(model, guide, optim.Adam({"lr": .01}), elbo) for _ in range(100): svi.step(data) return poutine.trace(guide).get_trace(data) def _generate_data(): transition_probs = torch.rand(dim, dim) emissions_loc = torch.arange(dim, dtype=torch.Tensor().dtype) emissions_scale = 1. state = torch.tensor(1) obs = [dist.Normal(emissions_loc[state], emissions_scale).sample()] for _ in range(num_steps): state = dist.Categorical(transition_probs[state]).sample() obs.append( dist.Normal(emissions_loc[state], emissions_scale).sample()) return torch.stack(obs) data = _generate_data() nuts_kernel = NUTS(model, max_plate_nesting=1, jit_compile=True, ignore_jit_warnings=True) if num_steps == 30: nuts_kernel.initial_trace = _get_initial_trace() mcmc = MCMC(nuts_kernel, num_samples=5, warmup_steps=5) mcmc.run(data)
def test_gaussian_mixture_model(jit): K, N = 3, 1000 def gmm(data): mix_proportions = pyro.sample("phi", dist.Dirichlet(torch.ones(K))) with pyro.plate("num_clusters", K): cluster_means = pyro.sample( "cluster_means", dist.Normal(torch.arange(float(K)), 1.)) with pyro.plate("data", data.shape[0]): assignments = pyro.sample("assignments", dist.Categorical(mix_proportions)) pyro.sample("obs", dist.Normal(cluster_means[assignments], 1.), obs=data) return cluster_means true_cluster_means = torch.tensor([1., 5., 10.]) true_mix_proportions = torch.tensor([0.1, 0.3, 0.6]) cluster_assignments = dist.Categorical(true_mix_proportions).sample( torch.Size((N, ))) data = dist.Normal(true_cluster_means[cluster_assignments], 1.0).sample() nuts_kernel = NUTS(gmm, max_plate_nesting=1, jit_compile=jit, ignore_jit_warnings=True) mcmc = MCMC(nuts_kernel, num_samples=300, warmup_steps=100) mcmc.run(data) samples = mcmc.get_samples() assert_equal(samples["phi"].mean(0).sort()[0], true_mix_proportions, prec=0.05) assert_equal(samples["cluster_means"].mean(0).sort()[0], true_cluster_means, prec=0.2)
def nuts_sampling(self, x_data, y_data, num_samples, warmup_steps): nuts_kernel = NUTS(self.model, target_accept_prob=0.99) mcmc = MCMC(nuts_kernel, num_samples=num_samples, warmup_steps=warmup_steps) mcmc.run(x_data, y_data) self.posterior_samples = mcmc.get_samples()
def test_beta_binomial(hyperpriors): def model(data): with pyro.plate("plate_0", data.shape[-1]): alpha = pyro.sample( "alpha", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor( [1., 1.]) beta = pyro.sample( "beta", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor( [1., 1.]) beta_binom = BetaBinomialPair() with pyro.plate("plate_1", data.shape[-2]): probs = pyro.sample("probs", beta_binom.latent(alpha, beta)) with pyro.plate("data", data.shape[0]): pyro.sample("binomial", beta_binom.conditional( probs=probs, total_count=total_count), obs=data) true_probs = torch.tensor([[0.7, 0.4], [0.6, 0.4]]) total_count = torch.tensor([[1000, 600], [400, 800]]) num_samples = 80 data = dist.Binomial( total_count=total_count, probs=true_probs).sample(sample_shape=(torch.Size((10, )))) hmc_kernel = NUTS(collapse_conjugate(model), jit_compile=True, ignore_jit_warnings=True) mcmc = MCMC(hmc_kernel, num_samples=num_samples, warmup_steps=50) mcmc.run(data) samples = mcmc.get_samples() posterior = posterior_replay(model, samples, data, num_samples=num_samples) assert_equal(posterior["probs"].mean(0), true_probs, prec=0.05)
def test_gamma_poisson(hyperpriors): def model(data): with pyro.plate("latent_dim", data.shape[1]): alpha = pyro.sample( "alpha", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor( [1., 1.]) beta = pyro.sample( "beta", dist.HalfCauchy(1.)) if hyperpriors else torch.tensor( [1., 1.]) gamma_poisson = GammaPoissonPair() rate = pyro.sample("rate", gamma_poisson.latent(alpha, beta)) with pyro.plate("data", data.shape[0]): pyro.sample("obs", gamma_poisson.conditional(rate), obs=data) true_rate = torch.tensor([3., 10.]) num_samples = 100 data = dist.Poisson(rate=true_rate).sample( sample_shape=(torch.Size((100, )))) hmc_kernel = NUTS(collapse_conjugate(model), jit_compile=True, ignore_jit_warnings=True) mcmc = MCMC(hmc_kernel, num_samples=num_samples, warmup_steps=50) mcmc.run(data) samples = mcmc.get_samples() posterior = posterior_replay(model, samples, data, num_samples=num_samples) assert_equal(posterior["rate"].mean(0), true_rate, prec=0.3)
def test_nuts_conjugate_gaussian(fixture, num_samples, warmup_steps, hmc_params, expected_means, expected_precs, mean_tol, std_tol): pyro.get_param_store().clear() nuts_kernel = NUTS(fixture.model, hmc_params['step_size']) mcmc_run = MCMC(nuts_kernel, num_samples, warmup_steps).run(fixture.data) for i in range(1, fixture.chain_len + 1): param_name = 'loc_' + str(i) marginal = EmpiricalMarginal(mcmc_run, sites=param_name) latent_loc = marginal.mean latent_std = marginal.variance.sqrt() expected_mean = torch.ones(fixture.dim) * expected_means[i - 1] expected_std = 1 / torch.sqrt( torch.ones(fixture.dim) * expected_precs[i - 1]) # Actual vs expected posterior means for the latents logger.info('Posterior mean (actual) - {}'.format(param_name)) logger.info(latent_loc) logger.info('Posterior mean (expected) - {}'.format(param_name)) logger.info(expected_mean) assert_equal(rmse(latent_loc, expected_mean).item(), 0.0, prec=mean_tol) # Actual vs expected posterior precisions for the latents logger.info('Posterior std (actual) - {}'.format(param_name)) logger.info(latent_std) logger.info('Posterior std (expected) - {}'.format(param_name)) logger.info(expected_std) assert_equal(rmse(latent_std, expected_std).item(), 0.0, prec=std_tol)
def test_nuts_conjugate_gaussian(fixture, num_samples, warmup_steps, expected_means, expected_precs, mean_tol, std_tol): pyro.get_param_store().clear() nuts_kernel = NUTS(fixture.model) mcmc = MCMC(nuts_kernel, num_samples, warmup_steps) mcmc.run(fixture.data) samples = mcmc.get_samples() for i in range(1, fixture.chain_len + 1): param_name = 'loc_' + str(i) latent = samples[param_name] latent_loc = latent.mean(0) latent_std = latent.std(0) expected_mean = torch.ones(fixture.dim) * expected_means[i - 1] expected_std = 1 / torch.sqrt( torch.ones(fixture.dim) * expected_precs[i - 1]) # Actual vs expected posterior means for the latents logger.debug('Posterior mean (actual) - {}'.format(param_name)) logger.debug(latent_loc) logger.debug('Posterior mean (expected) - {}'.format(param_name)) logger.debug(expected_mean) assert_equal(rmse(latent_loc, expected_mean).item(), 0.0, prec=mean_tol) # Actual vs expected posterior precisions for the latents logger.debug('Posterior std (actual) - {}'.format(param_name)) logger.debug(latent_std) logger.debug('Posterior std (expected) - {}'.format(param_name)) logger.debug(expected_std) assert_equal(rmse(latent_std, expected_std).item(), 0.0, prec=std_tol)
def run_pyro_nuts(data, pfile, n_samples, params): # import model, transformed_data functions (if exists) from pyro module model = import_by_string(pfile + ".model") assert model is not None, "model couldn't be imported" transformed_data = import_by_string(pfile + ".transformed_data") if transformed_data is not None: transformed_data(data) nuts_kernel = NUTS(model, step_size=0.0855) mcmc_run = MCMC(nuts_kernel, num_samples=n_samples, warmup_steps=int(n_samples / 2)) posteriors = {k: [] for k in params} for trace, _ in mcmc_run._traces(data, params): for k in posteriors: posteriors[k].append(trace.nodes[k]['value']) #posteriors["sigma"] = list(map(torch.exp, posteriors["log_sigma"])) #del posteriors["log_sigma"] posterior_means = { k: torch.mean(torch.stack(posteriors[k]), 0) for k in posteriors } bb() return posterior_means
def test_dirichlet_categorical(jit): def model(data): concentration = torch.tensor([1.0, 1.0, 1.0]) p_latent = pyro.sample('p_latent', dist.Dirichlet(concentration)) pyro.sample("obs", dist.Categorical(p_latent), obs=data) return p_latent true_probs = torch.tensor([0.1, 0.6, 0.3]) data = dist.Categorical(true_probs).sample( sample_shape=(torch.Size((2000, )))) nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True) mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data) posterior = mcmc_run.marginal('p_latent').empirical['p_latent'] assert_equal(posterior.mean, true_probs, prec=0.02)
def test_categorical_dirichlet(): def model(data): concentration = torch.tensor([1.0, 1.0, 1.0]) p_latent = pyro.sample('p_latent', dist.Dirichlet(concentration)) pyro.sample("obs", dist.Categorical(p_latent), obs=data) return p_latent true_probs = torch.tensor([0.1, 0.6, 0.3]) data = dist.Categorical(true_probs).sample( sample_shape=(torch.Size((2000, )))) nuts_kernel = NUTS(model, adapt_step_size=True) mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data) posterior = EmpiricalMarginal(mcmc_run, sites='p_latent') assert_equal(posterior.mean, true_probs, prec=0.02)
def test_normal_gamma(): def model(data): rate = torch.tensor([1.0, 1.0]) concentration = torch.tensor([1.0, 1.0]) p_latent = pyro.sample('p_latent', dist.Gamma(rate, concentration)) pyro.sample("obs", dist.Normal(3, p_latent), obs=data) return p_latent true_std = torch.tensor([0.5, 2]) data = dist.Normal(3, true_std).sample(sample_shape=(torch.Size((2000, )))) nuts_kernel = NUTS(model, step_size=0.01) mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data) posterior = EmpiricalMarginal(mcmc_run, sites='p_latent') assert_equal(posterior.mean, true_std, prec=0.05)
def test_bernoulli_beta(): def model(data): alpha = torch.tensor([1.1, 1.1]) beta = torch.tensor([1.1, 1.1]) p_latent = pyro.sample("p_latent", dist.Beta(alpha, beta)) pyro.sample("obs", dist.Bernoulli(p_latent), obs=data) return p_latent true_probs = torch.tensor([0.9, 0.1]) data = dist.Bernoulli(true_probs).sample( sample_shape=(torch.Size((1000, )))) nuts_kernel = NUTS(model, step_size=0.02) mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=100).run(data) posterior = EmpiricalMarginal(mcmc_run, sites='p_latent') assert_equal(posterior.mean, true_probs, prec=0.02)
def test_gamma_beta(jit): def model(data): alpha_prior = pyro.sample('alpha', dist.Gamma(concentration=1., rate=1.)) beta_prior = pyro.sample('beta', dist.Gamma(concentration=1., rate=1.)) pyro.sample('x', dist.Beta(concentration1=alpha_prior, concentration0=beta_prior), obs=data) true_alpha = torch.tensor(5.) true_beta = torch.tensor(1.) data = dist.Beta(concentration1=true_alpha, concentration0=true_beta).sample(torch.Size((5000,))) nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True) mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=200) mcmc.run(data) samples = mcmc.get_samples() assert_equal(samples["alpha"].mean(0), true_alpha, prec=0.08) assert_equal(samples["beta"].mean(0), true_beta, prec=0.05)
def test_beta_bernoulli(step_size, adapt_step_size, adapt_mass_matrix, full_mass): def model(data): alpha = torch.tensor([1.1, 1.1]) beta = torch.tensor([1.1, 1.1]) p_latent = pyro.sample("p_latent", dist.Beta(alpha, beta)) pyro.sample("obs", dist.Bernoulli(p_latent), obs=data) return p_latent true_probs = torch.tensor([0.9, 0.1]) data = dist.Bernoulli(true_probs).sample(sample_shape=(torch.Size((1000,)))) nuts_kernel = NUTS(model, step_size=step_size, adapt_step_size=adapt_step_size, adapt_mass_matrix=adapt_mass_matrix, full_mass=full_mass) mcmc = MCMC(nuts_kernel, num_samples=400, warmup_steps=200) mcmc.run(data) samples = mcmc.get_samples() assert_equal(samples["p_latent"].mean(0), true_probs, prec=0.02)
def test_gamma_normal(jit, use_multinomial_sampling): def model(data): rate = torch.tensor([1.0, 1.0]) concentration = torch.tensor([1.0, 1.0]) p_latent = pyro.sample('p_latent', dist.Gamma(rate, concentration)) pyro.sample("obs", dist.Normal(3, p_latent), obs=data) return p_latent true_std = torch.tensor([0.5, 2]) data = dist.Normal(3, true_std).sample(sample_shape=(torch.Size((2000, )))) nuts_kernel = NUTS(model, use_multinomial_sampling=use_multinomial_sampling, jit_compile=jit, ignore_jit_warnings=True) mcmc_run = MCMC(nuts_kernel, num_samples=200, warmup_steps=100).run(data) posterior = mcmc_run.marginal('p_latent').empirical['p_latent'] assert_equal(posterior.mean, true_std, prec=0.05)
def test_logistic_regression(): dim = 3 true_coefs = torch.arange(1, dim + 1) data = torch.randn(2000, dim) labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample() def model(data): coefs_mean = torch.zeros(dim) coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(dim))) y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels) return y nuts_kernel = NUTS(model, step_size=0.0855) mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=100).run(data) posterior = EmpiricalMarginal(mcmc_run, sites='beta') assert_equal(rmse(true_coefs, posterior.mean).item(), 0.0, prec=0.1)
def test_bernoulli_latent_model(jit): @poutine.broadcast def model(data): y_prob = pyro.sample("y_prob", dist.Beta(1., 1.)) with pyro.plate("data", data.shape[0]): y = pyro.sample("y", dist.Bernoulli(y_prob)) z = pyro.sample("z", dist.Bernoulli(0.65 * y + 0.1)) pyro.sample("obs", dist.Normal(2. * z, 1.), obs=data) N = 2000 y_prob = torch.tensor(0.3) y = dist.Bernoulli(y_prob).sample(torch.Size((N,))) z = dist.Bernoulli(0.65 * y + 0.1).sample() data = dist.Normal(2. * z, 1.0).sample() nuts_kernel = NUTS(model, max_plate_nesting=1, jit_compile=jit, ignore_jit_warnings=True) mcmc = MCMC(nuts_kernel, num_samples=600, warmup_steps=200) mcmc.run(data) samples = mcmc.get_samples() assert_equal(samples["y_prob"].mean(0), y_prob, prec=0.05)
def test_gamma_beta(jit): def model(data): alpha_prior = pyro.sample('alpha', dist.Gamma(concentration=1., rate=1.)) beta_prior = pyro.sample('beta', dist.Gamma(concentration=1., rate=1.)) pyro.sample('x', dist.Beta(concentration1=alpha_prior, concentration0=beta_prior), obs=data) true_alpha = torch.tensor(5.) true_beta = torch.tensor(1.) data = dist.Beta(concentration1=true_alpha, concentration0=true_beta).sample(torch.Size((5000, ))) nuts_kernel = NUTS(model, jit_compile=jit, ignore_jit_warnings=True) mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=200).run(data) posterior = mcmc_run.marginal(['alpha', 'beta']).empirical assert_equal(posterior['alpha'].mean, true_alpha, prec=0.06) assert_equal(posterior['beta'].mean, true_beta, prec=0.05)
def test_logistic_regression(jit, use_multinomial_sampling): dim = 3 data = torch.randn(2000, dim) true_coefs = torch.arange(1., dim + 1.) labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample() def model(data): coefs_mean = torch.zeros(dim) coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(dim))) y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels) return y nuts_kernel = NUTS(model, use_multinomial_sampling=use_multinomial_sampling, jit_compile=jit, ignore_jit_warnings=True) mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=100) mcmc.run(data) samples = mcmc.get_samples() assert_equal(rmse(true_coefs, samples["beta"].mean(0)).item(), 0.0, prec=0.1)