Esempio n. 1
0
    def load_checkpoint(
        self, path: _PATH, map_location: Optional[Callable] = lambda storage, loc: storage
    ) -> Dict[str, Any]:
        """Loads checkpoint using :func:`torch.load`, with additional handling for ``fsspec`` remote loading of
        files.

        Args:
            path: Path to checkpoint
            map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
            locations.

        Returns: The loaded checkpoint.

        Raises:
            FileNotFoundError: If ``path`` is not found by the ``fsspec`` filesystem
        """

        # Try to read the checkpoint at `path`. If not exist, do not restore checkpoint.
        fs = get_filesystem(path)
        if not fs.exists(path):
            raise FileNotFoundError(f"Checkpoint at {path} not found. Aborting training.")

        return pl_load(path, map_location=map_location)
    def __init_ckpt_dir(self, filepath, save_top_k):
        self._fs = get_filesystem(filepath if filepath is not None else "")
        if (
            save_top_k is not None
            and save_top_k > 0
            and filepath is not None
            and self._fs.isdir(filepath)
            and len(self._fs.ls(filepath)) > 0
        ):
            rank_zero_warn(
                f"Checkpoint directory {filepath} exists and is not empty with save_top_k={save_top_k}"
                " All files in this directory will be deleted when a checkpoint is saved!"
            )

        if not filepath:  # will be determined by trainer at runtime
            self.dirpath, self.filename = None, None
        else:
            if self._fs.isdir(filepath):
                self.dirpath, self.filename = filepath, None
            else:
                if self._fs.protocol == "file":  # dont normalize remote paths
                    filepath = os.path.realpath(filepath)
                self.dirpath, self.filename = os.path.split(filepath)
Esempio n. 3
0
    def __init__(self,
                 output_filename: Optional[str] = None,
                 line_count_restriction: float = 1.0):
        """
        Args:
            output_filename: optionally save profile results to file instead of printing
                to std out when training is finished.
            line_count_restriction: this can be used to limit the number of functions
                reported for each action. either an integer (to select a count of lines),
                or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
        """
        self.profiled_actions = {}
        self.line_count_restriction = line_count_restriction

        self.output_fname = output_filename
        self.output_file = None
        if self.output_fname:
            fs = get_filesystem(self.output_fname)
            self.output_file = fs.open(self.output_fname, "w")

        streaming_out = [self.output_file.write
                         ] if self.output_file else [log.info]
        super().__init__(output_streams=streaming_out)
    def hpc_save(self, folderpath: str, logger):
        # make sure the checkpoint folder exists
        folderpath = str(folderpath)  # because the tests pass a path object
        fs = get_filesystem(folderpath)
        fs.makedirs(folderpath, exist_ok=True)

        # save logger to make sure we get all the metrics
        logger.save()

        max_suffix = self.max_ckpt_in_folder(folderpath)
        ckpt_number = (max_suffix if max_suffix is not None else 0) + 1

        fs.makedirs(folderpath, exist_ok=True)
        filepath = os.path.join(folderpath, f'hpc_ckpt_{ckpt_number}.ckpt')

        # give model a chance to do something on hpc_save
        model = self.trainer.get_model()
        checkpoint = self.dump_checkpoint()

        model.on_hpc_save(checkpoint)

        if self.trainer.accelerator_backend:
            checkpoint = self.trainer.accelerator_backend.on_save(checkpoint)

        # do the actual save
        # TODO: fix for anything with multiprocess DP, DDP, DDP2
        try:
            atomic_save(checkpoint, filepath)
        except AttributeError as err:
            if LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in checkpoint:
                del checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]
            rank_zero_warn(
                'warning, `hyper_parameters` dropped from checkpoint.' f' An attribute is not picklable {err}'
            )
            atomic_save(checkpoint, filepath)

        return filepath
    def hpc_save(self, folderpath: str,
                 logger: Optional[LightningLoggerBase]) -> str:
        # make sure the checkpoint folder exists
        folderpath = str(folderpath)  # because the tests pass a path object
        fs = get_filesystem(folderpath)
        fs.makedirs(folderpath, exist_ok=True)

        # save logger to make sure we get all the metrics
        if logger:
            logger.finalize("finished")

        max_suffix = self.max_ckpt_version_in_folder(folderpath)
        ckpt_number = (max_suffix if max_suffix is not None else 0) + 1

        fs.makedirs(folderpath, exist_ok=True)
        filepath = os.path.join(folderpath, f"hpc_ckpt_{ckpt_number}.ckpt")

        # give model a chance to do something on hpc_save
        model = self.trainer.lightning_module
        checkpoint = self.dump_checkpoint()

        # TODO: remove this in v1.8.
        model.on_hpc_save(checkpoint)

        # do the actual save
        # TODO: fix for anything with multiprocess DP, DDP, DDP2
        try:
            atomic_save(checkpoint, filepath)
        except AttributeError as err:
            if pl.LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in checkpoint:
                del checkpoint[pl.LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]
            rank_zero_warn(
                f"warning, `hyper_parameters` dropped from checkpoint. An attribute is not picklable {err}"
            )
            atomic_save(checkpoint, filepath)

        return filepath
Esempio n. 6
0
    def setup(self,
              trainer: Trainer,
              pl_module: LightningModule,
              stage: Optional[str] = None) -> None:
        # save the config in `setup` because (1) we want it to save regardless of the trainer function run
        # and we want to save before processes are spawned
        log_dir = trainer.log_dir  # this broadcasts the directory
        assert log_dir is not None
        config_path = os.path.join(log_dir, self.config_filename)
        fs = get_filesystem(log_dir)

        if not self.overwrite:
            # check if the file exists on rank 0
            file_exists = fs.isfile(
                config_path) if trainer.is_global_zero else False
            # broadcast whether to fail to all ranks
            file_exists = trainer.strategy.broadcast(file_exists)
            if file_exists:
                raise RuntimeError(
                    f"{self.__class__.__name__} expected {config_path} to NOT exist. Aborting to avoid overwriting"
                    " results of a previous run. You can delete the previous config file,"
                    " set `LightningCLI(save_config_callback=None)` to disable config saving,"
                    " or set `LightningCLI(save_config_overwrite=True)` to overwrite the config file."
                )

        # save the file on rank 0
        if trainer.is_global_zero:
            # save only on rank zero to avoid race conditions on DDP.
            # the `log_dir` needs to be created as we rely on the logger to do it usually
            # but it hasn't logged anything at this point
            fs.makedirs(log_dir, exist_ok=True)
            self.parser.save(self.config,
                             config_path,
                             skip_none=False,
                             overwrite=self.overwrite,
                             multifile=self.multifile)
Esempio n. 7
0
    def to_disk(self) -> None:
        """Write predictions to file(s).
        """
        for filepath, predictions in self.predictions.items():
            fs = get_filesystem(filepath)
            # normalize local filepaths only
            if fs.protocol == "file":
                filepath = os.path.realpath(filepath)
            if self.world_size > 1:
                stem, extension = os.path.splitext(filepath)
                filepath = f"{stem}_rank_{self.global_rank}{extension}"
            dirpath = os.path.split(filepath)[0]
            fs.mkdirs(dirpath, exist_ok=True)

            # Convert any tensor values to list
            predictions = {
                k: v if not isinstance(v, Tensor) else v.tolist()
                for k, v in predictions.items()
            }

            # Check if all features for this file add up to same length
            feature_lens = {k: len(v) for k, v in predictions.items()}
            if len(set(feature_lens.values())) != 1:
                raise ValueError(
                    "Mismatching feature column lengths found in stored EvalResult predictions."
                )

            # Switch predictions so each entry has its own dict
            outputs = []
            for values in zip(*predictions.values()):
                output_element = dict(zip(predictions.keys(), values))
                outputs.append(output_element)

            # Write predictions for current file to disk
            with fs.open(filepath, "wb") as fp:
                torch.save(outputs, fp)
Esempio n. 8
0
    def __init__(
        self,
        save_dir: str,
        name: Optional[str] = "default",
        version: Optional[Union[int, str]] = None,
        log_graph: bool = False,
        default_hp_metric: bool = True,
        prefix: str = "",
        sub_dir: Optional[str] = None,
        **kwargs,
    ):
        super().__init__()
        self._save_dir = save_dir
        self._name = name or ""
        self._version = version
        self._sub_dir = sub_dir
        self._log_graph = log_graph
        self._default_hp_metric = default_hp_metric
        self._prefix = prefix
        self._fs = get_filesystem(save_dir)

        self._experiment = None
        self.hparams = {}
        self._kwargs = kwargs
    def restore(self, checkpoint_path: str, on_gpu: bool) -> bool:
        """
        Load model/training states from a 'PyTorch-Lightning checkpoint' file through file-read and state-restore.
        All restored states are listed in return value description of `dump_checkpoint`.
        """
        # Try to read the checkpoint file at `checkpoint_path`. If not exist, do not restore checkpoint.
        fs = get_filesystem(checkpoint_path)
        if not fs.exists(checkpoint_path):
            raise FileNotFoundError(f"Checkpoint at {checkpoint_path} not found. Aborting training.")

        checkpoint, load_optimizer_states = self.trainer.training_type_plugin.restore_model_state_from_ckpt_path(
            checkpoint_path, map_location=lambda storage, loc: storage
        )

        model = self.trainer.lightning_module

        if on_gpu:
            model.cuda(self.trainer.root_gpu)

        # restore training state
        self.restore_training_state(checkpoint, load_optimizer_states)

        rank_zero_info(f"Restored states from the checkpoint file at {checkpoint_path}")
        return True
Esempio n. 10
0
def test_torchscript_save_load_custom_filesystem(tmpdir, modelclass):
    """ Test that scripted LightningModule is correctly saved and can be loaded with custom filesystems. """

    _DUMMY_PRFEIX = "dummy"
    _PREFIX_SEPARATOR = "://"

    class DummyFileSystem(LocalFileSystem):
        ...

    fsspec.register_implementation(_DUMMY_PRFEIX,
                                   DummyFileSystem,
                                   clobber=True)

    model = modelclass()
    output_file = os.path.join(_DUMMY_PRFEIX, _PREFIX_SEPARATOR, tmpdir,
                               "model.pt")
    script = model.to_torchscript(file_path=output_file)

    fs = get_filesystem(output_file)
    with fs.open(output_file, "rb") as f:
        loaded_script = torch.jit.load(f)

    assert torch.allclose(next(script.parameters()),
                          next(loaded_script.parameters()))
Esempio n. 11
0
    def _split_train_test_data(data: Dict,
                               multi_label: bool = False) -> List[Dict]:
        file_path = data.get("export_json", None)

        if not file_path:
            raise MisconfigurationException(
                "The key `export_json` should be provided as a string.")

        fs = get_filesystem(file_path)
        with fs.open(file_path) as f:
            raw_data = np.asarray(json.load(f))

        train_raw_data = []
        test_raw_data = []
        for task in raw_data:
            for annotation in task["annotations"]:
                if annotation["ground_truth"]:
                    test_raw_data.append(task)
                elif not annotation["ground_truth"]:
                    train_raw_data.append(task)
                break

        assert len(raw_data) == len(train_raw_data) + len(test_raw_data)

        dirname = os.path.dirname(file_path)
        basename = os.path.basename(file_path)
        results = []
        for stage, raw_data in [("train", train_raw_data),
                                ("test", test_raw_data)]:
            filename = basename if stage in basename else f"{stage}_{basename}"
            export_path = os.path.join(dirname, filename)
            LabelStudioInput._export_data_to_json(export_path, raw_data)
            output_data = deepcopy(data)
            output_data["export_json"] = export_path
            results.append(output_data)
        return results
Esempio n. 12
0
def test_get_filesystem_local_filesystem():
    assert isinstance(get_filesystem("tmpdir/tmp_file"), LocalFileSystem)
Esempio n. 13
0
def scale_batch_size(
    trainer: 'pl.Trainer',
    model: 'pl.LightningModule',
    mode: str = 'power',
    steps_per_trial: int = 3,
    init_val: int = 2,
    max_trials: int = 25,
    batch_arg_name: str = 'batch_size',
) -> Optional[int]:
    """See :meth:`~pytorch_lightning.tuner.tuning.Tuner.scale_batch_size`"""
    if trainer.fast_dev_run:
        rank_zero_warn(
            'Skipping batch size scaler since fast_dev_run is enabled.',
            UserWarning)
        return

    if not lightning_hasattr(model, batch_arg_name):
        raise MisconfigurationException(
            f'Field {batch_arg_name} not found in both `model` and `model.hparams`'
        )
    if hasattr(model, batch_arg_name) and hasattr(
            model, "hparams") and batch_arg_name in model.hparams:
        rank_zero_warn(
            f'Field `model.{batch_arg_name}` and `model.hparams.{batch_arg_name}` are mutually exclusive!'
            f' `model.{batch_arg_name}` will be used as the initial batch size for scaling.'
            f' If this is not the intended behavior, please remove either one.'
        )

    if hasattr(model.train_dataloader, 'patch_loader_code'):
        raise MisconfigurationException(
            'The batch scaling feature cannot be used with dataloaders passed directly to `.fit()`.'
            ' Please disable the feature or incorporate the dataloader into the model.'
        )

    # Arguments we adjust during the batch size finder, save for restoring
    __scale_batch_dump_params(trainer)

    # Set to values that are required by the algorithm
    __scale_batch_reset_params(trainer, model, steps_per_trial)

    # Save initial model, that is loaded after batch size is found
    save_path = os.path.join(trainer.default_root_dir,
                             'scale_batch_size_temp_model.ckpt')
    trainer.save_checkpoint(str(save_path))

    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.disable()

    # Initially we just double in size until an OOM is encountered
    new_size, _ = _adjust_batch_size(
        trainer, batch_arg_name, value=init_val)  # initially set to init_val
    if mode == 'power':
        new_size = _run_power_scaling(trainer, model, new_size, batch_arg_name,
                                      max_trials)
    elif mode == 'binsearch':
        new_size = _run_binsearch_scaling(trainer, model, new_size,
                                          batch_arg_name, max_trials)
    else:
        raise ValueError(
            'mode in method `scale_batch_size` could either be `power` or `binsearch`'
        )

    garbage_collection_cuda()
    log.info(
        f'Finished batch size finder, will continue with full run using batch size {new_size}'
    )

    # Restore initial state of model
    if trainer.is_global_zero:
        trainer.checkpoint_connector.restore(str(save_path))
        fs = get_filesystem(str(save_path))
        if fs.exists(save_path):
            fs.rm(save_path)

    # Finish by resetting variables so trainer is ready to fit model
    __scale_batch_restore_params(trainer)
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.enable()

    return new_size
Esempio n. 14
0
def lr_find(
    trainer,
    model: LightningModule,
    train_dataloader: Optional[DataLoader] = None,
    val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None,
    min_lr: float = 1e-8,
    max_lr: float = 1,
    num_training: int = 100,
    mode: str = 'exponential',
    early_stop_threshold: float = 4.0,
    datamodule: Optional[LightningDataModule] = None,
    update_attr: bool = False,
):
    r"""
    ``lr_find`` enables the user to do a range test of good initial learning rates,
    to reduce the amount of guesswork in picking a good starting learning rate.

    Args:
        model: Model to do range testing for

        train_dataloader: A PyTorch
            ``DataLoader`` with training samples. If the model has
            a predefined train_dataloader method, this will be skipped.

        min_lr: minimum learning rate to investigate

        max_lr: maximum learning rate to investigate

        num_training: number of learning rates to test

        mode: Search strategy to update learning rate after each batch:

            - ``'exponential'`` (default): Will increase the learning rate exponentially.
            - ``'linear'``: Will increase the learning rate linearly.

        early_stop_threshold: threshold for stopping the search. If the
            loss at any point is larger than early_stop_threshold*best_loss
            then the search is stopped. To disable, set to None.

        datamodule: An optional ``LightningDataModule`` which holds the training
            and validation dataloader(s). Note that the ``train_dataloader`` and
            ``val_dataloaders`` parameters cannot be used at the same time as
            this parameter, or a ``MisconfigurationException`` will be raised.

        update_attr: Whether to update the learning rate attribute or not.

    Raises:
        MisconfigurationException:
            If learning rate/lr in ``model`` or ``model.hparams`` isn't overriden when ``auto_lr_find=True``, or
            if you are using `more than one optimizer` with learning rate finder.

    Example::

        # Setup model and trainer
        model = MyModelClass(hparams)
        trainer = pl.Trainer()

        # Run lr finder
        lr_finder = trainer.tuner.lr_find(model, ...)

        # Inspect results
        fig = lr_finder.plot(); fig.show()
        suggested_lr = lr_finder.suggestion()

        # Overwrite lr and create new model
        hparams.lr = suggested_lr
        model = MyModelClass(hparams)

        # Ready to train with new learning rate
        trainer.fit(model)

    """
    if trainer.fast_dev_run:
        rank_zero_warn('Skipping learning rate finder since fast_dev_run is enabled.', UserWarning)
        return

    # Determine lr attr
    if update_attr:
        lr_attr_name = _determine_lr_attr_name(trainer, model)

    save_path = os.path.join(trainer.default_root_dir, 'lr_find_temp_model.ckpt')

    __lr_finder_dump_params(trainer, model)

    # Prevent going into infinite loop
    trainer.auto_lr_find = False

    # Initialize lr finder object (stores results)
    lr_finder = _LRFinder(mode, min_lr, max_lr, num_training)

    # Use special lr logger callback
    trainer.callbacks = [_LRCallback(num_training, early_stop_threshold, progress_bar_refresh_rate=1)]

    # No logging
    trainer.logger = DummyLogger()

    # Max step set to number of iterations
    trainer.max_steps = num_training

    # Disable standard progress bar for fit
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.disable()

    # Required for saving the model
    trainer.optimizers, trainer.schedulers = [], [],
    trainer.model = model

    # Dump model checkpoint
    trainer.save_checkpoint(str(save_path))

    # Configure optimizer and scheduler
    model.configure_optimizers = lr_finder._exchange_scheduler(model.configure_optimizers)

    # Fit, lr & loss logged in callback
    trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloaders, datamodule=datamodule)

    # Prompt if we stopped early
    if trainer.global_step != num_training:
        log.info('LR finder stopped early due to diverging loss.')

    # Transfer results from callback to lr finder object
    lr_finder.results.update({'lr': trainer.callbacks[0].lrs, 'loss': trainer.callbacks[0].losses})
    lr_finder._total_batch_idx = trainer.total_batch_idx  # for debug purpose

    # Reset model state
    if trainer.is_global_zero:
        trainer.checkpoint_connector.restore(str(save_path), on_gpu=trainer._device_type == DeviceType.GPU)
        fs = get_filesystem(str(save_path))
        if fs.exists(save_path):
            fs.rm(save_path)

    # Finish by resetting variables so trainer is ready to fit model
    __lr_finder_restore_params(trainer, model)
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.enable()

    # Update lr attr if required
    if update_attr:
        lr = lr_finder.suggestion()

        # TODO: log lr.results to self.logger
        lightning_setattr(model, lr_attr_name, lr)
        log.info(f'Learning rate set to {lr}')

    return lr_finder
    def __init__(
        self,
        filepath: Optional[str] = None,
        monitor: Optional[str] = "checkpoint_on",
        verbose: bool = False,
        save_last: bool = False,
        save_top_k: int = 1,
        save_weights_only: bool = False,
        mode: str = "auto",
        period: int = 1,
        prefix: str = "",
    ):
        super().__init__()
        self._fs = get_filesystem(filepath if filepath is not None else "")
        if (
            save_top_k > 0
            and filepath is not None
            and self._fs.isdir(filepath)
            and len(self._fs.ls(filepath)) > 0
        ):
            rank_zero_warn(
                f"Checkpoint directory {filepath} exists and is not empty with save_top_k != 0."
                " All files in this directory will be deleted when a checkpoint is saved!"
            )

        self.monitor = monitor
        self.verbose = verbose
        if not filepath:  # will be determined by trainer at runtime
            self.dirpath, self.filename = None, None
        else:
            if self._fs.isdir(filepath):
                self.dirpath, self.filename = filepath, None
            else:
                if self._fs.protocol == "file":  # dont normalize remote paths
                    filepath = os.path.realpath(filepath)
                self.dirpath, self.filename = os.path.split(filepath)
            self._fs.makedirs(self.dirpath, exist_ok=True)
        self.save_last = save_last
        self.save_top_k = save_top_k
        self.save_weights_only = save_weights_only
        self.period = period
        self.epoch_last_check = None
        self.prefix = prefix
        self.best_k_models = {}
        # {filename: monitor}
        self.kth_best_model_path = ""
        self.best_model_score = 0
        self.best_model_path = ""
        self.last_model_path = ""
        self.save_function = None
        self.warned_result_obj = False

        torch_inf = torch.tensor(np.Inf)
        mode_dict = {
            "min": (torch_inf, "min"),
            "max": (-torch_inf, "max"),
            "auto": (-torch_inf, "max")
            if monitor is not None and ("acc" in monitor or monitor.startswith("fmeasure"))
            else (torch_inf, "min"),
        }

        if mode not in mode_dict:
            rank_zero_warn(
                f"ModelCheckpoint mode {mode} is unknown, " f"fallback to auto mode.",
                RuntimeWarning,
            )
            mode = "auto"

        self.kth_value, self.mode = mode_dict[mode]
def scale_batch_size(trainer,
                     model: LightningModule,
                     mode: str = 'power',
                     steps_per_trial: int = 3,
                     init_val: int = 2,
                     max_trials: int = 25,
                     batch_arg_name: str = 'batch_size',
                     **fit_kwargs):
    r"""
    Will iteratively try to find the largest batch size for a given model
    that does not give an out of memory (OOM) error.

    Args:
        trainer: The Trainer
        model: Model to fit.

        mode: string setting the search mode. Either `power` or `binsearch`.
            If mode is `power` we keep multiplying the batch size by 2, until
            we get an OOM error. If mode is 'binsearch', we will initially
            also keep multiplying by 2 and after encountering an OOM error
            do a binary search between the last successful batch size and the
            batch size that failed.

        steps_per_trial: number of steps to run with a given batch size.
            Idealy 1 should be enough to test if a OOM error occurs,
            however in practise a few are needed

        init_val: initial batch size to start the search with

        max_trials: max number of increase in batch size done before
           algorithm is terminated

        batch_arg_name: name of the attribute that stores the batch size.
            It is expected that the user has provided a model or datamodule that has a hyperparameter
            with that name. We will look for this attribute name in the following places

            - `model`
            - `model.hparams`
            - `model.datamodule`
            - `trainer.datamodule` (the datamodule passed to the tune method)

        **fit_kwargs: remaining arguments to be passed to .fit(), e.g., dataloader
            or datamodule.
    """
    if trainer.fast_dev_run:
        rank_zero_warn('Skipping batch size scaler since `fast_dev_run=True`',
                       UserWarning)
        return

    if not lightning_hasattr(model, batch_arg_name):
        raise MisconfigurationException(
            f'Field {batch_arg_name} not found in both `model` and `model.hparams`'
        )
    if hasattr(model, batch_arg_name) and hasattr(
            model, "hparams") and batch_arg_name in model.hparams:
        rank_zero_warn(
            f'Field `model.{batch_arg_name}` and `model.hparams.{batch_arg_name}` are mutually exclusive!'
            f' `model.{batch_arg_name}` will be used as the initial batch size for scaling.'
            f' If this is not the intended behavior, please remove either one.'
        )

    if hasattr(model.train_dataloader, 'patch_loader_code'):
        raise MisconfigurationException(
            'The batch scaling feature cannot be used with dataloaders'
            ' passed directly to `.fit()`. Please disable the feature or'
            ' incorporate the dataloader into the model.')

    # Arguments we adjust during the batch size finder, save for restoring
    __scale_batch_dump_params(trainer)

    # Set to values that are required by the algorithm
    __scale_batch_reset_params(trainer, model, steps_per_trial)

    # Save initial model, that is loaded after batch size is found
    save_path = os.path.join(trainer.default_root_dir,
                             'scale_batch_size_temp_model.ckpt')
    trainer.save_checkpoint(str(save_path))

    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.disable()

    # Initially we just double in size until an OOM is encountered
    new_size = _adjust_batch_size(trainer, batch_arg_name,
                                  value=init_val)  # initially set to init_val
    if mode == 'power':
        new_size = _run_power_scaling(trainer, model, new_size, batch_arg_name,
                                      max_trials, **fit_kwargs)
    elif mode == 'binsearch':
        new_size = _run_binsearch_scaling(trainer, model, new_size,
                                          batch_arg_name, max_trials,
                                          **fit_kwargs)
    else:
        raise ValueError(
            'mode in method `scale_batch_size` can only be `power` or `binsearch'
        )

    garbage_collection_cuda()
    log.info(
        f'Finished batch size finder, will continue with full run using batch size {new_size}'
    )

    # Restore initial state of model
    if trainer.is_global_zero:
        trainer.checkpoint_connector.restore(str(save_path),
                                             on_gpu=trainer.on_gpu)
        fs = get_filesystem(str(save_path))
        if fs.exists(save_path):
            fs.rm(save_path)

    # Finish by resetting variables so trainer is ready to fit model
    __scale_batch_restore_params(trainer)
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.enable()

    return new_size
Esempio n. 17
0
 def _export_data_to_json(export_path: str, raw_data: List[Dict]) -> Dict:
     fs = get_filesystem(export_path)
     if fs.exists(export_path):
         fs.delete(export_path)
     with fs.open(export_path, mode="w") as f:
         json.dump(raw_data, f)
    def __init__(self,
                 filepath: Optional[str] = None,
                 monitor: str = 'val_loss',
                 verbose: bool = False,
                 save_last: bool = False,
                 save_top_k: int = 1,
                 save_weights_only: bool = False,
                 mode: str = 'auto',
                 period: int = 1,
                 prefix: str = ''):
        super().__init__()
        if filepath:
            self._fs = get_filesystem(filepath)
        else:
            self._fs = get_filesystem("")  # will give local fileystem
        if save_top_k > 0 and filepath is not None and self._fs.isdir(
                filepath) and len(self._fs.ls(filepath)) > 0:
            rank_zero_warn(
                f"Checkpoint directory {filepath} exists and is not empty with save_top_k != 0."
                "All files in this directory will be deleted when a checkpoint is saved!"
            )
        self._rank = 0

        self.monitor = monitor
        self.verbose = verbose
        if filepath is None:  # will be determined by trainer at runtime
            self.dirpath, self.filename = None, None
        else:
            if self._fs.isdir(filepath):
                self.dirpath, self.filename = filepath, "{epoch}"
            else:
                if self._fs.protocol == "file":  # dont normalize remote paths
                    filepath = os.path.realpath(filepath)
                self.dirpath, self.filename = os.path.split(filepath)
            self._fs.makedirs(self.dirpath, exist_ok=True)
        self.save_last = save_last
        self.save_top_k = save_top_k
        self.save_weights_only = save_weights_only
        self.period = period
        self.epoch_last_check = None
        self.prefix = prefix
        self.best_k_models = {}
        # {filename: monitor}
        self.kth_best_model_path = ''
        self.best_model_score = 0
        self.best_model_path = ''
        self.save_function = None
        self.warned_result_obj = False

        torch_inf = torch.tensor(np.Inf)
        mode_dict = {
            'min': (torch_inf, 'min'),
            'max': (-torch_inf, 'max'),
            'auto': (-torch_inf, 'max') if 'acc' in self.monitor
            or self.monitor.startswith('fmeasure') else (torch_inf, 'min'),
        }

        if mode not in mode_dict:
            rank_zero_warn(
                f'ModelCheckpoint mode {mode} is unknown, '
                f'fallback to auto mode.', RuntimeWarning)
            mode = 'auto'

        self.kth_value, self.mode = mode_dict[mode]
Esempio n. 19
0
def lr_find(
    trainer: 'pl.Trainer',
    model: 'pl.LightningModule',
    min_lr: float = 1e-8,
    max_lr: float = 1,
    num_training: int = 100,
    mode: str = 'exponential',
    early_stop_threshold: float = 4.0,
    update_attr: bool = False,
) -> Optional[_LRFinder]:
    """See :meth:`~pytorch_lightning.tuner.tuning.Tuner.lr_find`"""
    if trainer.fast_dev_run:
        rank_zero_warn(
            'Skipping learning rate finder since fast_dev_run is enabled.',
            UserWarning)
        return

    # Determine lr attr
    if update_attr:
        lr_attr_name = _determine_lr_attr_name(trainer, model)

    save_path = os.path.join(trainer.default_root_dir,
                             'lr_find_temp_model.ckpt')

    __lr_finder_dump_params(trainer, model)

    # Prevent going into infinite loop
    trainer.auto_lr_find = False

    # Initialize lr finder object (stores results)
    lr_finder = _LRFinder(mode, min_lr, max_lr, num_training)

    # Use special lr logger callback
    trainer.callbacks = [
        _LRCallback(num_training,
                    early_stop_threshold,
                    progress_bar_refresh_rate=1)
    ]

    # No logging
    trainer.logger = DummyLogger()

    # Max step set to number of iterations
    trainer.max_steps = num_training

    # Disable standard progress bar for fit
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.disable()

    # Required for saving the model
    trainer.optimizers, trainer.schedulers = [], [],
    trainer.model = model

    # Dump model checkpoint
    trainer.save_checkpoint(str(save_path))

    # Configure optimizer and scheduler
    model.configure_optimizers = lr_finder._exchange_scheduler(
        model.configure_optimizers)

    # Fit, lr & loss logged in callback
    trainer.tuner._run(model)

    # Prompt if we stopped early
    if trainer.global_step != num_training:
        log.info(
            f'LR finder stopped early after {trainer.global_step} steps due to diverging loss.'
        )

    # Transfer results from callback to lr finder object
    lr_finder.results.update({
        'lr': trainer.callbacks[0].lrs,
        'loss': trainer.callbacks[0].losses
    })
    lr_finder._total_batch_idx = trainer.total_batch_idx  # for debug purpose

    # Reset model state
    if trainer.is_global_zero:
        trainer.checkpoint_connector.restore(
            str(save_path), on_gpu=trainer._device_type == DeviceType.GPU)
        fs = get_filesystem(str(save_path))
        if fs.exists(save_path):
            fs.rm(save_path)

    # Finish by resetting variables so trainer is ready to fit model
    __lr_finder_restore_params(trainer, model)
    if trainer.progress_bar_callback:
        trainer.progress_bar_callback.enable()

    # Update lr attr if required
    if update_attr:
        lr = lr_finder.suggestion()

        # TODO: log lr.results to self.logger
        lightning_setattr(model, lr_attr_name, lr)
        log.info(f'Learning rate set to {lr}')

    return lr_finder