Esempio n. 1
0
def test_verify_features_finds_no_missing_features_when_none_are_missing():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'embarked': 'categorical',
        'pclass': 'categorical',
        'sex': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)
    ml_predictor.train(df_titanic_train, verify_features=True)

    file_name = ml_predictor.save(str(random.random()))

    with open(file_name, 'rb') as read_file:
        saved_ml_pipeline = dill.load(read_file)
    os.remove(file_name)

    missing_features = saved_ml_pipeline.named_steps[
        'final_model'].verify_features(df_titanic_test)
    print('missing_features')
    print(missing_features)

    print("len(missing_features['prediction_not_training'])")
    print(len(missing_features['prediction_not_training']))
    print("len(missing_features['training_not_prediction'])")
    print(len(missing_features['training_not_prediction']))
    assert len(missing_features['prediction_not_training']) == 0
    assert len(missing_features['training_not_prediction']) == 0
Esempio n. 2
0
def test_verify_features_finds_missing_training_features():
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'embarked': 'categorical',
        'pclass': 'categorical',
        'sex': 'categorical'
    }

    # Remove the "sibsp" column from our training data
    df_titanic_train = df_titanic_train.drop('sibsp', axis=1)

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)
    ml_predictor.train(df_titanic_train, verify_features=True)

    file_name = ml_predictor.save(str(random.random()))

    with open(file_name, 'rb') as read_file:
        saved_ml_pipeline = dill.load(read_file)
    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    missing_features = saved_ml_pipeline.named_steps[
        'final_model'].verify_features(df_titanic_test)
    print('missing_features')
    print(missing_features)

    print("len(missing_features['prediction_not_training'])")
    print(len(missing_features['prediction_not_training']))
    print("len(missing_features['training_not_prediction'])")
    print(len(missing_features['training_not_prediction']))
    assert len(missing_features['prediction_not_training']) == 1
    assert len(missing_features['training_not_prediction']) == 0
    def test_getting_single_predictions_nlp_date_multilabel_classification(model_name=None):
        # quantile_ml does not support multilabel classification for deep learning at the moment
        if model_name == 'DeepLearningClassifier':
            return

        np.random.seed(0)

        df_twitter_train, df_twitter_test = utils.get_twitter_sentiment_multilabel_classification_dataset()

        column_descriptions = {
            'airline_sentiment': 'output'
            , 'airline': 'categorical'
            , 'text': 'nlp'
            , 'tweet_location': 'categorical'
            , 'user_timezone': 'categorical'
            , 'tweet_created': 'date'
        }

        ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions)
        ml_predictor.train(df_twitter_train, model_names=model_name)

        file_name = ml_predictor.save(str(random.random()))

        # if model_name == 'DeepLearningClassifier':
        #     from quantile_ml.utils_models import load_keras_model

        #     saved_ml_pipeline = load_keras_model(file_name)
        # else:
        #     with open(file_name, 'rb') as read_file:
        #         saved_ml_pipeline = dill.load(read_file)
        saved_ml_pipeline = load_ml_model(file_name)

        os.remove(file_name)
        try:
            keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
            os.remove(keras_file_name)
        except:
            pass

        df_twitter_test_dictionaries = df_twitter_test.to_dict('records')

        # 1. make sure the accuracy is the same

        predictions = []
        for row in df_twitter_test_dictionaries:
            predictions.append(saved_ml_pipeline.predict(row))

        print('predictions')
        print(predictions)

        first_score = accuracy_score(df_twitter_test.airline_sentiment, predictions)
        print('first_score')
        print(first_score)
        # Make sure our score is good, but not unreasonably good
        lower_bound = 0.73
        # if model_name == 'LGBMClassifier':
        #     lower_bound = 0.655
        assert lower_bound < first_score < 0.79

        # 2. make sure the speed is reasonable (do it a few extra times)
        data_length = len(df_twitter_test_dictionaries)
        start_time = datetime.datetime.now()
        for idx in range(1000):
            row_num = idx % data_length
            saved_ml_pipeline.predict(df_twitter_test_dictionaries[row_num])
        end_time = datetime.datetime.now()
        duration = end_time - start_time

        print('duration.total_seconds()')
        print(duration.total_seconds())

        # It's very difficult to set a benchmark for speed that will work across all machines.
        # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
        # That's about 1 millisecond per prediction
        # Assuming we might be running on a test box that's pretty weak, multiply by 3
        # Also make sure we're not running unreasonably quickly
        # time_upper_bound = 3
        # if model_name == 'XGBClassifier':
        #     time_upper_bound = 4
        assert 0.2 < duration.total_seconds() < 15


        # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

        predictions = []
        for row in df_twitter_test_dictionaries:
            predictions.append(saved_ml_pipeline.predict(row))

        print('predictions')
        print(predictions)
        print('df_twitter_test_dictionaries')
        print(df_twitter_test_dictionaries)
        second_score = accuracy_score(df_twitter_test.airline_sentiment, predictions)
        print('second_score')
        print(second_score)
        # Make sure our score is good, but not unreasonably good
        assert lower_bound < second_score < 0.79
Esempio n. 4
0
def getting_single_predictions_classification(model_name=None):
    np.random.seed(0)

    df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset(
    )

    column_descriptions = {
        'survived': 'output',
        'embarked': 'categorical',
        'pclass': 'categorical'
    }

    ml_predictor = Predictor(type_of_estimator='classifier',
                             column_descriptions=column_descriptions)

    ml_predictor.train(df_titanic_train, model_names=model_name)

    file_name = ml_predictor.save(str(random.random()))

    saved_ml_pipeline = load_ml_model(file_name)
    # if model_name == 'DeepLearningClassifier':
    #     from quantile_ml.utils_models import load_keras_model

    #     saved_ml_pipeline = load_keras_model(file_name)
    # else:
    #     with open(file_name, 'rb') as read_file:
    #         saved_ml_pipeline = dill.load(read_file)

    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_titanic_test_dictionaries = df_titanic_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)

    first_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                   predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -0.215
    if model_name == 'DeepLearningClassifier':
        lower_bound = -0.25

    assert lower_bound < first_score < -0.17

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_titanic_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_titanic_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() < 15

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_titanic_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict_proba(row)[1])

    print('predictions')
    print(predictions)
    print('df_titanic_test_dictionaries')
    print(df_titanic_test_dictionaries)
    second_score = utils.calculate_brier_score_loss(df_titanic_test.survived,
                                                    predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -0.17
Esempio n. 5
0
def feature_learning_categorical_ensembling_getting_single_predictions_regression(
        model_name=None):
    np.random.seed(0)

    df_boston_train, df_boston_test = utils.get_boston_regression_dataset()

    column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'}

    ml_predictor = Predictor(type_of_estimator='regressor',
                             column_descriptions=column_descriptions)

    # NOTE: this is bad practice to pass in our same training set as our fl_data set, but we don't have enough data to do it any other way
    df_boston_train, fl_data = train_test_split(df_boston_train, test_size=0.2)
    ml_predictor.train_categorical_ensemble(df_boston_train,
                                            model_names=model_name,
                                            feature_learning=False,
                                            fl_data=fl_data,
                                            categorical_column='CHAS')

    file_name = ml_predictor.save(str(random.random()))

    from quantile_ml.utils_models import load_ml_model

    saved_ml_pipeline = load_ml_model(file_name)

    # with open(file_name, 'rb') as read_file:
    #     saved_ml_pipeline = dill.load(read_file)
    os.remove(file_name)
    try:
        keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5'
        os.remove(keras_file_name)
    except:
        pass

    df_boston_test_dictionaries = df_boston_test.to_dict('records')

    # 1. make sure the accuracy is the same

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('first_score')
    print(first_score)
    # Make sure our score is good, but not unreasonably good

    lower_bound = -3.2
    if model_name == 'DeepLearningRegressor':
        lower_bound = -21.5
    if model_name == 'LGBMRegressor':
        lower_bound = -5.1
    if model_name == 'XGBRegressor':
        lower_bound = -3.6
    if model_name == 'GradientBoostingRegressor':
        lower_bound = -3.6

    assert lower_bound < first_score < -2.8

    # 2. make sure the speed is reasonable (do it a few extra times)
    data_length = len(df_boston_test_dictionaries)
    start_time = datetime.datetime.now()
    for idx in range(1000):
        row_num = idx % data_length
        saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num])
    end_time = datetime.datetime.now()
    duration = end_time - start_time

    print('duration.total_seconds()')
    print(duration.total_seconds())

    # It's very difficult to set a benchmark for speed that will work across all machines.
    # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions
    # That's about 1 millisecond per prediction
    # Assuming we might be running on a test box that's pretty weak, multiply by 3
    # Also make sure we're not running unreasonably quickly
    assert 0.2 < duration.total_seconds() / 1.0 < 15

    # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time)

    predictions = []
    for row in df_boston_test_dictionaries:
        predictions.append(saved_ml_pipeline.predict(row))

    second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions)
    print('second_score')
    print(second_score)
    # Make sure our score is good, but not unreasonably good

    assert lower_bound < second_score < -2.8