def test_input_df_unmodified(): np.random.seed(42) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) df_shape = df_boston_train.shape ml_predictor.train(df_boston_train) training_shape = df_boston_train.shape assert training_shape[0] == df_shape[0] assert training_shape[1] == df_shape[1] test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) assert -3.35 < test_score < -2.8
def test_calibrate_final_model_missing_X_test_y_test_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset( ) # Take a third of our test data (a tenth of our overall data) for calibration df_titanic_test, df_titanic_calibration = train_test_split(df_titanic_test, test_size=0.33, random_state=42) column_descriptions = { 'survived': 'output', 'embarked': 'categorical', 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) # This should still work, just with warning printed ml_predictor.train(df_titanic_train, calibrate_final_model=True) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.215 < test_score < -0.17
def optimize_final_model_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset( ) column_descriptions = { 'survived': 'output', 'embarked': 'categorical', 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, optimize_final_model=True, model_names=model_name) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) # Small sample sizes mean there's a fair bit of noise here lower_bound = -0.215 if model_name == 'DeepLearningClassifier': lower_bound = -0.25 assert lower_bound < test_score < -0.17
def categorical_ensembling_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'} ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train_categorical_ensemble(df_boston_train, perform_feature_selection=True, model_names=model_name, categorical_column='CHAS') test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) # Bumping this up since without these features our score drops lower_bound = -4.0 if model_name == 'DeepLearningRegressor': lower_bound = -19 if model_name == 'LGBMRegressor': lower_bound = -4.95 assert lower_bound < test_score < -2.8
def test_perform_feature_scaling_false_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, perform_feature_scaling=False, model_names=model_name) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) lower_bound = -0.215 if model_name == 'DeepLearningClassifier': lower_bound = -0.235 assert lower_bound < test_score < -0.17
def test_include_bad_y_vals_predict_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) df_titanic_test.ix[1, 'survived'] = float('nan') df_titanic_test.ix[8, 'survived'] = float('inf') df_titanic_test.ix[26, 'survived'] = None ml_predictor.train(df_titanic_train, model_names=model_name) test_score = ml_predictor.score(df_titanic_test.to_dict('records'), df_titanic_test.survived) print('test_score') print(test_score) assert -0.215 < test_score < -0.17
def optimize_final_model_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = {'MEDV': 'output', 'CHAS': 'categorical'} ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, optimize_final_model=True, model_names=model_name) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) # the random seed gets a score of -3.21 on python 3.5 # There's a ton of noise here, due to small sample sizes lower_bound = -3.4 if model_name == 'DeepLearningRegressor': lower_bound = -20 if model_name == 'LGBMRegressor': lower_bound = -5.5 if model_name == 'GradientBoostingRegressor': lower_bound = -3.5 assert lower_bound < test_score < -2.8
def test_categorical_ensemble_basic_classifier(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset( ) column_descriptions = { 'survived': 'output', 'pclass': 'categorical', 'embarked': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train_categorical_ensemble(df_titanic_train, categorical_column='pclass', optimize_final_model=False) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) # Small sample sizes mean there's a fair bit of noise here assert -0.226 < test_score < -0.17
def test_perform_feature_scaling_false_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, perform_feature_scaling=False, model_names=model_name) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) lower_bound = -3.2 if model_name == 'DeepLearningRegressor': lower_bound = -8.8 if model_name == 'LGBMRegressor': lower_bound = -4.95 assert lower_bound < test_score < -2.8
def test_perform_feature_scaling_true_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, perform_feature_scaling=True) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) assert -3.2 < test_score < -2.8
def test_compare_all_models_regression(): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, compare_all_models=True) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) assert -3.35 < test_score < -2.8
def test_all_algos_regression(): # a random seed of 42 has ExtraTreesRegressor getting the best CV score, and that model doesn't generalize as well as GradientBoostingRegressor. np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, model_names=['LinearRegression', 'RandomForestRegressor', 'Ridge', 'GradientBoostingRegressor', 'ExtraTreesRegressor', 'AdaBoostRegressor', 'SGDRegressor', 'PassiveAggressiveRegressor', 'Lasso', 'LassoLars', 'ElasticNet', 'OrthogonalMatchingPursuit', 'BayesianRidge', 'ARDRegression', 'MiniBatchKMeans', 'DeepLearningRegressor']) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) assert -3.35 < test_score < -2.8
def test_all_algos_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names=['LogisticRegression', 'RandomForestClassifier', 'RidgeClassifier', 'GradientBoostingClassifier', 'ExtraTreesClassifier', 'AdaBoostClassifier', 'SGDClassifier', 'Perceptron', 'PassiveAggressiveClassifier', 'DeepLearningClassifier', 'XGBClassifier', 'LGBMClassifier']) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.215 < test_score < -0.17
def test_list_of_single_model_name_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names=[model_name]) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.215 < test_score < -0.17
def test_linear_model_analytics_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names='RidgeClassifier') test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) # Linear models aren't super great on this dataset... assert -0.37 < test_score < -0.17
def categorical_ensembling_classification(model_name=None): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset( ) column_descriptions = { 'survived': 'output', 'embarked': 'categorical', 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train_categorical_ensemble(df_titanic_train, model_names=model_name, categorical_column='embarked') test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) lower_bound = -0.215 if model_name == 'DeepLearningClassifier': lower_bound = -0.24 if model_name == 'XGBClassifier': lower_bound = -0.235 if model_name == 'LGBMClassifier': lower_bound = -0.22 if model_name == 'GradientBoostingClassifier': lower_bound = -0.23 assert lower_bound < test_score < -0.17