Esempio n. 1
0
def save_coord(results_dirpath, coord_x, coord_y, name_coord,
               contigs_fpaths):  # coordinates for Nx, NAx, NGx, NGAX
    json_fpath = json_saver.save_coord(results_dirpath, coord_x, coord_y,
                                       name_coord, contigs_fpaths)
    if json_fpath:
        append(results_dirpath, json_fpath, name_coord)
Esempio n. 2
0
def Nx_plot(results_dir, reduce_points, contigs_fpaths, lists_of_lengths, plot_fpath, title='Nx', reference_lengths=None, json_output_dir=None):
    if can_draw_plots:
        logger.info('  Drawing ' + title + ' plot...')
        import matplotlib.pyplot
        import matplotlib.ticker

        figure = matplotlib.pyplot.figure()
        matplotlib.pyplot.rc('font', **font)
        max_y = 0

    color_id = 0
    json_vals_x = []  # coordinates for Nx-like plots in HTML-report
    json_vals_y = []

    for id, (contigs_fpath, lengths) in enumerate(itertools.izip(contigs_fpaths, lists_of_lengths)):
        if not lengths:
            json_vals_x.append([])
            json_vals_y.append([])
            continue
        vals_x = [0.0]
        vals_y = [lengths[0]]
        lengths.sort(reverse=True)
        # calculate values for the plot
        vals_Nx = [0.0]
        vals_l = [lengths[0]]
        lcur = 0
        # if Nx-plot then we just use sum of contigs lengths, else use reference_length
        lsum = sum(lengths)
        if reference_lengths:
            lsum = reference_lengths[id]
        min_difference = 0
        if reduce_points:
            min_difference = qconfig.min_difference
        for l in lengths:
            lcur += l
            x = lcur * 100.0 / lsum
            if can_draw_plots:
                vals_Nx.append(vals_Nx[-1] + 1e-10) # eps
                vals_l.append(l)
                vals_Nx.append(x)
                vals_l.append(l)
            if vals_y[-1] - l > min_difference or len(vals_x) == 1:
                vals_x.append(vals_x[-1] + 1e-10) # eps
                vals_y.append(l)
                vals_x.append(x)
                vals_y.append(l)
            # add to plot
        json_vals_x.append(vals_x)
        json_vals_y.append(vals_y)
        if can_draw_plots:
            vals_Nx.append(vals_Nx[-1] + 1e-10) # eps
            vals_l.append(0.0)
            vals_x.append(vals_x[-1] + 1e-10) # eps
            vals_y.append(0.0)
            max_y = max(max_y, max(vals_l))
            color, ls = get_color_and_ls(contigs_fpath)
            matplotlib.pyplot.plot(vals_Nx, vals_l, color=color, lw=line_width, ls=ls)

    if qconfig.html_report:
        from quast_libs.html_saver import html_saver
        html_saver.save_coord(results_dir, json_vals_x, json_vals_y, 'coord' + title, contigs_fpaths)
    if json_output_dir:
        from quast_libs.html_saver import json_saver
        json_saver.save_coord(json_output_dir, json_vals_x, json_vals_y, title, contigs_fpaths)

    if not can_draw_plots:
        return
    if with_title:
        matplotlib.pyplot.title(title)
    matplotlib.pyplot.grid(with_grid)
    ax = matplotlib.pyplot.gca()
    # Shink current axis's height by 20% on the bottom
    box = ax.get_position()
    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])

    legend_list = map(qutils.label_from_fpath, contigs_fpaths)

    # Put a legend below current axis
    try: # for matplotlib <= 2009-12-09
        ax.legend(legend_list, loc='upper center', bbox_to_anchor=(0.5, -0.1), fancybox=True,
            shadow=True, ncol=n_columns if n_columns<3 else 3)
    except Exception:
        pass

    ylabel = 'Contig length  '
    ylabel, mkfunc = y_formatter(ylabel, max_y)
    matplotlib.pyplot.xlabel('x', fontsize=axes_fontsize)
    matplotlib.pyplot.ylabel(ylabel, fontsize=axes_fontsize)

    mkformatter = matplotlib.ticker.FuncFormatter(mkfunc)
    ax.yaxis.set_major_formatter(mkformatter)
    matplotlib.pyplot.xlim([0, 100])

    #ax.invert_xaxis()
    #matplotlib.pyplot.ylim(matplotlib.pyplot.ylim()[::-1])
    xLocator, yLocator = get_locators()
    ax.yaxis.set_major_locator(yLocator)
    ax.xaxis.set_major_locator(xLocator)

    plot_fpath += '.' + qconfig.plot_extension
    matplotlib.pyplot.savefig(plot_fpath, bbox_inches='tight')
    logger.info('    saved to ' + plot_fpath)
    pdf_plots_figures.append(figure)
    matplotlib.pyplot.close()
Esempio n. 3
0
def save_coord(results_dirpath, coord_x, coord_y, name_coord, contigs_fpaths):  # coordinates for Nx, NAx, NGx, NGAX
    json_fpath = json_saver.save_coord(results_dirpath, coord_x, coord_y, name_coord, contigs_fpaths)
    if json_fpath:
        append(results_dirpath, json_fpath, name_coord)
Esempio n. 4
0
def Nx_plot(results_dir, reduce_points, contigs_fpaths, lists_of_lengths, plot_fpath, title='Nx', reference_lengths=None, json_output_dir=None):
    if can_draw_plots:
        logger.info('  Drawing ' + title + ' plot...')
        import matplotlib.pyplot
        import matplotlib.ticker

        figure = matplotlib.pyplot.figure()
        matplotlib.pyplot.rc('font', **font)
        max_y = 0

    color_id = 0
    json_vals_x = []  # coordinates for Nx-like plots in HTML-report
    json_vals_y = []

    for id, (contigs_fpath, lengths) in enumerate(zip(contigs_fpaths, lists_of_lengths)):
        if not lengths:
            json_vals_x.append([])
            json_vals_y.append([])
            continue
        vals_x = [0.0]
        vals_y = [lengths[0]]
        lengths.sort(reverse=True)
        # calculate values for the plot
        vals_Nx = [0.0]
        vals_l = [lengths[0]]
        lcur = 0
        # if Nx-plot then we just use sum of contigs lengths, else use reference_length
        lsum = sum(lengths)
        if reference_lengths:
            lsum = reference_lengths[id]
        min_difference = 0
        if reduce_points:
            min_difference = qconfig.min_difference
        for l in lengths:
            lcur += l
            x = lcur * 100.0 / lsum
            if can_draw_plots:
                vals_Nx.append(vals_Nx[-1] + 1e-10) # eps
                vals_l.append(l)
                vals_Nx.append(x)
                vals_l.append(l)
            if vals_y[-1] - l > min_difference or len(vals_x) == 1:
                vals_x.append(vals_x[-1] + 1e-10) # eps
                vals_y.append(l)
                vals_x.append(x)
                vals_y.append(l)
            # add to plot
        json_vals_x.append(vals_x)
        json_vals_y.append(vals_y)
        if can_draw_plots:
            vals_Nx.append(vals_Nx[-1] + 1e-10) # eps
            vals_l.append(0.0)
            vals_x.append(vals_x[-1] + 1e-10) # eps
            vals_y.append(0.0)
            max_y = max(max_y, max(vals_l))
            color, ls = get_color_and_ls(contigs_fpath)
            matplotlib.pyplot.plot(vals_Nx, vals_l, color=color, lw=line_width, ls=ls)

    if qconfig.html_report:
        from quast_libs.html_saver import html_saver
        html_saver.save_coord(results_dir, json_vals_x, json_vals_y, 'coord' + title, contigs_fpaths)
    if json_output_dir:
        from quast_libs.html_saver import json_saver
        json_saver.save_coord(json_output_dir, json_vals_x, json_vals_y, title, contigs_fpaths)

    if not can_draw_plots:
        return
    if with_title:
        matplotlib.pyplot.title(title)
    matplotlib.pyplot.grid(with_grid)
    ax = matplotlib.pyplot.gca()
    # Shink current axis's height by 20% on the bottom
    box = ax.get_position()
    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])

    legend_list = [qutils.label_from_fpath(fpath) for fpath in contigs_fpaths]

    # Put a legend below current axis
    try: # for matplotlib <= 2009-12-09
        ax.legend(legend_list, loc='upper center', bbox_to_anchor=(0.5, -0.1), fancybox=True,
            shadow=True, ncol=n_columns if n_columns<3 else 3)
    except Exception:
        pass

    ylabel = 'Contig length  '
    ylabel, mkfunc = y_formatter(ylabel, max_y)
    matplotlib.pyplot.xlabel('x', fontsize=axes_fontsize)
    matplotlib.pyplot.ylabel(ylabel, fontsize=axes_fontsize)

    mkformatter = matplotlib.ticker.FuncFormatter(mkfunc)
    ax.yaxis.set_major_formatter(mkformatter)
    matplotlib.pyplot.xlim([0, 100])

    #ax.invert_xaxis()
    #matplotlib.pyplot.ylim(matplotlib.pyplot.ylim()[::-1])
    xLocator, yLocator = get_locators()
    ax.yaxis.set_major_locator(yLocator)
    ax.xaxis.set_major_locator(xLocator)

    plot_fpath += '.' + qconfig.plot_extension
    matplotlib.pyplot.savefig(plot_fpath, bbox_inches='tight')
    logger.info('    saved to ' + plot_fpath)
    pdf_plots_figures.append(figure)
    matplotlib.pyplot.close()