""" Experiment configuration for: Model: BERT trained on Squad2.0 Benchmark: Tacred """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('BERT Squad2.0 TACRED') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/squad2' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BERT trained on ZSRE Benchmark: ZSRE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment import os import pickle ex = setup_experiment('BERT ZSRE ZSRE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/bert-zsre') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data batch_size = 16 must_choose_answer = False device = 'cuda' trained_to_reject = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject):
""" Experiment configuration for: Model: Naive Roberta (no context seed) Benchmark: Google-RE """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment import os ex = setup_experiment('Naive GoogleRE') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data batch_size = 16 must_choose_answer = True use_context = False device = 'cuda' cap = 0
""" Experiment configuration for: Model: BERT Trained on Squad2.0 Benchmark: T-REx """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment, save_se_list import os ex = setup_experiment('BERT Squad2.0 T-REx') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/squad2') # Path to trained weights relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/trex_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/trex') # Path to underlying data error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bsquad_trex.csv') batch_size = 16 must_choose_answer = True device = 'cuda' trained_to_reject = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, error_path): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject) em, f1, per_relation_metrics = runner.predict() save_se_list(runner.se_list, error_path) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BERT trained on ZSRE Benchmark: TACRED """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('BERT ZSRE TACREd') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/zsre' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720 Benchmark: Google-RE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('Dhingra GoogleRE') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/dhingra-latest' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/googlere_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/Google_RE2' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Naive RoBERTa Benchmark: T-REx """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment import os ex = setup_experiment('Naive T-REx') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/trex_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/trex') # Path to underlying data batch_size = 16 must_choose_answer = True use_context = False device = 'cuda' cap = 0
""" Experiment configuration for: Model: RE-Flex Benchmark: Google-RE """ import fasttext import spacy from reflex.reflex_runner import ReflexRunner from reflex.utils import setup_experiment import os ex = setup_experiment('RE-Flex Google-RE') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cuda' k = 16 word_embeddings_path = os.path.join(os.environ['BASE_PATH'],
""" Experiment configuration for: Model: BiDAF trained on Squad2.0 Benchmark: Tacred """ from reflex.bidaf_runner import BidafRunner from reflex.utils import setup_experiment, save_se_list import os ex = setup_experiment('BiDAF GoogleRE') @ex.config def conf(): relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bidaf_googlere.csv') must_choose_answer = True calculate_single_error = True @ex.automain def main(relations_filepath, data_directory, must_choose_answer, error_path, calculate_single_error): runner = BidafRunner(relations_filepath, data_directory, must_choose_answer, calculate_single_error) em, f1, per_relation_metrics = runner.predict()
""" Experiment configuration for: Model: BERT trained on ZSRE Benchmark: Google-RE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment, save_se_list import os ex = setup_experiment('BERT ZSRE GoogleRE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/bert-zsre') # Path to trained weights relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bzsre_googlere.csv') batch_size = 16 must_choose_answer = True device = 'cuda' trained_to_reject = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, error_path): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject) em, f1, per_relation_metrics = runner.predict() save_se_list(runner.se_list, error_path) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Radford Roberta (Naive w/ context seed) Benchmark: T-REx """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment ex = setup_experiment('Radford T-REx') @ex.config def conf(): model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large' # Path to trained weights model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt' relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/trex' # Path to underlying data batch_size = 16 must_choose_answer = True use_context = True device = 'cpu' @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context): runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict_naive(use_context=False) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BERT trained squad Benchmark: ZSRE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment import os import pickle ex = setup_experiment('BERT Squad2.0 ZSRE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/squad2') # Path to trained weights relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data batch_size = 16 must_choose_answer = False device = 'cuda' trained_to_reject = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, calculate_single_error=False) em, f1, per_relation_metrics = runner.predict() with open('BERTSQUADZSRE.pkl', 'wb') as wf: pickle.dump(per_relation_metrics, wf) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BERT trained on ZSRE Benchmark: T-REx """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('BERT ZSRE T-REx') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/trex' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720 Benchmark: Tacred """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment import os ex = setup_experiment('Dhingra Tacred') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/dhingra-latest') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join( os.environ['BASE_PATH'], 'data/tacred/test') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cuda' trained_to_reject = False @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path,
""" Experiment configuration for: Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980 Benchmark: T-REx """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('Lewis T-REx') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/trex' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: RE-Flex Benchmark: Test """ import fasttext import spacy from reflex.reflex_runner import ReflexRunner from reflex.utils import setup_experiment from reflex.metrics import calculate_final_em_f1 import os ex = setup_experiment('RE-Flex Test') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/test_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/Test') # Path to underlying data batch_size = 16 must_choose_answer = False device = 'cpu' ls = [-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3]
""" Experiment configuration for: Model: Naive Roberta (no context seed) Benchmark: Tacred """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment import os ex = setup_experiment('Naive TACRED') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join( os.environ['BASE_PATH'], 'data/tacred/test') # Path to underlying data batch_size = 16 must_choose_answer = True use_context = False device = 'cuda' cap = 0
""" Experiment configuration for: Model: RE-Flex Benchmark: T-REx """ import fasttext import spacy from reflex.reflex_runner import ReflexRunner from reflex.utils import setup_experiment from reflex.metrics import calculate_final_em_f1 import os ex = setup_experiment('RE-Flex T-REx') @ex.config def conf(): model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/trex_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/trex') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cpu' ls = [-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3] k = 16 word_embeddings_path = os.path.join(os.environ['BASE_PATH'], 'weights/crawl-300d-2M-subword.bin') @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, word_embeddings_path, ls, k): spacy_model = spacy.load('en_core_web_lg') we_model = fasttext.load_model(word_embeddings_path)
""" Experiment configuration for: Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720 Benchmark: ZSRE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment import os ex = setup_experiment('Dhingra ZSRE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/dhingra-latest') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cuda' trained_to_reject = False @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path,
""" Experiment configuration for: Model: BiDAF trained on Squad2.0 Benchmark: Tacred """ from reflex.bidaf_runner import BidafRunner from reflex.utils import setup_experiment import os ex = setup_experiment('BiDAF TACRED') @ex.config def conf(): relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/tacred/test') # Path to underlying data must_choose_answer = False calculate_single_error = False @ex.automain def main(relations_filepath, data_directory, must_choose_answer, calculate_single_error): runner = BidafRunner(relations_filepath, data_directory, must_choose_answer, calculate_single_error) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BERT trained squad Benchmark: Google-RE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment, save_se_list import os ex = setup_experiment('BERT Squad2.0 GoogleRE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/squad2') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bsquad_googlere.csv') batch_size = 16 must_choose_answer = True device = 'cuda' trained_to_reject = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size,
""" Experiment configuration for: Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980 Benchmark: Google-RE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment import os ex = setup_experiment('Lewis Google-RE') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/lewis-latest') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/Google_RE') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cpu' trained_to_reject = False @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
""" Experiment configuration for: Model: Radford Roberta (Naive w/ context seed) Benchmark: ZSRE """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment import os ex = setup_experiment('Radford ZSRE') @ex.config def conf(): model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data batch_size = 16 must_choose_answer = False use_context = True device = 'cuda' cap = 10 @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context, cap): runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, cap) em, f1, per_relation_metrics = runner.predict_naive(use_context=use_context) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: BiDAF trained on Squad2.0 Benchmark: ZSRE """ from reflex.bidaf_runner import BidafRunner from reflex.utils import setup_experiment import os ex = setup_experiment('BiDAF ZSRE') @ex.config def conf(): relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data must_choose_answer = False @ex.automain def main(relations_filepath, data_directory, must_choose_answer): runner = BidafRunner(relations_filepath, data_directory, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Radford Roberta (Naive w/ context seed) Benchmark: Google-RE """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment ex = setup_experiment('Radford Google-RE') @ex.config def conf(): model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large' # Path to trained weights model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt' relations_filepath = '/Users/ankur/Projects/RE-Flex/data/googlere_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/Google_RE2' # Path to underlying data batch_size = 16 must_choose_answer = True use_context = True device = 'cpu' @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context): runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict_naive(use_context=False) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: RE-Flex Benchmark: TACRED """ import fasttext import spacy import pickle from reflex.reflex_runner import ReflexRunner from reflex.utils import setup_experiment, save_reflex_e_list import os ex = setup_experiment('RE-Flex TACRED') @ex.config def conf(): model_dir = os.path.join( os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join( os.environ['BASE_PATH'], 'data/tacred/test') # Path to underlying data hyperparam_path = os.path.join(os.environ['BASE_PATH'], 'tacred_tune.pkl') error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'reflex_tacred.csv') batch_size = 16
""" Experiment configuration for: Model: Radford Roberta (Naive w/ context seed) Benchmark: Tacred """ from reflex.lm_runner import LMRunner from reflex.utils import setup_experiment ex = setup_experiment('Radford TACRED') @ex.config def conf(): model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large' # Path to trained weights model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt' relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred' # Path to underlying data batch_size = 16 must_choose_answer = True use_context = True device = 'cpu' @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context): runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict_naive(use_context=False) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980 Benchmark: ZSRE """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('Lewis ZSRE') @ex.config def conf(): qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest' # Path to trained weights relations_filepath = '/Users/ankur/Projects/RE-Flex/data/zsre_relations.jsonl' # Path to relations file data_directory = '/Users/ankur/Projects/RE-Flex/data/zsre' # Path to underlying data batch_size = 16 must_choose_answer = True @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
""" Experiment configuration for: Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980 Benchmark: Tacred """ from reflex.qa_runner import QARunner from reflex.utils import setup_experiment ex = setup_experiment('Lewis TACRED') @ex.config def conf(): qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/lewis-latest') # Path to trained weights relations_filepath = os.path.join( os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/Tacred') # Path to underlying data batch_size = 16 must_choose_answer = True device = 'cpu' trained_to_reject = False @ex.automain def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer)
""" Experiment configuration for: Model: RE-Flex Benchmark: TACRED """ import fasttext import spacy from reflex.reflex_runner import ReflexRunner from reflex.utils import setup_experiment from reflex.metrics import calculate_final_em_f1_dev import pickle import os ex = setup_experiment('RE-Flex TACRED Dev tuning') @ex.config def conf(): model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt') relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file data_directory = os.path.join(os.environ['BASE_PATH'], 'data/tacred/dev') # Path to underlying data batch_size = 16 must_choose_answer = False device = 'cuda' ls = [-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2] k = 16 word_embeddings_path = os.path.join(os.environ['BASE_PATH'], 'weights/crawl-300d-2M-subword.bin') @ex.automain def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, word_embeddings_path, ls, k): spacy_model = spacy.load('en_core_web_lg')