Пример #1
0
"""
Experiment configuration for:
Model: BERT trained on Squad2.0
Benchmark: Tacred
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('BERT Squad2.0 TACRED')


@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/squad2'  # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
                      must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #2
0
"""
Experiment configuration for:
Model: BERT trained on ZSRE
Benchmark: ZSRE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment
import os
import pickle

ex = setup_experiment('BERT ZSRE ZSRE')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/bert-zsre')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/zsre_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/zsre/test')  # Path to underlying data
    batch_size = 16
    must_choose_answer = False
    device = 'cuda'
    trained_to_reject = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer, device, trained_to_reject):
Пример #3
0
"""
Experiment configuration for:
Model: Naive Roberta (no context seed)
Benchmark: Google-RE
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Naive GoogleRE')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/googlere_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/googlere')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = False
    device = 'cuda'
    cap = 0

Пример #4
0
"""
Experiment configuration for:
Model: BERT Trained on Squad2.0
Benchmark: T-REx
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment, save_se_list
import os

ex = setup_experiment('BERT Squad2.0 T-REx')

@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/squad2') # Path to trained weights
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/trex_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/trex') # Path to underlying data
    error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bsquad_trex.csv')
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    trained_to_reject = True

@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, error_path):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject)
    em, f1, per_relation_metrics = runner.predict()
    save_se_list(runner.se_list, error_path)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #5
0
"""
Experiment configuration for:
Model: BERT trained on ZSRE
Benchmark: TACRED
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('BERT ZSRE TACREd')


@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/zsre'  # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
                      must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #6
0
"""
Experiment configuration for:
Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720
Benchmark: Google-RE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('Dhingra GoogleRE')

@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/dhingra-latest' # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/googlere_relations.jsonl' # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/Google_RE2' # Path to underlying data
    batch_size = 16
    must_choose_answer = True

@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #7
0
"""
Experiment configuration for:
Model: Naive RoBERTa
Benchmark: T-REx
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Naive T-REx')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/trex_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/trex')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = False
    device = 'cuda'
    cap = 0

Пример #8
0
"""
Experiment configuration for:
Model: RE-Flex
Benchmark: Google-RE
"""
import fasttext
import spacy
from reflex.reflex_runner import ReflexRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('RE-Flex Google-RE')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/googlere_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/googlere')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    k = 16
    word_embeddings_path = os.path.join(os.environ['BASE_PATH'],
Пример #9
0
"""
Experiment configuration for:
Model: BiDAF trained on Squad2.0
Benchmark: Tacred
"""
from reflex.bidaf_runner import BidafRunner
from reflex.utils import setup_experiment, save_se_list
import os

ex = setup_experiment('BiDAF GoogleRE')


@ex.config
def conf():
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/googlere_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/googlere')  # Path to underlying data
    error_path = os.path.join(os.environ['BASE_PATH'], 'figures',
                              'bidaf_googlere.csv')
    must_choose_answer = True
    calculate_single_error = True


@ex.automain
def main(relations_filepath, data_directory, must_choose_answer, error_path,
         calculate_single_error):
    runner = BidafRunner(relations_filepath, data_directory,
                         must_choose_answer, calculate_single_error)
    em, f1, per_relation_metrics = runner.predict()
Пример #10
0
"""
Experiment configuration for:
Model: BERT trained on ZSRE
Benchmark: Google-RE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment, save_se_list
import os

ex = setup_experiment('BERT ZSRE GoogleRE')

@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/bert-zsre') # Path to trained weights
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/googlere_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/googlere') # Path to underlying data
    error_path = os.path.join(os.environ['BASE_PATH'], 'figures', 'bzsre_googlere.csv')
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    trained_to_reject = True

@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, error_path):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject)
    em, f1, per_relation_metrics = runner.predict()
    save_se_list(runner.se_list, error_path)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #11
0
"""
Experiment configuration for:
Model: Radford Roberta (Naive w/ context seed)
Benchmark: T-REx
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment

ex = setup_experiment('Radford T-REx')


@ex.config
def conf():
    model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large'  # Path to trained weights
    model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt'
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/trex'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = True
    device = 'cpu'


@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory,
         batch_size, must_choose_answer, use_context):
    runner = LMRunner(model_dir, model_name, device, relations_filepath,
                      data_directory, batch_size, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict_naive(use_context=False)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #12
0
"""
Experiment configuration for:
Model: BERT trained squad
Benchmark: ZSRE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment
import os
import pickle

ex = setup_experiment('BERT Squad2.0 ZSRE')

@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'], 'weights/squad2') # Path to trained weights
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data
    batch_size = 16
    must_choose_answer = False
    device = 'cuda'
    trained_to_reject = True

@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, calculate_single_error=False)
    em, f1, per_relation_metrics = runner.predict()
    with open('BERTSQUADZSRE.pkl', 'wb') as wf:
        pickle.dump(per_relation_metrics, wf)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #13
0
"""
Experiment configuration for:
Model: BERT trained on ZSRE
Benchmark: T-REx
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('BERT ZSRE T-REx')


@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest'  # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/trex'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
                      must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #14
0
"""
Experiment configuration for:
Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720
Benchmark: Tacred
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Dhingra Tacred')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/dhingra-latest')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/tacred_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(
        os.environ['BASE_PATH'], 'data/tacred/test')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    trained_to_reject = False


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer, device, trained_to_reject):
    runner = QARunner(qa_path,
Пример #15
0
"""
Experiment configuration for:
Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980
Benchmark: T-REx
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('Lewis T-REx')

@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest' # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/trex_relations.jsonl' # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/trex' # Path to underlying data
    batch_size = 16
    must_choose_answer = True

@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #16
0
"""
Experiment configuration for:
Model: RE-Flex
Benchmark: Test
"""
import fasttext
import spacy
from reflex.reflex_runner import ReflexRunner
from reflex.utils import setup_experiment
from reflex.metrics import calculate_final_em_f1
import os

ex = setup_experiment('RE-Flex Test')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/test_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/Test')  # Path to underlying data
    batch_size = 16
    must_choose_answer = False
    device = 'cpu'
    ls = [-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3]
Пример #17
0
"""
Experiment configuration for:
Model: Naive Roberta (no context seed)
Benchmark: Tacred
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Naive TACRED')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/tacred_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(
        os.environ['BASE_PATH'], 'data/tacred/test')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = False
    device = 'cuda'
    cap = 0

Пример #18
0
"""
Experiment configuration for:
Model: RE-Flex
Benchmark: T-REx
"""
import fasttext
import spacy
from reflex.reflex_runner import ReflexRunner
from reflex.utils import setup_experiment
from reflex.metrics import calculate_final_em_f1
import os

ex = setup_experiment('RE-Flex T-REx')

@ex.config
def conf():
    model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/trex_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/trex') # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cpu'
    ls = [-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3]
    k = 16
    word_embeddings_path = os.path.join(os.environ['BASE_PATH'], 'weights/crawl-300d-2M-subword.bin')

@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, word_embeddings_path, ls,  k):
    spacy_model = spacy.load('en_core_web_lg')
    we_model = fasttext.load_model(word_embeddings_path)
Пример #19
0
"""
Experiment configuration for:
Model: Dhingra et al 2018 -- https://arxiv.org/abs/1804.00720
Benchmark: ZSRE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Dhingra ZSRE')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/dhingra-latest')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/zsre_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/zsre/test')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    trained_to_reject = False


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer, device, trained_to_reject):
    runner = QARunner(qa_path,
Пример #20
0
"""
Experiment configuration for:
Model: BiDAF trained on Squad2.0
Benchmark: Tacred
"""
from reflex.bidaf_runner import BidafRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('BiDAF TACRED')

@ex.config
def conf():
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/tacred/test') # Path to underlying data
    must_choose_answer = False
    calculate_single_error = False

@ex.automain
def main(relations_filepath, data_directory, must_choose_answer, calculate_single_error):
    runner = BidafRunner(relations_filepath, data_directory, must_choose_answer, calculate_single_error)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}


Пример #21
0
"""
Experiment configuration for:
Model: BERT trained squad
Benchmark: Google-RE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment, save_se_list
import os

ex = setup_experiment('BERT Squad2.0 GoogleRE')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/squad2')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/googlere_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/googlere')  # Path to underlying data
    error_path = os.path.join(os.environ['BASE_PATH'], 'figures',
                              'bsquad_googlere.csv')
    batch_size = 16
    must_choose_answer = True
    device = 'cuda'
    trained_to_reject = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
Пример #22
0
"""
Experiment configuration for:
Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980
Benchmark: Google-RE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Lewis Google-RE')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/lewis-latest')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/googlere_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/Google_RE')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cpu'
    trained_to_reject = False


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer, device, trained_to_reject):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
Пример #23
0
"""
Experiment configuration for:
Model: Radford Roberta (Naive w/ context seed)
Benchmark: ZSRE
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('Radford ZSRE')

@ex.config
def conf():
    model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data
    batch_size = 16
    must_choose_answer = False
    use_context = True
    device = 'cuda'
    cap = 10

@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context, cap):
    runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, cap)
    em, f1, per_relation_metrics = runner.predict_naive(use_context=use_context)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #24
0
"""
Experiment configuration for:
Model: BiDAF trained on Squad2.0
Benchmark: ZSRE
"""
from reflex.bidaf_runner import BidafRunner
from reflex.utils import setup_experiment
import os

ex = setup_experiment('BiDAF ZSRE')

@ex.config
def conf():
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/zsre_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/zsre/test') # Path to underlying data
    must_choose_answer = False

@ex.automain
def main(relations_filepath, data_directory, must_choose_answer):
    runner = BidafRunner(relations_filepath, data_directory, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}


Пример #25
0
"""
Experiment configuration for:
Model: Radford Roberta (Naive w/ context seed)
Benchmark: Google-RE
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment

ex = setup_experiment('Radford Google-RE')

@ex.config
def conf():
    model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large' # Path to trained weights
    model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt'
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/googlere_relations.jsonl' # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/Google_RE2' # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = True
    device = 'cpu'

@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, use_context):
    runner = LMRunner(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict_naive(use_context=False)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}

Пример #26
0
"""
Experiment configuration for:
Model: RE-Flex
Benchmark: TACRED
"""
import fasttext
import spacy
import pickle
from reflex.reflex_runner import ReflexRunner
from reflex.utils import setup_experiment, save_reflex_e_list
import os

ex = setup_experiment('RE-Flex TACRED')


@ex.config
def conf():
    model_dir = os.path.join(
        os.environ['BASE_PATH'],
        'weights/roberta_large')  # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'],
                              'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/tacred_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(
        os.environ['BASE_PATH'], 'data/tacred/test')  # Path to underlying data
    hyperparam_path = os.path.join(os.environ['BASE_PATH'], 'tacred_tune.pkl')
    error_path = os.path.join(os.environ['BASE_PATH'], 'figures',
                              'reflex_tacred.csv')
    batch_size = 16
Пример #27
0
"""
Experiment configuration for:
Model: Radford Roberta (Naive w/ context seed)
Benchmark: Tacred
"""
from reflex.lm_runner import LMRunner
from reflex.utils import setup_experiment

ex = setup_experiment('Radford TACRED')


@ex.config
def conf():
    model_dir = '/Users/ankur/Projects/RE-Flex/weights/roberta_large'  # Path to trained weights
    model_name = '/Users/ankur/Projects/RE-Flex/weights/roberta_large/model.pt'
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/tacred_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/tacred'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    use_context = True
    device = 'cpu'


@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory,
         batch_size, must_choose_answer, use_context):
    runner = LMRunner(model_dir, model_name, device, relations_filepath,
                      data_directory, batch_size, must_choose_answer)
    em, f1, per_relation_metrics = runner.predict_naive(use_context=False)
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #28
0
"""
Experiment configuration for:
Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980
Benchmark: ZSRE
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('Lewis ZSRE')


@ex.config
def conf():
    qa_path = '/Users/ankur/Projects/RE-Flex/weights/lewis-latest'  # Path to trained weights
    relations_filepath = '/Users/ankur/Projects/RE-Flex/data/zsre_relations.jsonl'  # Path to relations file
    data_directory = '/Users/ankur/Projects/RE-Flex/data/zsre'  # Path to underlying data
    batch_size = 16
    must_choose_answer = True


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
                      must_choose_answer)
    em, f1, per_relation_metrics = runner.predict()
    return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
Пример #29
0
"""
Experiment configuration for:
Model: Lewis et al 2019 -- https://arxiv.org/abs/1906.04980
Benchmark: Tacred
"""
from reflex.qa_runner import QARunner
from reflex.utils import setup_experiment

ex = setup_experiment('Lewis TACRED')


@ex.config
def conf():
    qa_path = os.path.join(os.environ['BASE_PATH'],
                           'weights/lewis-latest')  # Path to trained weights
    relations_filepath = os.path.join(
        os.environ['BASE_PATH'],
        'data/tacred_relations.jsonl')  # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'],
                                  'data/Tacred')  # Path to underlying data
    batch_size = 16
    must_choose_answer = True
    device = 'cpu'
    trained_to_reject = False


@ex.automain
def main(qa_path, relations_filepath, data_directory, batch_size,
         must_choose_answer):
    runner = QARunner(qa_path, relations_filepath, data_directory, batch_size,
                      must_choose_answer)
Пример #30
0
"""
Experiment configuration for:
Model: RE-Flex
Benchmark: TACRED
"""
import fasttext
import spacy
from reflex.reflex_runner import ReflexRunner
from reflex.utils import setup_experiment
from reflex.metrics import calculate_final_em_f1_dev
import pickle
import os

ex = setup_experiment('RE-Flex TACRED Dev tuning')

@ex.config
def conf():
    model_dir = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large') # Path to trained weights
    model_name = os.path.join(os.environ['BASE_PATH'], 'weights/roberta_large/model.pt')
    relations_filepath = os.path.join(os.environ['BASE_PATH'], 'data/tacred_relations.jsonl') # Path to relations file
    data_directory = os.path.join(os.environ['BASE_PATH'], 'data/tacred/dev') # Path to underlying data
    batch_size = 16
    must_choose_answer = False
    device = 'cuda'
    ls = [-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2]
    k = 16
    word_embeddings_path = os.path.join(os.environ['BASE_PATH'], 'weights/crawl-300d-2M-subword.bin')

@ex.automain
def main(model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, word_embeddings_path, ls,  k):
    spacy_model = spacy.load('en_core_web_lg')