Esempio n. 1
0
def plot2dCstr(aObj: Union[rel.constraint, rel.polynomial, rel.convexProg],
               ax: pt.matplotlib.axes,
               x0: np.ndarray = None,
               opts={},
               fig=None):

    opts_ = {
        'binaryPlot': True,
        'filled': False,
        'nGrid': 200,
        'cbar': True,
        'ctrOpts': {}
    }
    #opts_.update(opts)
    recursiveExclusiveUpdate(opts_, opts)

    if isinstance(aObj, rel.polynomial):
        bRel = rel.lasserreRelax(aObj.repr)
        aObj = rel.lasserreConstraint(bRel, aObj)

    try:
        opts_['nGrid'][0]
    except TypeError:
        opts_['nGrid'] = (opts_['nGrid'], opts_['nGrid'])

    #Get points
    xg, yg = pt.ax2Grid(ax, opts_['nGrid'])
    XX = np.vstack([xg.flatten(), yg.flatten()])
    if x0 is not None:
        DXX = XX - x0
    else:
        DXX = XX
    ZZ = aObj.poly.repr.evalAllMonoms(DXX)

    if isinstance(aObj, rel.convexProg):
        YY = sum([
            aCstr.poly.eval2(ZZ) for aCstr in aObj.constraints.l +
            aObj.constraints.q + aObj.constraints.s
        ])
    else:
        YY = aObj.poly.eval2(ZZ)

    if opts_['binaryPlot']:
        YY = (YY >= 0.).astype(nfloat)
        opts_.update({'levels': [0., 1.]})

    if opts_['filled']:
        cc = ax.contourf(xg, yg, YY.reshape(xg.shape), **opts_['ctrOpts'])
    else:
        cc = ax.contour(xg, yg, YY.reshape(xg.shape), **opts_['ctrOpts'])

    if opts_['cbar']:
        if fig is None:
            print("Cannot print colorbar without figure")
        else:
            fig.colorbar(cc)

    return cc
Esempio n. 2
0
def test2(funnel: distributedFunnel):
    import plotting as plot
    import relaxations as relax

    Ngrid = 100

    repr_ = funnel.dynSys.repr

    relLasserre = relax.lasserreRelax(repr_)
    thisPoly = polynomial(repr_)

    center = 2. * (np.random.rand(2, 1) - .5)
    P = 1.5 * (np.random.rand(2, 2) - .5)
    P = ndot(P.T, P) + .5 * nidentity(2)

    thisPoly.setEllipsoidalConstraint(center, 1., P)

    lass_cstr = relax.lasserreConstraint(relLasserre, thisPoly)

    ff, aa = plot.plt.subplots(1, 1)
    plot.plotEllipse(aa, center, P, 1., faceAlpha=0.)

    aa.autoscale()
    aa.axis('equal')

    xx, yy, XX = plot.ax2Grid(aa, Ngrid, True)

    z = lass_cstr.poly.eval2(XX).reshape((Ngrid, Ngrid))

    aa.contour(xx, yy, z, [-0.1, 0., 0.01])

    is_valid = lass_cstr.isValid(XX, simpleEval=False)
    is_n_valid = np.logical_not(is_valid)

    aa.plot(XX[0, is_valid], XX[1, is_valid], '.g')
    aa.plot(XX[0, is_n_valid], XX[1, is_n_valid], '.r')

    aa.plot(center[0, :], center[1, :], 'sk')

    return None
Esempio n. 3
0
    aa[0].autoscale()
    xx, yy = plot.ax2Grid(aa[0], Ngrid)
    XX = np.vstack((xx.flatten(), yy.flatten()))
    valCstr = cstrPolySep.eval2(XX - refTraj.getX(0.))
    aa[0].contour(xx, yy, valCstr.reshape((Ngrid, Ngrid)), [0.])

    # Evaluate the norm of the control input
    uNorm = ndot(
        uCtrlLin, np.vstack((np.zeros(
            (1, XX.shape[1])), XX - refTraj.getX(0.)))).flatten()
    plot.plotEllipse(aa[1], refTraj.getX(0.), lyapF.P, 1., faceAlpha=0.)
    aa[1].contourf(xx, yy, uNorm.reshape((Ngrid, Ngrid)))
    aa[1].contour(xx, yy, uNorm.reshape((Ngrid, Ngrid)), [-10, -5, 0, 5, 10])

    # Build up the optimization problem
    baseRelax = relax.lasserreRelax(thisRepr)
    cstrRelaxSep = relax.lasserreConstraint(
        baseRelax,
        cstrPolySep)  # Here the 'plus' space is singled out -> negative input
    cstrPolyEllip = poly.polynomial(thisRepr)
    cstrPolyEllip.setQuadraticForm(
        -lyapF.P, thisRepr.varNumsPerDeg[1], narray([lyapF.alpha],
                                                    dtype=nfloat),
        thisRepr.varNumsPerDeg[0])  #  x'.P.x<=alpha --> x'.(-P).x + alpha >= 0
    cstrRelaxEllip = relax.lasserreConstraint(baseRelax, cstrPolyEllip)
    # Exclude inner as zero always yields zero
    excludeInner = 0.1
    cstrPolyEllipInner = poly.polynomial(thisRepr)
    cstrPolyEllipInner.setQuadraticForm(
        lyapF.P, thisRepr.varNumsPerDeg[1],
        narray([-excludeInner * lyapF.alpha],
Esempio n. 4
0
def testSol(sol, ctrlDict:dict):

    nDim, maxDeg = sol['probDict']['dimsNDeg']

    # Set up helpers
    thisRepr = poly.polynomialRepr(nDim, maxDeg)
    thisPoly = poly.polynomial(thisRepr)

    # Test if solution(s) is(are) valid
    ySol = sol['ySol']
    print(f"Minimizers are:\n{ySol}")
    zySol = thisRepr.evalAllMonoms(ySol)
    
    try:
        PG0n = ctrlDict['PG0']/(norm(ctrlDict['PG0'], axis=0, keepdims=True)+floatEps)
    except KeyError:
        pass

    # Loop over constraint polynomials
    for k, acstr in enumerate(sol['origProb']['cstr']):
        thisPoly.coeffs = acstr
        for i in range(zySol.shape[1]):
            if not thisPoly.eval2(zySol[:,[i]])>=0.:
                thisRelax = relax.lasserreRelax(thisRepr)
                print(f"Failed on cstr {k} with {thisPoly.eval2(thisPoly.eval2(zySol[:,[i]]))} for point {i}")
                thisCstr = relax.lasserreConstraint(thisRelax, thisPoly)
                print(f"Original sol with {sol['sol']['x_np']} is valid : {thisCstr.isValid(sol['sol']['x_np'].T, simpleEval=False)}")
                print(f"Reconstructed sol with {ySol} is valid : {thisCstr.isValid(ySol, simpleEval=False)}")
                
                if nany(thisCstr.isValid(sol['sol']['x_np'].T, simpleEval=False) != thisCstr.isValid(ySol, simpleEval=False)):
                    raise RuntimeError

    # Check if minimizer is compatible with control law definition
    if 'PG0' in ctrlDict.keys():
        dist2Planes = ndot(PG0n.T, ySol)
        signPlanes = np.sign(dist2Planes).astype(nint)
        signPlanes[signPlanes==0] = 1
        
        for i,type in enumerate(sol['probDict']['u'].squeeze()):
            if (nany(signPlanes[0,:] != signPlanes[0,0])) and not type==2:
                print(f"Attention: minimizers are on different signs of the plane. Check wich separation is used")
            if not type in list(-signPlanes[i,:])+[2]:
                print(f"Failed on input {i} with dist {dist2Planes[i]} and ctrl {type}")
                raise RuntimeError

    # Check if minimal value corresponds to ctrlDict value
    thisPoly.coeffs = -ctrlDict[-1][0]
    optsVals = thisPoly.eval2(zySol).reshape((-1,))

    for i,type in enumerate(sol['probDict']['u'].squeeze()):
        thisPoly.coeffs = -ctrlDict[i][type]
        for k in range(zySol.shape[1]):
            thisVal = thisPoly.eval2(zySol[:,[k]])
            optsVals[k] += thisVal
            if thisVal <= 0.:
                print(f"The control type {type} for input {i} failed on minimizer {k}")

    print(f"global minimum was \n{sol['sol']['primal objective']}\n, computed values from ctrlDict are \n{optsVals}")



    print('a')
Esempio n. 5
0
def plot2dProof(funnel: fn.distributedFunnel, t=0.0, opts={}):

    from plotting.plottingCstr import plot2dCstr

    opts_ = {
        'zoneOpts': {
            'pltStyle': 'proj',
            'linewidth': 1.,
            'color': [0.0, 0.0, 1.0, 1.0],
            'faceAlpha': 0.0,
            'linestyle': '-',
            'plotAx': np.array([0, 1])
        },
        'streamOpts': {
            'cmap': 'viridis',
            'colorStreams': 'ang',
            'nGrid': 200,
            'cbar': True,
            'plotValidOnly': True,
            'validEps': -.1
        },
        'modeDyn': [3, 3],
        'cstrOpts': {
            'binaryPlot': True,
            'filled': False,
            'nGrid': 200,
            'cbar': False,
            'ctrOpts': {}
        }
    }
    recursiveExclusiveUpdate(opts_, opts)
    optsStream_ = opts_['streamOpts']

    # Helper stuff
    thisPoly = poly.polynomial(funnel.repr)
    thisRelax = relax.lasserreRelax(funnel.repr)

    #Get the subproof
    try:
        subProofList = funnel.proof_[t]
    except KeyError:
        keysT = narray(list(funnel.proof_.keys()), dtype=nfloat)
        tprime = keysT[np.argmin(np.abs(keysT - t))]
        print(f"Using time point {tprime} instead of {t}")
        t = tprime
        subProofList = funnel.proof_[t]

    x0, dx0, uRef = funnel.dynSys.ctrlInput.refTraj.getX(
        t), funnel.dynSys.ctrlInput.refTraj.getDX(
            t), funnel.dynSys.ctrlInput.refTraj.getU(t)

    allDict = {}
    for nSub, (subProof, _) in enumerate(subProofList):
        allDict[nSub] = {}
        thisDict = allDict[nSub]

        nProbs = len(subProof['origProb'])

        nax = [1, 1]

        while True:
            if nax[0] * nax[1] >= nProbs:
                break
            nax[1] += 1
            if nax[0] * nax[1] >= nProbs:
                break
            nax[0] += 1

        ff, aa = plt.subplots(*nax, sharex=True, sharey=True)
        aa = narray(aa, ndmin=2)
        thisDict['fig'] = ff
        thisDict['ax'] = aa

        ff.suptitle(f"Proof {nSub} at {t:.4e}")
        #Loop over the significant problems and their solutions
        for k, (aVal, aProb) in enumerate(subProof['sigProbAndVals']):
            thisDict[k] = {}
            idx, idy = divmod(k, nax[1])
            aa[idx, idy].set_title(
                f"{aProb['sol']['primal objective']:.2e} : {list(aProb['origProb']['probDict']['u'].reshape((-1,)))}"
            )

            # Plot the zone
            zonePlot = funnel.lyapFunc.plot(ax=aa[idx, idy],
                                            t=t,
                                            x0=x0,
                                            opts=opts_['zoneOpts'])

            # Get the grid
            aa[idx, idy].autoscale()
            aa[idx, idy].axis('equal')

            xx, yy = ax2Grid(aa[idx, idy], opts_['streamOpts']['nGrid'])
            XX = np.vstack([xx.flatten(), yy.flatten()])
            DXX = XX - x0

            # Plot the additional contraints and check which points satisfy them
            idxValid = nones((DXX.shape[1], )).astype(np.bool_)

            for aCstrCoeff in aProb['origProb']['cstr'][1:]:
                thisPoly.coeffs = aCstrCoeff
                thisCstr = relax.lasserreConstraint(thisRelax, thisPoly)
                # Plot
                plot2dCstr(thisCstr,
                           aa[idx, idy],
                           x0=x0,
                           opts=opts_['cstrOpts'])
                # Check feasibility of points
                idxValid = np.logical_and(
                    idxValid,
                    thisCstr.isValid(XX, atol=opts_['streamOpts']['validEps']))

            # Get the velocities
            UU = funnel.dynSys.ctrlInput.getUVal(
                DXX,
                aProb['origProb']['probDict']['u'],
                t,
                zone=funnel.lyapFunc.getZone(t),
                gTaylor=funnel.dynSys.getTaylorApprox(x0)[1],
                uRef=uRef)
            VV = funnel.dynSys(XX, UU, mode=opts_['modeDyn'], x0=x0, dx0=dx0)

            streamColor = getStreamColor(funnel.lyapFunc, XX, VV, t,
                                         opts_['streamOpts'])

            thisStream = aa[idx, idy].streamplot(
                xx,
                yy,
                VV[0, :].reshape((optsStream_['nGrid'], optsStream_['nGrid'])),
                VV[1, :].reshape((optsStream_['nGrid'], optsStream_['nGrid'])),
                color=streamColor,
                cmap=optsStream_['cmap'])

            if optsStream_['cbar']:
                thisCBar = ff.colorbar(thisStream.lines)
            else:
                thisCBar = None

            thisDict[k]['zonePlot'] = zonePlot
            thisDict[k]['stream'] = thisStream
            thisDict[k]['cbar'] = thisCBar

    return allDict
Esempio n. 6
0
def doTesting(funnel: distributedFunnel):
    import plotting as plot
    import relaxations as relax

    lyapFunc_ = funnel.lyapFunc
    dynSys_ = funnel.dynSys
    repr_ = funnel.dynSys.repr

    relLasserre = relax.lasserreRelax(repr_)
    thisPoly0 = polynomial(repr_)
    thisPoly1 = polynomial(repr_)
    thisPolyCstr = polynomial(repr_)

    # Fill up the Lyapunov function
    P0 = np.array([[2.1, 0.4], [0.4, 0.95]], dtype=nfloat)
    P1 = np.array([[1.5, -0.4], [-0.4, 1.25]], dtype=nfloat)

    lyapFunc_.reset()
    lyapFunc_.register(0., (P0, 1.05))
    lyapFunc_.register(0.5, (P1, 0.95))

    t = 0.133
    # Get the zone
    zone = lyapFunc_.getZone(0.133)

    x0, dx0, u0 = funnel.dynSys.ctrlInput.refTraj(t)

    # Taylor
    fTaylor, gTaylor = dynSys_.getTaylorApprox(x0)

    # Get the control dict
    ctrlDict, zoneP = lyapFunc_.getCtrlDict(t, fTaylor, gTaylor, True)
    # Project to unit sphere
    ctrlDictProj = dp(ctrlDict)
    funnel.doProjection(zone, [], ctrlDictProj)

    # Get the linear control law
    K, Kmonoms = dynSys_.ctrlInput.getU2(2 * nones((dynSys_.nu, ), dtype=nint),
                                         t, zone, gTaylor, x0, True, u0)

    # Get a grid to evaluate on
    ff, aa = plot.plt.subplots(1, 2)
    lyapFunc_.plot(aa[0], t)
    aa[0].autoscale()
    aa[0].axis('equal')
    aa[1].autoscale()
    aa[1].axis('equal')

    xx, yy = plot.ax2Grid(aa[0], 100)
    xx *= 1.25
    yy *= 1.25

    XX = np.vstack((xx.flatten(), yy.flatten()))
    ZZ = repr_.evalAllMonoms(XX)

    dXX = XX - x0
    dZX = repr_.evalAllMonoms(dXX)

    # Project onto sphere
    dYY = lyapFunc_.ellip2Sphere(t, dXX)
    dZY = repr_.evalAllMonoms(dYY)

    # Check if the taylor approx is the same as the original for polynomials
    idx2 = np.random.choice(np.arange(xx.shape[1]), 1)
    idx3 = np.random.choice(np.arange(xx.shape[1]), 1)
    fTaylor2, gTaylor2 = dynSys_.getTaylorApprox(XX[:, idx2])
    dXX2 = XX - XX[:, idx2]
    dZX2 = repr_.evalAllMonoms(dXX2)

    fXX = np.transpose(dynSys_.fEval(XX), (2, 1, 0))[0, :, :]
    # Test other
    fXXCall = dynSys_(XX - XX[:, idx3],
                      u=nzeros((dynSys_.nu, XX.shape[1])),
                      restrictInput=False,
                      mode=[3, 3],
                      x0=XX[:, idx3])
    fXXtaylor1 = ndot(fTaylor, dZX[:fTaylor.shape[1], :])
    fXXtaylor2 = ndot(fTaylor2, dZX2[:fTaylor2.shape[1], :])

    GXX = dynSys_.gEval(XX)
    GXXtaylor1 = neinsum("zij,zn->nij", gTaylor, dZX[:gTaylor.shape[0], :])
    GXXtaylor2 = neinsum("zij,zn->nij", gTaylor2, dZX2[:gTaylor.shape[0], :])

    if not np.allclose(fXX, fXXCall):
        print(f"Prob in call ot dynSys")
    if not np.allclose(fXX, fXXtaylor1):
        print(f"f failed for taylor1 or dynSys")
    if not np.allclose(fXX, fXXtaylor2):
        print(f"f failed for taylor2 or dynSys")
    if not np.allclose(GXX, GXXtaylor1):
        print(f"G failed for taylor1 or dynSys")
    if not np.allclose(GXX, GXXtaylor2):
        print(f"G failed for taylor2 or dynSys")

    fff, aaa = plot.plt.subplots(1, 1)
    lyapFunc_.plot(aaa, t, opts={'faceAlpha': 0.})
    aaa.axis('equal')
    aaa.autoscale()
    aaa.streamplot(xx, yy, fXXCall[0, :].reshape((100, 100)),
                   fXXCall[1, :].reshape((100, 100)))

    # Check if
    # Control input does not exceed limits
    Vxx = lyapFunc_.evalV(dXX, t, kd=False)
    idxInside = (Vxx <= zone[1]).squeeze()
    aa[0].plot(XX[0, idxInside], XX[1, idxInside], '.')
    # Compare with projection
    Vyy = norm(dYY, axis=0, keepdims=False)
    idxInsideY = Vyy <= 1.
    if not nall(idxInside == idxInsideY):
        idxFalse = idxInside != idxInsideY
        print(
            f"Failed on \n {dXX[:, idxFalse]} \n with \n {Vxx[:, idxFalse]} and \n {dYY[:, idxFalse]} \n with \n {Vyy[:, idxFalse]}"
        )

    aa[1].plot(dYY[0, idxInside], dYY[1, idxInside], '.')

    # Compute control
    # First row of K is constant term
    Ulinx = ndot(K, dZX[:3, :])
    # Check if limits are nowhere exceeded
    uMin, uMax = np.tile(dynSys_.ctrlInput.getMinU(t),
                         (1, XX.shape[1])), np.tile(
                             dynSys_.ctrlInput.getMaxU(t), (1, XX.shape[1]))
    if not nall(
            np.logical_and(uMin[:, idxInside] <= Ulinx[:, idxInside],
                           Ulinx[:, idxInside] <= uMax[:, idxInside])):
        idx = np.logical_and(
            idxInside,
            np.any(np.logical_or(uMin <= Ulinx, Ulinx <= uMax), axis=0))
        print(f"Failed input check on :\n")
        for ii, aidx in enumerate(idx):
            if not aidx:
                continue
            print(
                f"X: {list(dXX[:, ii])}; V: {float(Vxx[ii])}; U: {list(Ulinx[:,ii])}"
            )

    # Check consistency of convergence polynomials
    # Step compare projected and original polynomials
    for i in range(-1, dynSys_.nu):
        for type in range(3):
            try:
                thisPoly0.coeffs = ctrlDict[i][type]
                thisPoly1.coeffs = ctrlDictProj[i][type]
                if not np.allclose(thisPoly0.eval2(dZX), thisPoly1.eval2(dZY)):
                    print(
                        f"Failed on {i}-{type}: {np.where(np.isclose(thisPoly0.eval2(dZX), thisPoly1.eval2(dZY)))}"
                    )
            except KeyError:
                print(f"Ignore keys {i}-{type}")

    # Now compare the control dict convergence with the actual convergence
    # No input
    dxUzero = dynSys_(XX,
                      u=np.zeros_like(uMin),
                      restrictInput=False,
                      mode=[3, 3],
                      x0=x0,
                      dx0=dx0)
    # Minimal input
    dxUmin = dynSys_(XX,
                     u=uMin,
                     restrictInput=False,
                     mode=[3, 3],
                     x0=x0,
                     dx0=dx0)
    # Maximal input
    dxUmax = dynSys_(XX,
                     u=uMax,
                     restrictInput=False,
                     mode=[3, 3],
                     x0=x0,
                     dx0=dx0)
    # Linear [2,2]
    dxUlin = dynSys_(XX,
                     u=Ulinx,
                     restrictInput=False,
                     mode=[3, 3],
                     x0=x0,
                     dx0=dx0)
    dxUlinlim = dynSys_(XX,
                        u=Ulinx,
                        restrictInput=True,
                        mode=[3, 3],
                        x0=x0,
                        dx0=dx0)
    # Mixed [1,2]
    dxUmix = dynSys_(XX,
                     u=np.vstack([uMin[0, :], Ulinx[1, :]]),
                     restrictInput=False,
                     mode=[3, 3],
                     x0=x0,
                     dx0=dx0)

    # Using dynSys
    convDynSysZeroU = lyapFunc_.evalVd(dXX, dxUzero, t, False)
    convDynSysMinU = lyapFunc_.evalVd(dXX, dxUmin, t, False)
    convDynSysMaxU = lyapFunc_.evalVd(dXX, dxUmax, t, False)
    convDynSysLinU = lyapFunc_.evalVd(dXX, dxUlin, t, False)
    convDynSysLinLimU = lyapFunc_.evalVd(dXX, dxUlinlim, t, False)
    convDynSysMixU = lyapFunc_.evalVd(dXX, dxUmix, t, False)

    # Using ctrlDict
    convCtrlDictZeroU = ctrlDict[-1][0].copy()
    thisPoly0.coeffs = convCtrlDictZeroU
    convCtrlDictZeroU = thisPoly0.eval2(dZX).reshape((-1, ))

    convCtrlDictMinU = ctrlDict[-1][0].copy()
    convCtrlDictMinU += ctrlDict[0][-1]
    convCtrlDictMinU += ctrlDict[1][-1]
    thisPoly0.coeffs = convCtrlDictMinU
    convCtrlDictMinU = thisPoly0.eval2(dZX).reshape((-1, ))

    convCtrlDictMaxU = ctrlDict[-1][0].copy()
    convCtrlDictMaxU += ctrlDict[0][1]
    convCtrlDictMaxU += ctrlDict[1][1]
    thisPoly0.coeffs = convCtrlDictMaxU
    convCtrlDictMaxU = thisPoly0.eval2(dZX).reshape((-1, ))

    convCtrlDictLinU = ctrlDict[-1][0].copy()
    convCtrlDictLinU += ctrlDict[0][2]
    convCtrlDictLinU += ctrlDict[1][2]
    thisPoly0.coeffs = convCtrlDictLinU
    convCtrlDictLinU = thisPoly0.eval2(dZX).reshape((-1, ))

    convCtrlDictMixU = ctrlDict[-1][0].copy()
    convCtrlDictMixU += ctrlDict[0][-1]
    convCtrlDictMixU += ctrlDict[1][2]
    thisPoly0.coeffs = convCtrlDictMixU
    convCtrlDictMixU = thisPoly0.eval2(dZX).reshape((-1, ))

    ff, aa = plot.plt.subplots(1, 1)
    aa.plot(convDynSysMinU, 'r')
    aa.plot(convDynSysMaxU, 'b')
    aa.plot(convDynSysMixU, 'g')
    aa.plot(convCtrlDictMinU, '.-r')
    aa.plot(convCtrlDictMaxU, '--b')
    aa.plot(convCtrlDictMixU, '*-g')

    ff, aa = plot.plt.subplots(5, 1)
    aa[0].plot(convDynSysZeroU, 'r')
    aa[0].plot(convCtrlDictZeroU, '--b')
    aa[1].plot(convDynSysMinU, 'r')
    aa[1].plot(convCtrlDictMinU, '--b')
    aa[2].plot(convDynSysMaxU, 'r')
    aa[2].plot(convCtrlDictMaxU, '--b')
    aa[3].plot(convDynSysLinU, 'r')
    aa[3].plot(convCtrlDictLinU, '--b')
    aa[3].plot(convDynSysLinLimU, '-.g')
    aa[4].plot(convDynSysMixU, 'r')
    aa[4].plot(convCtrlDictMixU, '--b')

    if not np.allclose(convDynSysZeroU, convCtrlDictZeroU):
        print("Failed on zero U")

    if not np.allclose(convDynSysMinU, convCtrlDictMinU):
        print("Failed on min U")

    if not np.allclose(convDynSysMaxU, convCtrlDictMaxU):
        print("Failed on max U")

    if not np.allclose(convDynSysLinU, convCtrlDictLinU):
        print("Failed on lin U")  #todo

    if not np.allclose(convDynSysMixU, convCtrlDictMixU):
        print("Failed on mix U")  #todo

    return None