def predict(datasource, select, data_table, result_table, label_column, oss_model_path): """PAI TensorFlow prediction wrapper This function do some preparation for the local prediction, say, download the model from OSS, extract metadata and so on. Args: datasource: the datasource from which to get data select: data selection SQL statement data_table: tmp table which holds the data from select result_table: table to save prediction result label_column: prediction label column oss_model_path: the model path on OSS """ try: tf.enable_eager_execution() except: # noqa: E722 pass (estimator, feature_column_names, feature_column_names_map, feature_metas, label_meta, model_params, feature_columns_code) = oss.load_metas(oss_model_path, "tensorflow_model_desc") feature_columns = eval(feature_columns_code) # NOTE(typhoonzero): No need to eval model_params["optimizer"] and # model_params["loss"] because predicting do not need these parameters. is_estimator = is_tf_estimator(import_model(estimator)) # Keras single node is using h5 format to save the model, no need to deal # with export model format. Keras distributed mode will use estimator, so # this is also needed. if is_estimator: oss.load_file(oss_model_path, "exported_path") # NOTE(typhoonzero): directory "model_save" is hardcoded in # codegen/tensorflow/codegen.go oss.load_dir("%s/model_save" % oss_model_path) else: oss.load_file(oss_model_path, "model_save") _predict(datasource=datasource, estimator_string=estimator, select=select, result_table=result_table, feature_columns=feature_columns, feature_column_names=feature_column_names, feature_column_names_map=feature_column_names_map, train_label_name=label_meta["feature_name"], result_col_name=label_column, feature_metas=feature_metas, model_params=model_params, save="model_save", batch_size=1, pai_table=data_table)
def evaluate(datasource, select, data_table, result_table, oss_model_path, metrics): """PAI Tensorflow evaluate wrapper This function do some preparation for the local evaluation, say, download the model from OSS, extract metadata and so on. Args: datasource: the datasource from which to get data select: data selection SQL statement data_table: tmp table which holds the data from select result_table: table to save prediction result oss_model_path: the model path on OSS metrics: metrics to evaluate """ (estimator, feature_column_names, feature_column_names_map, feature_metas, label_meta, model_params, feature_columns_code) = oss.load_metas(oss_model_path, "tensorflow_model_desc") feature_columns = eval(feature_columns_code) # NOTE(typhoonzero): No need to eval model_params["optimizer"] and # model_params["loss"] because predicting do not need these parameters. is_estimator = is_tf_estimator(import_model(estimator)) # Keras single node is using h5 format to save the model, no need to deal # with export model format. Keras distributed mode will use estimator, so # this is also needed. if is_estimator: oss.load_file(oss_model_path, "exported_path") # NOTE(typhoonzero): directory "model_save" is hardcoded in # codegen/tensorflow/codegen.go oss.load_dir("%s/model_save" % oss_model_path) else: oss.load_file(oss_model_path, "model_save") _evaluate(datasource=datasource, estimator_string=estimator, select=select, result_table=result_table, feature_columns=feature_columns, feature_column_names=feature_column_names, feature_metas=feature_metas, label_meta=label_meta, model_params=model_params, validation_metrics=metrics, save="model_save", batch_size=1, validation_steps=None, verbose=0, is_pai=True, pai_table=data_table)
def explain(datasource, select, data_table, result_table, label_column, oss_model_path): """Do XGBoost model explanation, this function use selected data to explain the model stored at oss_model_path Args: datasource: The datasource to load explain data select: SQL statement to get the data set data_table: tmp table to save the explain data result_table: table to store the explanation result label_column: name of the label column oss_model_path: path to the model to be explained """ # NOTE(typhoonzero): the xgboost model file "my_model" is hard coded # in xgboost/train.py oss.load_file(oss_model_path, "my_model") (estimator, model_params, train_params, feature_field_meta, feature_column_names, label_field_meta, feature_column_code) = oss.load_metas(oss_model_path, "xgboost_model_desc") feature_column_transformers = eval('[{}]'.format(feature_column_code)) transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer( feature_column_names, *feature_column_transformers) explain_xgb( datasource=datasource, select=select, feature_field_meta=feature_field_meta, feature_column_names=feature_column_names, label_meta=label_field_meta, summary_params={}, result_table=result_table, is_pai=True, pai_explain_table=data_table, hdfs_namenode_addr="", hive_location="", hdfs_user="", hdfs_pass="", # (TODO:lhw) save/load explain result storage info into/from FLAGS oss_dest="", oss_ak="", oss_sk="", oss_endpoint="", oss_bucket_name="", transform_fn=transform_fn, feature_column_code=feature_column_code)
def explain(datasource, select, data_table, result_table, label_column, oss_model_path): try: tf.enable_eager_execution() except Exception as e: sys.stderr.write("warning: failed to enable_eager_execution: %s" % e) pass (estimator, feature_column_names, feature_column_names_map, feature_metas, label_meta, model_params, feature_columns_code) = oss.load_metas(oss_model_path, "tensorflow_model_desc") feature_columns = eval(feature_columns_code) # NOTE(typhoonzero): No need to eval model_params["optimizer"] and # model_params["loss"] because predicting do not need these parameters. is_estimator = is_tf_estimator(import_model(estimator)) # Keras single node is using h5 format to save the model, no need to deal # with export model format. Keras distributed mode will use estimator, so # this is also needed. if is_estimator: oss.load_file(oss_model_path, "exported_path") # NOTE(typhoonzero): directory "model_save" is hardcoded in # codegen/tensorflow/codegen.go oss.load_dir("%s/model_save" % oss_model_path) else: oss.load_file(oss_model_path, "model_save") # (TODO: lhw) use oss to store result image _explain(datasource=datasource, estimator_string=estimator, select=select, feature_columns=feature_columns, feature_column_names=feature_column_names, feature_metas=feature_metas, label_meta=label_meta, model_params=model_params, save="model_save", result_table=result_table, pai_table=data_table, oss_dest=None, oss_ak=None, oss_sk=None, oss_endpoint=None, oss_bucket_name=None)
def predict(datasource, select, data_table, result_table, label_column, oss_model_path): """PAI XGBoost prediction wrapper This function do some preparation for the local prediction, say, download the model from OSS, extract metadata and so on. Args: datasource: the datasource from which to get data select: data selection SQL statement data_table: tmp table which holds the data from select result_table: table to save prediction result label_column: prediction label column oss_model_path: the model path on OSS """ # NOTE(typhoonzero): the xgboost model file "my_model" is hard coded # in xgboost/train.py oss.load_file(oss_model_path, "my_model") (estimator, model_params, train_params, feature_metas, feature_column_names, label_meta, feature_column_code) = oss.load_metas(oss_model_path, "xgboost_model_desc") pred_label_meta = copy.copy(label_meta) pred_label_meta["feature_name"] = label_column feature_column_transformers = eval('[{}]'.format(feature_column_code)) transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer( feature_column_names, *feature_column_transformers) pred(datasource=datasource, select=select, feature_metas=feature_metas, feature_column_names=feature_column_names, train_label_meta=label_meta, pred_label_meta=label_meta, result_table=result_table, is_pai=True, hdfs_namenode_addr="", hive_location="", hdfs_user="", hdfs_pass="", pai_table=data_table, model_params=model_params, train_params=train_params, transform_fn=transform_fn, feature_column_code=feature_column_code)