예제 #1
0
파일: predict.py 프로젝트: vmnet04/sqlflow
def predict(datasource, select, data_table, result_table, label_column,
            oss_model_path):
    """PAI TensorFlow prediction wrapper
    This function do some preparation for the local prediction, say,
    download the model from OSS, extract metadata and so on.

    Args:
        datasource: the datasource from which to get data
        select: data selection SQL statement
        data_table: tmp table which holds the data from select
        result_table: table to save prediction result
        label_column: prediction label column
        oss_model_path: the model path on OSS
    """

    try:
        tf.enable_eager_execution()
    except:  # noqa: E722
        pass

    (estimator, feature_column_names, feature_column_names_map, feature_metas,
     label_meta, model_params,
     feature_columns_code) = oss.load_metas(oss_model_path,
                                            "tensorflow_model_desc")

    feature_columns = eval(feature_columns_code)

    # NOTE(typhoonzero): No need to eval model_params["optimizer"] and
    # model_params["loss"] because predicting do not need these parameters.

    is_estimator = is_tf_estimator(import_model(estimator))

    # Keras single node is using h5 format to save the model, no need to deal
    # with export model format. Keras distributed mode will use estimator, so
    # this is also needed.
    if is_estimator:
        oss.load_file(oss_model_path, "exported_path")
        # NOTE(typhoonzero): directory "model_save" is hardcoded in
        # codegen/tensorflow/codegen.go
        oss.load_dir("%s/model_save" % oss_model_path)
    else:
        oss.load_file(oss_model_path, "model_save")

    _predict(datasource=datasource,
             estimator_string=estimator,
             select=select,
             result_table=result_table,
             feature_columns=feature_columns,
             feature_column_names=feature_column_names,
             feature_column_names_map=feature_column_names_map,
             train_label_name=label_meta["feature_name"],
             result_col_name=label_column,
             feature_metas=feature_metas,
             model_params=model_params,
             save="model_save",
             batch_size=1,
             pai_table=data_table)
예제 #2
0
def evaluate(datasource, select, data_table, result_table, oss_model_path,
             metrics):
    """PAI Tensorflow evaluate wrapper
    This function do some preparation for the local evaluation, say,
    download the model from OSS, extract metadata and so on.

    Args:
        datasource: the datasource from which to get data
        select: data selection SQL statement
        data_table: tmp table which holds the data from select
        result_table: table to save prediction result
        oss_model_path: the model path on OSS
        metrics: metrics to evaluate
    """

    (estimator, feature_column_names, feature_column_names_map, feature_metas,
     label_meta, model_params,
     feature_columns_code) = oss.load_metas(oss_model_path,
                                            "tensorflow_model_desc")

    feature_columns = eval(feature_columns_code)
    # NOTE(typhoonzero): No need to eval model_params["optimizer"] and
    # model_params["loss"] because predicting do not need these parameters.

    is_estimator = is_tf_estimator(import_model(estimator))

    # Keras single node is using h5 format to save the model, no need to deal
    # with export model format. Keras distributed mode will use estimator, so
    # this is also needed.
    if is_estimator:
        oss.load_file(oss_model_path, "exported_path")
        # NOTE(typhoonzero): directory "model_save" is hardcoded in
        # codegen/tensorflow/codegen.go
        oss.load_dir("%s/model_save" % oss_model_path)
    else:
        oss.load_file(oss_model_path, "model_save")

    _evaluate(datasource=datasource,
              estimator_string=estimator,
              select=select,
              result_table=result_table,
              feature_columns=feature_columns,
              feature_column_names=feature_column_names,
              feature_metas=feature_metas,
              label_meta=label_meta,
              model_params=model_params,
              validation_metrics=metrics,
              save="model_save",
              batch_size=1,
              validation_steps=None,
              verbose=0,
              is_pai=True,
              pai_table=data_table)
예제 #3
0
파일: explain.py 프로젝트: vmnet04/sqlflow
def explain(datasource, select, data_table, result_table, label_column,
            oss_model_path):
    """Do XGBoost model explanation, this function use selected data to
    explain the model stored at oss_model_path

    Args:
        datasource: The datasource to load explain data
        select: SQL statement to get the data set
        data_table: tmp table to save the explain data
        result_table: table to store the explanation result
        label_column: name of the label column
        oss_model_path: path to the model to be explained
    """
    # NOTE(typhoonzero): the xgboost model file "my_model" is hard coded
    # in xgboost/train.py
    oss.load_file(oss_model_path, "my_model")

    (estimator, model_params, train_params, feature_field_meta,
     feature_column_names, label_field_meta,
     feature_column_code) = oss.load_metas(oss_model_path,
                                           "xgboost_model_desc")

    feature_column_transformers = eval('[{}]'.format(feature_column_code))
    transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer(
        feature_column_names, *feature_column_transformers)

    explain_xgb(
        datasource=datasource,
        select=select,
        feature_field_meta=feature_field_meta,
        feature_column_names=feature_column_names,
        label_meta=label_field_meta,
        summary_params={},
        result_table=result_table,
        is_pai=True,
        pai_explain_table=data_table,
        hdfs_namenode_addr="",
        hive_location="",
        hdfs_user="",
        hdfs_pass="",
        # (TODO:lhw) save/load explain result storage info into/from FLAGS
        oss_dest="",
        oss_ak="",
        oss_sk="",
        oss_endpoint="",
        oss_bucket_name="",
        transform_fn=transform_fn,
        feature_column_code=feature_column_code)
예제 #4
0
def explain(datasource, select, data_table, result_table, label_column,
            oss_model_path):
    try:
        tf.enable_eager_execution()
    except Exception as e:
        sys.stderr.write("warning: failed to enable_eager_execution: %s" % e)
        pass

    (estimator, feature_column_names, feature_column_names_map, feature_metas,
     label_meta, model_params,
     feature_columns_code) = oss.load_metas(oss_model_path,
                                            "tensorflow_model_desc")

    feature_columns = eval(feature_columns_code)
    # NOTE(typhoonzero): No need to eval model_params["optimizer"] and
    # model_params["loss"] because predicting do not need these parameters.

    is_estimator = is_tf_estimator(import_model(estimator))

    # Keras single node is using h5 format to save the model, no need to deal
    # with export model format. Keras distributed mode will use estimator, so
    # this is also needed.
    if is_estimator:
        oss.load_file(oss_model_path, "exported_path")
        # NOTE(typhoonzero): directory "model_save" is hardcoded in
        # codegen/tensorflow/codegen.go
        oss.load_dir("%s/model_save" % oss_model_path)
    else:
        oss.load_file(oss_model_path, "model_save")

    # (TODO: lhw) use oss to store result image
    _explain(datasource=datasource,
             estimator_string=estimator,
             select=select,
             feature_columns=feature_columns,
             feature_column_names=feature_column_names,
             feature_metas=feature_metas,
             label_meta=label_meta,
             model_params=model_params,
             save="model_save",
             result_table=result_table,
             pai_table=data_table,
             oss_dest=None,
             oss_ak=None,
             oss_sk=None,
             oss_endpoint=None,
             oss_bucket_name=None)
예제 #5
0
def predict(datasource, select, data_table, result_table, label_column,
            oss_model_path):
    """PAI XGBoost prediction wrapper
    This function do some preparation for the local prediction, say,
    download the model from OSS, extract metadata and so on.

    Args:
        datasource: the datasource from which to get data
        select: data selection SQL statement
        data_table: tmp table which holds the data from select
        result_table: table to save prediction result
        label_column: prediction label column
        oss_model_path: the model path on OSS
    """
    # NOTE(typhoonzero): the xgboost model file "my_model" is hard coded
    # in xgboost/train.py
    oss.load_file(oss_model_path, "my_model")
    (estimator, model_params, train_params, feature_metas,
     feature_column_names, label_meta,
     feature_column_code) = oss.load_metas(oss_model_path,
                                           "xgboost_model_desc")

    pred_label_meta = copy.copy(label_meta)
    pred_label_meta["feature_name"] = label_column

    feature_column_transformers = eval('[{}]'.format(feature_column_code))
    transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer(
        feature_column_names, *feature_column_transformers)

    pred(datasource=datasource,
         select=select,
         feature_metas=feature_metas,
         feature_column_names=feature_column_names,
         train_label_meta=label_meta,
         pred_label_meta=label_meta,
         result_table=result_table,
         is_pai=True,
         hdfs_namenode_addr="",
         hive_location="",
         hdfs_user="",
         hdfs_pass="",
         pai_table=data_table,
         model_params=model_params,
         train_params=train_params,
         transform_fn=transform_fn,
         feature_column_code=feature_column_code)