def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
    """
    Solve system of Boolean polynomials ``F`` by solving the
    SAT-problem -- produced by ``converter`` -- using ``solver``.

    INPUT:

    - ``F`` - a sequence of Boolean polynomials

    - ``n`` - number of solutions to return. If ``n`` is +infinity
      then all solutions are returned. If ``n <infinity`` then ``n``
      solutions are returned if ``F`` has at least ``n``
      solutions. Otherwise, all solutions of ``F`` are
      returned. (default: ``1``)

    - ``converter`` - an ANF to CNF converter class or object.  If
      ``converter`` is ``None`` then
      :class:`sage.sat.converters.polybori.CNFEncoder` is used to
      construct a new converter. (default: ``None``)

    - ``solver`` - a SAT-solver class or object. If ``solver`` is
      ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat`
      is used to construct a new converter.  (default: ``None``)

    - ``target_variables`` - a list of variables. The elements of the list are
      used to exclude a particular combination of variable assignments of a
      solution from any further solution. Furthermore ``target_variables``
      denotes which variable-value pairs appear in the solutions. If
      ``target_variables`` is ``None`` all variables appearing in the
      polynomials of ``F`` are used to construct exclusion clauses.
      (default: ``None``)

    - ``**kwds`` - parameters can be passed to the converter and the
       solver by prefixing them with ``c_`` and ``s_`` respectively. For
       example, to increase CryptoMiniSat's verbosity level, pass
       ``s_verbosity=1``.

    OUTPUT:

        A list of dictionaries, each of which contains a variable
        assignment solving ``F``.

    EXAMPLES:

    We construct a very small-scale AES system of equations::

        sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
        sage: F,s = sr.polynomial_system()

    and pass it to a SAT solver::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: s = solve_sat(F)                                            # optional - cryptominisat
        sage: F.subs(s[0])                                                # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    This time we pass a few options through to the converter and the solver::

        sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
        c ...
        ...
        sage: F.subs(s[0])                                                             # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    We construct a very simple system with three solutions and ask for a specific number of solutions::

        sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
        sage: f = a*b                           # optional - cryptominisat
        sage: l = solve_sat([f],n=1)            # optional - cryptominisat
        sage: len(l) == 1, f.subs(l[0])         # optional - cryptominisat
        (True, 0)

        sage: l = sorted(solve_sat([a*b],n=2))        # optional - cryptominisat
        sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
        (True, 0, 0)

        sage: sorted(solve_sat([a*b],n=3))         # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]
        sage: sorted(solve_sat([a*b],n=4))         # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]
        sage: sorted(solve_sat([a*b],n=infinity))  # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]

    In the next example we see how the ``target_variables`` parameter works::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: R.<a,b,c,d> = BooleanPolynomialRing()                       # optional - cryptominisat
        sage: F = [a+b,a+c+d]                                             # optional - cryptominisat

    First the normal use case::

        sage: sorted(solve_sat(F,n=infinity))                             # optional - cryptominisat
        [{d: 0, c: 0, b: 0, a: 0},
         {d: 0, c: 1, b: 1, a: 1},
         {d: 1, c: 0, b: 1, a: 1},
         {d: 1, c: 1, b: 0, a: 0}]

    Now we are only interested in the solutions of the variables a and b::

        sage: solve_sat(F,n=infinity,target_variables=[a,b])              # optional - cryptominisat
        [{b: 0, a: 0}, {b: 1, a: 1}]

    .. NOTE::

       Although supported, passing converter and solver objects
       instead of classes is discouraged because these objects are
       stateful.
    """
    assert(n>0)

    try:
        len(F)
    except AttributeError:
        F = F.gens()
        len(F)

    P = next(iter(F)).parent()
    K = P.base_ring()

    if target_variables is None:
        target_variables = PolynomialSequence(F).variables()
    else:
        target_variables = PolynomialSequence(target_variables).variables()
        assert(set(target_variables).issubset(set(P.gens())))

    # instantiate the SAT solver

    if solver is None:
        from sage.sat.solvers import CryptoMiniSat as solver

    if not isinstance(solver, SatSolver):
        solver_kwds = {}
        for k, v in six.iteritems(kwds):
            if k.startswith("s_"):
                solver_kwds[k[2:]] = v

        solver = solver(**solver_kwds)

    # instantiate the ANF to CNF converter

    if converter is None:
        from sage.sat.converters.polybori import CNFEncoder as converter

    if not isinstance(converter, ANF2CNFConverter):
        converter_kwds = {}
        for k, v in six.iteritems(kwds):
            if k.startswith("c_"):
                converter_kwds[k[2:]] = v

        converter = converter(solver, P, **converter_kwds)

    phi = converter(F)
    rho = dict((phi[i], i) for i in range(len(phi)))

    S = []

    while True:
        s = solver()

        if s:
            S.append(dict((x, K(s[rho[x]])) for x in target_variables))

            if n is not None and len(S) == n:
                break

            exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables)
            solver.add_clause(exclude_solution)

        else:
            try:
                learnt = solver.learnt_clauses(unitary_only=True)
                if learnt:
                    S.append(dict((phi[abs(i)-1], K(i<0)) for i in learnt))
                else:
                    S.append(s)
                    break
            except (AttributeError, NotImplementedError):
                # solver does not support recovering learnt clauses
                S.append(s)
                break

    if len(S) == 1:
        if S[0] is False:
            return False
        if S[0] is None:
            return None
    elif S[-1] is False:
            return S[0:-1]
    return S
def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds):
    """
    Learn new polynomials by running SAT-solver ``solver`` on
    SAT-instance produced by ``converter`` from ``F``.

    INPUT:

    - ``F`` - a sequence of Boolean polynomials

    - ``converter`` - an ANF to CNF converter class or object.  If ``converter`` is ``None`` then
      :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new
      converter. (default: ``None``)

    - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then
      :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter.
      (default: ``None``)

    - ``max_learnt_length`` - only clauses of length <= ``max_length_learnt`` are considered and
      converted to polynomials. (default: ``3``)

    - ``interreduction`` - inter-reduce the resulting polynomials (default: ``False``)

    .. NOTE::

       More parameters can be passed to the converter and the solver by prefixing them with ``c_`` and
       ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass
       ``s_verbosity=1``.

    OUTPUT:

        A sequence of Boolean polynomials.

    EXAMPLES::

       sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat

    We construct a simple system and solve it::

       sage: set_random_seed(2300)                      # optional - cryptominisat
       sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat
       sage: F,s = sr.polynomial_system()               # optional - cryptominisat
       sage: H = learn_sat(F)                           # optional - cryptominisat
       sage: H[-1]                                      # optional - cryptominisat
       k033 + 1
    """
    try:
        len(F)
    except AttributeError:
        F = F.gens()
        len(F)

    P = next(iter(F)).parent()
    K = P.base_ring()

    # instantiate the SAT solver

    if solver is None:
        from sage.sat.solvers.cryptominisat import CryptoMiniSat as solver

    solver_kwds = {}
    for k, v in six.iteritems(kwds):
        if k.startswith("s_"):
            solver_kwds[k[2:]] = v

    solver = solver(**solver_kwds)

    # instantiate the ANF to CNF converter

    if converter is None:
        from sage.sat.converters.polybori import CNFEncoder as converter

    converter_kwds = {}
    for k, v in six.iteritems(kwds):
        if k.startswith("c_"):
            converter_kwds[k[2:]] = v

    converter = converter(solver, P, **converter_kwds)

    phi = converter(F)
    rho = dict((phi[i], i) for i in range(len(phi)))

    s = solver()

    if s:
        learnt = [x + K(s[rho[x]]) for x in P.gens()]
    else:
        learnt = []
        try:
            lc = solver.learnt_clauses()
        except (AttributeError, NotImplementedError):
        # solver does not support recovering learnt clauses
            lc = []
        for c in lc:
            if len(c) <= max_learnt_length:
                try:
                    learnt.append(converter.to_polynomial(c))
                except (ValueError, NotImplementedError, AttributeError):
                    # the solver might have learnt clauses that contain CNF
                    # variables which have no correspondence to variables in our
                    # polynomial ring (XOR chaining variables for example)
                    pass

    learnt = PolynomialSequence(P, learnt)

    if interreduction:
        learnt = learnt.ideal().interreduced_basis()
    return learnt
Esempio n. 3
0
def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
    """
    Solve system of Boolean polynomials ``F`` by solving the
    SAT-problem -- produced by ``converter`` -- using ``solver``.

    INPUT:

    - ``F`` - a sequence of Boolean polynomials

    - ``n`` - number of solutions to return. If ``n`` is +infinity
      then all solutions are returned. If ``n <infinity`` then ``n``
      solutions are returned if ``F`` has at least ``n``
      solutions. Otherwise, all solutions of ``F`` are
      returned. (default: ``1``)

    - ``converter`` - an ANF to CNF converter class or object.  If
      ``converter`` is ``None`` then
      :class:`sage.sat.converters.polybori.CNFEncoder` is used to
      construct a new converter. (default: ``None``)

    - ``solver`` - a SAT-solver class or object. If ``solver`` is
      ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat`
      is used to construct a new converter.  (default: ``None``)

    - ``target_variables`` - a list of variables. The elements of the list are
      used to exclude a particular combination of variable assignments of a
      solution from any further solution. Furthermore ``target_variables``
      denotes which variable-value pairs appear in the solutions. If
      ``target_variables`` is ``None`` all variables appearing in the
      polynomials of ``F`` are used to construct exclusion clauses.
      (default: ``None``)

    - ``**kwds`` - parameters can be passed to the converter and the
       solver by prefixing them with ``c_`` and ``s_`` respectively. For
       example, to increase CryptoMiniSat's verbosity level, pass
       ``s_verbosity=1``.

    OUTPUT:

        A list of dictionaries, each of which contains a variable
        assignment solving ``F``.

    EXAMPLES:

    We construct a very small-scale AES system of equations::

        sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
        sage: while True:  # workaround (see :trac:`31891`)
        ....:     try:
        ....:         F, s = sr.polynomial_system()
        ....:         break
        ....:     except ZeroDivisionError:
        ....:         pass

    and pass it to a SAT solver::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: s = solve_sat(F)                                            # optional - cryptominisat
        sage: F.subs(s[0])                                                # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    This time we pass a few options through to the converter and the solver::

        sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
        c ...
        ...
        sage: F.subs(s[0])                                                             # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    We construct a very simple system with three solutions and ask for a specific number of solutions::

        sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
        sage: f = a*b                           # optional - cryptominisat
        sage: l = solve_sat([f],n=1)            # optional - cryptominisat
        sage: len(l) == 1, f.subs(l[0])         # optional - cryptominisat
        (True, 0)

        sage: l = solve_sat([a*b],n=2)        # optional - cryptominisat
        sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
        (True, 0, 0)

        sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3))  # optional - cryptominisat
        [(0, 0), (0, 1), (1, 0)]
        sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4))   # optional - cryptominisat
        [(0, 0), (0, 1), (1, 0)]
        sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity))  # optional - cryptominisat
        [(0, 0), (0, 1), (1, 0)]

    In the next example we see how the ``target_variables`` parameter works::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: R.<a,b,c,d> = BooleanPolynomialRing()                       # optional - cryptominisat
        sage: F = [a+b,a+c+d]                                             # optional - cryptominisat

    First the normal use case::

        sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity))      # optional - cryptominisat
        [(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]

    Now we are only interested in the solutions of the variables a and b::

        sage: solve_sat(F,n=infinity,target_variables=[a,b])              # optional - cryptominisat
        [{b: 0, a: 0}, {b: 1, a: 1}]

    Here, we generate and solve the cubic equations of the AES SBox (see :trac:`26676`)::

        sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence    # optional - cryptominisat, long time
        sage: from sage.sat.boolean_polynomials import solve as solve_sat                       # optional - cryptominisat, long time
        sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True)                  # optional - cryptominisat, long time
        sage: sb = sr.sbox()                                                                    # optional - cryptominisat, long time
        sage: eqs = sb.polynomials(degree = 3)                                                  # optional - cryptominisat, long time
        sage: eqs = PolynomialSequence(eqs)                                                     # optional - cryptominisat, long time
        sage: variables = map(str, eqs.variables())                                             # optional - cryptominisat, long time
        sage: variables = ",".join(variables)                                                   # optional - cryptominisat, long time
        sage: R = BooleanPolynomialRing(16, variables)                                          # optional - cryptominisat, long time
        sage: eqs = [R(eq) for eq in eqs]                                                                 # optional - cryptominisat, long time
        sage: sls_aes = solve_sat(eqs, n = infinity)                                            # optional - cryptominisat, long time
        sage: len(sls_aes)                                                                      # optional - cryptominisat, long time
        256

    TESTS:

    Test that :trac:`26676` is fixed::

        sage: varl = ['k{0}'.format(p) for p in range(29)]
        sage: B = BooleanPolynomialRing(names = varl)
        sage: B.inject_variables(verbose=False)
        sage: keqs = [
        ....:     k0 + k6 + 1,
        ....:     k3 + k9 + 1,
        ....:     k5*k18 + k6*k18 + k7*k16 + k7*k10,
        ....:     k9*k17 + k8*k24 + k11*k17,
        ....:     k1*k13 + k1*k15 + k2*k12 + k3*k15 + k4*k14,
        ....:     k5*k18 + k6*k16 + k7*k18,
        ....:     k3 + k26,
        ....:     k0 + k19,
        ....:     k9 + k28,
        ....:     k11 + k20]
        sage: from sage.sat.boolean_polynomials import solve as solve_sat
        sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat'))     # optional - cryptominisat
        [{k28: 0,
          k26: 1,
          k24: 0,
          k20: 0,
          k19: 0,
          k18: 0,
          k17: 0,
          k16: 0,
          k15: 0,
          k14: 0,
          k13: 0,
          k12: 0,
          k11: 0,
          k10: 0,
          k9: 0,
          k8: 0,
          k7: 0,
          k6: 1,
          k5: 0,
          k4: 0,
          k3: 1,
          k2: 0,
          k1: 0,
          k0: 0}]
        sage: solve_sat(keqs, n=1, solver=SAT('picosat'))           # optional - pycosat
        [{k28: 0,
          k26: 1,
          k24: 0,
          k20: 0,
          k19: 0,
          k18: 0,
          k17: 0,
          k16: 0,
          k15: 0,
          k14: 0,
          k13: 1,
          k12: 1,
          k11: 0,
          k10: 0,
          k9: 0,
          k8: 0,
          k7: 0,
          k6: 1,
          k5: 0,
          k4: 1,
          k3: 1,
          k2: 1,
          k1: 1,
          k0: 0}]

    .. NOTE::

       Although supported, passing converter and solver objects
       instead of classes is discouraged because these objects are
       stateful.
    """
    assert (n > 0)

    try:
        len(F)
    except AttributeError:
        F = F.gens()
        len(F)

    P = next(iter(F)).parent()
    K = P.base_ring()

    if target_variables is None:
        target_variables = PolynomialSequence(F).variables()
    else:
        target_variables = PolynomialSequence(target_variables).variables()
        assert (set(target_variables).issubset(set(P.gens())))

    # instantiate the SAT solver

    if solver is None:
        from sage.sat.solvers import CryptoMiniSat as solver

    if not isinstance(solver, SatSolver):
        solver_kwds = {}
        for k, v in kwds.items():
            if k.startswith("s_"):
                solver_kwds[k[2:]] = v

        solver = solver(**solver_kwds)

    # instantiate the ANF to CNF converter

    if converter is None:
        from sage.sat.converters.polybori import CNFEncoder as converter

    if not isinstance(converter, ANF2CNFConverter):
        converter_kwds = {}
        for k, v in kwds.items():
            if k.startswith("c_"):
                converter_kwds[k[2:]] = v

        converter = converter(solver, P, **converter_kwds)

    phi = converter(F)
    rho = dict((phi[i], i) for i in range(len(phi)))

    S = []

    while True:
        s = solver()

        if s:
            S.append(dict((x, K(s[rho[x]])) for x in target_variables))

            if n is not None and len(S) == n:
                break

            exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x]
                                     for x in target_variables)
            solver.add_clause(exclude_solution)

        else:
            try:
                learnt = solver.learnt_clauses(unitary_only=True)
                if learnt:
                    S.append(dict((phi[abs(i) - 1], K(i < 0)) for i in learnt))
                else:
                    S.append(s)
                    break
            except (AttributeError, NotImplementedError):
                # solver does not support recovering learnt clauses
                S.append(s)
                break

    if len(S) == 1:
        if S[0] is False:
            return False
        if S[0] is None:
            return None
    elif S[-1] is False:
        return S[0:-1]
    return S
Esempio n. 4
0
def learn(F,
          converter=None,
          solver=None,
          max_learnt_length=3,
          interreduction=False,
          **kwds):
    """
    Learn new polynomials by running SAT-solver ``solver`` on
    SAT-instance produced by ``converter`` from ``F``.

    INPUT:

    - ``F`` - a sequence of Boolean polynomials

    - ``converter`` - an ANF to CNF converter class or object.  If ``converter`` is ``None`` then
      :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new
      converter. (default: ``None``)

    - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then
      :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter.
      (default: ``None``)

    - ``max_learnt_length`` - only clauses of length <= ``max_length_learnt`` are considered and
      converted to polynomials. (default: ``3``)

    - ``interreduction`` - inter-reduce the resulting polynomials (default: ``False``)

    .. NOTE::

       More parameters can be passed to the converter and the solver by prefixing them with ``c_`` and
       ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass
       ``s_verbosity=1``.

    OUTPUT:

        A sequence of Boolean polynomials.

    EXAMPLES::

       sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat

    We construct a simple system and solve it::

       sage: set_random_seed(2300)                      # optional - cryptominisat
       sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat
       sage: F,s = sr.polynomial_system()               # optional - cryptominisat
       sage: H = learn_sat(F)                           # optional - cryptominisat
       sage: H[-1]                                      # optional - cryptominisat
       k033 + 1
    """
    try:
        len(F)
    except AttributeError:
        F = F.gens()
        len(F)

    P = next(iter(F)).parent()
    K = P.base_ring()

    # instantiate the SAT solver

    if solver is None:
        from sage.sat.solvers.cryptominisat import CryptoMiniSat as solver

    solver_kwds = {}
    for k, v in kwds.items():
        if k.startswith("s_"):
            solver_kwds[k[2:]] = v

    solver = solver(**solver_kwds)

    # instantiate the ANF to CNF converter

    if converter is None:
        from sage.sat.converters.polybori import CNFEncoder as converter

    converter_kwds = {}
    for k, v in kwds.items():
        if k.startswith("c_"):
            converter_kwds[k[2:]] = v

    converter = converter(solver, P, **converter_kwds)

    phi = converter(F)
    rho = dict((phi[i], i) for i in range(len(phi)))

    s = solver()

    if s:
        learnt = [x + K(s[rho[x]]) for x in P.gens()]
    else:
        learnt = []
        try:
            lc = solver.learnt_clauses()
        except (AttributeError, NotImplementedError):
            # solver does not support recovering learnt clauses
            lc = []
        for c in lc:
            if len(c) <= max_learnt_length:
                try:
                    learnt.append(converter.to_polynomial(c))
                except (ValueError, NotImplementedError, AttributeError):
                    # the solver might have learnt clauses that contain CNF
                    # variables which have no correspondence to variables in our
                    # polynomial ring (XOR chaining variables for example)
                    pass

    learnt = PolynomialSequence(P, learnt)

    if interreduction:
        learnt = learnt.ideal().interreduced_basis()
    return learnt
Esempio n. 5
0
def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
    """
    Solve system of Boolean polynomials ``F`` by solving the
    SAT-problem -- produced by ``converter`` -- using ``solver``.

    INPUT:

    - ``F`` - a sequence of Boolean polynomials

    - ``n`` - number of solutions to return. If ``n`` is +infinity
      then all solutions are returned. If ``n <infinity`` then ``n``
      solutions are returned if ``F`` has at least ``n``
      solutions. Otherwise, all solutions of ``F`` are
      returned. (default: ``1``)

    - ``converter`` - an ANF to CNF converter class or object.  If
      ``converter`` is ``None`` then
      :class:`sage.sat.converters.polybori.CNFEncoder` is used to
      construct a new converter. (default: ``None``)

    - ``solver`` - a SAT-solver class or object. If ``solver`` is
      ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat`
      is used to construct a new converter.  (default: ``None``)

    - ``target_variables`` - a list of variables. The elements of the list are
      used to exclude a particular combination of variable assignments of a
      solution from any further solution. Furthermore ``target_variables``
      denotes which variable-value pairs appear in the solutions. If
      ``target_variables`` is ``None`` all variables appearing in the
      polynomials of ``F`` are used to construct exclusion clauses.
      (default: ``None``)

    - ``**kwds`` - parameters can be passed to the converter and the
       solver by prefixing them with ``c_`` and ``s_`` respectively. For
       example, to increase CryptoMiniSat's verbosity level, pass
       ``s_verbosity=1``.

    OUTPUT:

        A list of dictionaries, each of which contains a variable
        assignment solving ``F``.

    EXAMPLES:

    We construct a very small-scale AES system of equations::

        sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
        sage: F,s = sr.polynomial_system()

    and pass it to a SAT solver::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: s = solve_sat(F)                                            # optional - cryptominisat
        sage: F.subs(s[0])                                                # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    This time we pass a few options through to the converter and the solver::

        sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
        c --> ...
        ...
        sage: F.subs(s[0])                                                             # optional - cryptominisat
        Polynomial Sequence with 36 Polynomials in 0 Variables

    We construct a very simple system with three solutions and ask for a specific number of solutions::

        sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
        sage: f = a*b                           # optional - cryptominisat
        sage: l = solve_sat([f],n=1)            # optional - cryptominisat
        sage: len(l) == 1, f.subs(l[0])         # optional - cryptominisat
        (True, 0)

        sage: l = sorted(solve_sat([a*b],n=2))        # optional - cryptominisat
        sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
        (True, 0, 0)

        sage: sorted(solve_sat([a*b],n=3))         # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]
        sage: sorted(solve_sat([a*b],n=4))         # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]
        sage: sorted(solve_sat([a*b],n=infinity))  # optional - cryptominisat
        [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}]

    In the next example we see how the ``target_variables`` parameter works::

        sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
        sage: R.<a,b,c,d> = BooleanPolynomialRing()                       # optional - cryptominisat
        sage: F = [a+b,a+c+d]                                             # optional - cryptominisat

    First the normal use case::

        sage: sorted(solve_sat(F,n=infinity))                             # optional - cryptominisat
        [{d: 0, c: 0, b: 0, a: 0},
         {d: 0, c: 1, b: 1, a: 1},
         {d: 1, c: 0, b: 1, a: 1},
         {d: 1, c: 1, b: 0, a: 0}]

    Now we are only interested in the solutions of the variables a and b::

        sage: solve_sat(F,n=infinity,target_variables=[a,b])              # optional - cryptominisat
        [{b: 0, a: 0}, {b: 1, a: 1}]

    .. NOTE::

       Although supported, passing converter and solver objects
       instead of classes is discouraged because these objects are
       stateful.
    """
    assert(n>0)

    try:
        len(F)
    except AttributeError:
        F = F.gens()
        len(F)

    P = next(iter(F)).parent()
    K = P.base_ring()

    if target_variables is None:
        target_variables = PolynomialSequence(F).variables()
    else:
        target_variables = PolynomialSequence(target_variables).variables()
        assert(set(target_variables).issubset(set(P.gens())))

    # instantiate the SAT solver

    if solver is None:
        from sage.sat.solvers import CryptoMiniSat as solver

    if not isinstance(solver, SatSolver):
        solver_kwds = {}
        for k, v in six.iteritems(kwds):
            if k.startswith("s_"):
                solver_kwds[k[2:]] = v

        solver = solver(**solver_kwds)

    # instantiate the ANF to CNF converter

    if converter is None:
        from sage.sat.converters.polybori import CNFEncoder as converter

    if not isinstance(converter, ANF2CNFConverter):
        converter_kwds = {}
        for k, v in six.iteritems(kwds):
            if k.startswith("c_"):
                converter_kwds[k[2:]] = v

        converter = converter(solver, P, **converter_kwds)

    phi = converter(F)
    rho = dict((phi[i], i) for i in range(len(phi)))

    S = []

    while True:
        s = solver()

        if s:
            S.append(dict((x, K(s[rho[x]])) for x in target_variables))

            if n is not None and len(S) == n:
                break

            exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables)
            solver.add_clause(exclude_solution)

        else:
            try:
                learnt = solver.learnt_clauses(unitary_only=True)
                if learnt:
                    S.append(dict((phi[abs(i)-1], K(i<0)) for i in learnt))
                else:
                    S.append(s)
                    break
            except (AttributeError, NotImplementedError):
                # solver does not support recovering learnt clauses
                S.append(s)
                break

    if len(S) == 1:
        if S[0] is False:
            return False
        if S[0] is None:
            return None
    elif S[-1] is False:
            return S[0:-1]
    return S