def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds): """ Solve system of Boolean polynomials ``F`` by solving the SAT-problem -- produced by ``converter`` -- using ``solver``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``n`` - number of solutions to return. If ``n`` is +infinity then all solutions are returned. If ``n <infinity`` then ``n`` solutions are returned if ``F`` has at least ``n`` solutions. Otherwise, all solutions of ``F`` are returned. (default: ``1``) - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``target_variables`` - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore ``target_variables`` denotes which variable-value pairs appear in the solutions. If ``target_variables`` is ``None`` all variables appearing in the polynomials of ``F`` are used to construct exclusion clauses. (default: ``None``) - ``**kwds`` - parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A list of dictionaries, each of which contains a variable assignment solving ``F``. EXAMPLES: We construct a very small-scale AES system of equations:: sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True) sage: F,s = sr.polynomial_system() and pass it to a SAT solver:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: s = solve_sat(F) # optional - cryptominisat sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables This time we pass a few options through to the converter and the solver:: sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat c ... ... sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables We construct a very simple system with three solutions and ask for a specific number of solutions:: sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat sage: f = a*b # optional - cryptominisat sage: l = solve_sat([f],n=1) # optional - cryptominisat sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat (True, 0) sage: l = sorted(solve_sat([a*b],n=2)) # optional - cryptominisat sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat (True, 0, 0) sage: sorted(solve_sat([a*b],n=3)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] sage: sorted(solve_sat([a*b],n=4)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] sage: sorted(solve_sat([a*b],n=infinity)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] In the next example we see how the ``target_variables`` parameter works:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat sage: F = [a+b,a+c+d] # optional - cryptominisat First the normal use case:: sage: sorted(solve_sat(F,n=infinity)) # optional - cryptominisat [{d: 0, c: 0, b: 0, a: 0}, {d: 0, c: 1, b: 1, a: 1}, {d: 1, c: 0, b: 1, a: 1}, {d: 1, c: 1, b: 0, a: 0}] Now we are only interested in the solutions of the variables a and b:: sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat [{b: 0, a: 0}, {b: 1, a: 1}] .. NOTE:: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful. """ assert(n>0) try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() if target_variables is None: target_variables = PolynomialSequence(F).variables() else: target_variables = PolynomialSequence(target_variables).variables() assert(set(target_variables).issubset(set(P.gens()))) # instantiate the SAT solver if solver is None: from sage.sat.solvers import CryptoMiniSat as solver if not isinstance(solver, SatSolver): solver_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter if not isinstance(converter, ANF2CNFConverter): converter_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) S = [] while True: s = solver() if s: S.append(dict((x, K(s[rho[x]])) for x in target_variables)) if n is not None and len(S) == n: break exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables) solver.add_clause(exclude_solution) else: try: learnt = solver.learnt_clauses(unitary_only=True) if learnt: S.append(dict((phi[abs(i)-1], K(i<0)) for i in learnt)) else: S.append(s) break except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses S.append(s) break if len(S) == 1: if S[0] is False: return False if S[0] is None: return None elif S[-1] is False: return S[0:-1] return S
def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds): """ Learn new polynomials by running SAT-solver ``solver`` on SAT-instance produced by ``converter`` from ``F``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``max_learnt_length`` - only clauses of length <= ``max_length_learnt`` are considered and converted to polynomials. (default: ``3``) - ``interreduction`` - inter-reduce the resulting polynomials (default: ``False``) .. NOTE:: More parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A sequence of Boolean polynomials. EXAMPLES:: sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat We construct a simple system and solve it:: sage: set_random_seed(2300) # optional - cryptominisat sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat sage: F,s = sr.polynomial_system() # optional - cryptominisat sage: H = learn_sat(F) # optional - cryptominisat sage: H[-1] # optional - cryptominisat k033 + 1 """ try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() # instantiate the SAT solver if solver is None: from sage.sat.solvers.cryptominisat import CryptoMiniSat as solver solver_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter converter_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) s = solver() if s: learnt = [x + K(s[rho[x]]) for x in P.gens()] else: learnt = [] try: lc = solver.learnt_clauses() except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses lc = [] for c in lc: if len(c) <= max_learnt_length: try: learnt.append(converter.to_polynomial(c)) except (ValueError, NotImplementedError, AttributeError): # the solver might have learnt clauses that contain CNF # variables which have no correspondence to variables in our # polynomial ring (XOR chaining variables for example) pass learnt = PolynomialSequence(P, learnt) if interreduction: learnt = learnt.ideal().interreduced_basis() return learnt
def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds): """ Solve system of Boolean polynomials ``F`` by solving the SAT-problem -- produced by ``converter`` -- using ``solver``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``n`` - number of solutions to return. If ``n`` is +infinity then all solutions are returned. If ``n <infinity`` then ``n`` solutions are returned if ``F`` has at least ``n`` solutions. Otherwise, all solutions of ``F`` are returned. (default: ``1``) - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``target_variables`` - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore ``target_variables`` denotes which variable-value pairs appear in the solutions. If ``target_variables`` is ``None`` all variables appearing in the polynomials of ``F`` are used to construct exclusion clauses. (default: ``None``) - ``**kwds`` - parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A list of dictionaries, each of which contains a variable assignment solving ``F``. EXAMPLES: We construct a very small-scale AES system of equations:: sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True) sage: while True: # workaround (see :trac:`31891`) ....: try: ....: F, s = sr.polynomial_system() ....: break ....: except ZeroDivisionError: ....: pass and pass it to a SAT solver:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: s = solve_sat(F) # optional - cryptominisat sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables This time we pass a few options through to the converter and the solver:: sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat c ... ... sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables We construct a very simple system with three solutions and ask for a specific number of solutions:: sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat sage: f = a*b # optional - cryptominisat sage: l = solve_sat([f],n=1) # optional - cryptominisat sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat (True, 0) sage: l = solve_sat([a*b],n=2) # optional - cryptominisat sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat (True, 0, 0) sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - cryptominisat [(0, 0), (0, 1), (1, 0)] In the next example we see how the ``target_variables`` parameter works:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat sage: F = [a+b,a+c+d] # optional - cryptominisat First the normal use case:: sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - cryptominisat [(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)] Now we are only interested in the solutions of the variables a and b:: sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat [{b: 0, a: 0}, {b: 1, a: 1}] Here, we generate and solve the cubic equations of the AES SBox (see :trac:`26676`):: sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - cryptominisat, long time sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat, long time sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - cryptominisat, long time sage: sb = sr.sbox() # optional - cryptominisat, long time sage: eqs = sb.polynomials(degree = 3) # optional - cryptominisat, long time sage: eqs = PolynomialSequence(eqs) # optional - cryptominisat, long time sage: variables = map(str, eqs.variables()) # optional - cryptominisat, long time sage: variables = ",".join(variables) # optional - cryptominisat, long time sage: R = BooleanPolynomialRing(16, variables) # optional - cryptominisat, long time sage: eqs = [R(eq) for eq in eqs] # optional - cryptominisat, long time sage: sls_aes = solve_sat(eqs, n = infinity) # optional - cryptominisat, long time sage: len(sls_aes) # optional - cryptominisat, long time 256 TESTS: Test that :trac:`26676` is fixed:: sage: varl = ['k{0}'.format(p) for p in range(29)] sage: B = BooleanPolynomialRing(names = varl) sage: B.inject_variables(verbose=False) sage: keqs = [ ....: k0 + k6 + 1, ....: k3 + k9 + 1, ....: k5*k18 + k6*k18 + k7*k16 + k7*k10, ....: k9*k17 + k8*k24 + k11*k17, ....: k1*k13 + k1*k15 + k2*k12 + k3*k15 + k4*k14, ....: k5*k18 + k6*k16 + k7*k18, ....: k3 + k26, ....: k0 + k19, ....: k9 + k28, ....: k11 + k20] sage: from sage.sat.boolean_polynomials import solve as solve_sat sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - cryptominisat [{k28: 0, k26: 1, k24: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 1, k5: 0, k4: 0, k3: 1, k2: 0, k1: 0, k0: 0}] sage: solve_sat(keqs, n=1, solver=SAT('picosat')) # optional - pycosat [{k28: 0, k26: 1, k24: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 1, k12: 1, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 1, k5: 0, k4: 1, k3: 1, k2: 1, k1: 1, k0: 0}] .. NOTE:: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful. """ assert (n > 0) try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() if target_variables is None: target_variables = PolynomialSequence(F).variables() else: target_variables = PolynomialSequence(target_variables).variables() assert (set(target_variables).issubset(set(P.gens()))) # instantiate the SAT solver if solver is None: from sage.sat.solvers import CryptoMiniSat as solver if not isinstance(solver, SatSolver): solver_kwds = {} for k, v in kwds.items(): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter if not isinstance(converter, ANF2CNFConverter): converter_kwds = {} for k, v in kwds.items(): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) S = [] while True: s = solver() if s: S.append(dict((x, K(s[rho[x]])) for x in target_variables)) if n is not None and len(S) == n: break exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables) solver.add_clause(exclude_solution) else: try: learnt = solver.learnt_clauses(unitary_only=True) if learnt: S.append(dict((phi[abs(i) - 1], K(i < 0)) for i in learnt)) else: S.append(s) break except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses S.append(s) break if len(S) == 1: if S[0] is False: return False if S[0] is None: return None elif S[-1] is False: return S[0:-1] return S
def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds): """ Learn new polynomials by running SAT-solver ``solver`` on SAT-instance produced by ``converter`` from ``F``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``max_learnt_length`` - only clauses of length <= ``max_length_learnt`` are considered and converted to polynomials. (default: ``3``) - ``interreduction`` - inter-reduce the resulting polynomials (default: ``False``) .. NOTE:: More parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A sequence of Boolean polynomials. EXAMPLES:: sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat We construct a simple system and solve it:: sage: set_random_seed(2300) # optional - cryptominisat sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat sage: F,s = sr.polynomial_system() # optional - cryptominisat sage: H = learn_sat(F) # optional - cryptominisat sage: H[-1] # optional - cryptominisat k033 + 1 """ try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() # instantiate the SAT solver if solver is None: from sage.sat.solvers.cryptominisat import CryptoMiniSat as solver solver_kwds = {} for k, v in kwds.items(): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter converter_kwds = {} for k, v in kwds.items(): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) s = solver() if s: learnt = [x + K(s[rho[x]]) for x in P.gens()] else: learnt = [] try: lc = solver.learnt_clauses() except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses lc = [] for c in lc: if len(c) <= max_learnt_length: try: learnt.append(converter.to_polynomial(c)) except (ValueError, NotImplementedError, AttributeError): # the solver might have learnt clauses that contain CNF # variables which have no correspondence to variables in our # polynomial ring (XOR chaining variables for example) pass learnt = PolynomialSequence(P, learnt) if interreduction: learnt = learnt.ideal().interreduced_basis() return learnt
def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds): """ Solve system of Boolean polynomials ``F`` by solving the SAT-problem -- produced by ``converter`` -- using ``solver``. INPUT: - ``F`` - a sequence of Boolean polynomials - ``n`` - number of solutions to return. If ``n`` is +infinity then all solutions are returned. If ``n <infinity`` then ``n`` solutions are returned if ``F`` has at least ``n`` solutions. Otherwise, all solutions of ``F`` are returned. (default: ``1``) - ``converter`` - an ANF to CNF converter class or object. If ``converter`` is ``None`` then :class:`sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: ``None``) - ``solver`` - a SAT-solver class or object. If ``solver`` is ``None`` then :class:`sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: ``None``) - ``target_variables`` - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore ``target_variables`` denotes which variable-value pairs appear in the solutions. If ``target_variables`` is ``None`` all variables appearing in the polynomials of ``F`` are used to construct exclusion clauses. (default: ``None``) - ``**kwds`` - parameters can be passed to the converter and the solver by prefixing them with ``c_`` and ``s_`` respectively. For example, to increase CryptoMiniSat's verbosity level, pass ``s_verbosity=1``. OUTPUT: A list of dictionaries, each of which contains a variable assignment solving ``F``. EXAMPLES: We construct a very small-scale AES system of equations:: sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True) sage: F,s = sr.polynomial_system() and pass it to a SAT solver:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: s = solve_sat(F) # optional - cryptominisat sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables This time we pass a few options through to the converter and the solver:: sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat c --> ... ... sage: F.subs(s[0]) # optional - cryptominisat Polynomial Sequence with 36 Polynomials in 0 Variables We construct a very simple system with three solutions and ask for a specific number of solutions:: sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat sage: f = a*b # optional - cryptominisat sage: l = solve_sat([f],n=1) # optional - cryptominisat sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat (True, 0) sage: l = sorted(solve_sat([a*b],n=2)) # optional - cryptominisat sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat (True, 0, 0) sage: sorted(solve_sat([a*b],n=3)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] sage: sorted(solve_sat([a*b],n=4)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] sage: sorted(solve_sat([a*b],n=infinity)) # optional - cryptominisat [{b: 0, a: 0}, {b: 0, a: 1}, {b: 1, a: 0}] In the next example we see how the ``target_variables`` parameter works:: sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat sage: F = [a+b,a+c+d] # optional - cryptominisat First the normal use case:: sage: sorted(solve_sat(F,n=infinity)) # optional - cryptominisat [{d: 0, c: 0, b: 0, a: 0}, {d: 0, c: 1, b: 1, a: 1}, {d: 1, c: 0, b: 1, a: 1}, {d: 1, c: 1, b: 0, a: 0}] Now we are only interested in the solutions of the variables a and b:: sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat [{b: 0, a: 0}, {b: 1, a: 1}] .. NOTE:: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful. """ assert(n>0) try: len(F) except AttributeError: F = F.gens() len(F) P = next(iter(F)).parent() K = P.base_ring() if target_variables is None: target_variables = PolynomialSequence(F).variables() else: target_variables = PolynomialSequence(target_variables).variables() assert(set(target_variables).issubset(set(P.gens()))) # instantiate the SAT solver if solver is None: from sage.sat.solvers import CryptoMiniSat as solver if not isinstance(solver, SatSolver): solver_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("s_"): solver_kwds[k[2:]] = v solver = solver(**solver_kwds) # instantiate the ANF to CNF converter if converter is None: from sage.sat.converters.polybori import CNFEncoder as converter if not isinstance(converter, ANF2CNFConverter): converter_kwds = {} for k, v in six.iteritems(kwds): if k.startswith("c_"): converter_kwds[k[2:]] = v converter = converter(solver, P, **converter_kwds) phi = converter(F) rho = dict((phi[i], i) for i in range(len(phi))) S = [] while True: s = solver() if s: S.append(dict((x, K(s[rho[x]])) for x in target_variables)) if n is not None and len(S) == n: break exclude_solution = tuple(-rho[x] if s[rho[x]] else rho[x] for x in target_variables) solver.add_clause(exclude_solution) else: try: learnt = solver.learnt_clauses(unitary_only=True) if learnt: S.append(dict((phi[abs(i)-1], K(i<0)) for i in learnt)) else: S.append(s) break except (AttributeError, NotImplementedError): # solver does not support recovering learnt clauses S.append(s) break if len(S) == 1: if S[0] is False: return False if S[0] is None: return None elif S[-1] is False: return S[0:-1] return S