Esempio n. 1
0
    def gen(self, i=0):
        """
        Return the `i^{th}` generator of ``self``.  This is a one-form,
        more precisely the exterior derivative of the i-th coordinate.

        INPUT:

        - ``i`` - integer (optional, default 0)


        EXAMPLES::

            sage: x, y, z = var('x, y, z')
            sage: U = CoordinatePatch((x, y, z)); U
            Open subset of R^3 with coordinates x, y, z
            sage: F = DifferentialForms(U); F
            Algebra of differential forms in the variables x, y, z
            sage: F.gen(0)
            dx
            sage: F.gen(1)
            dy
            sage: F.gen(2)
            dz

        """

        form = DifferentialForm(self, 0, self._patch.coordinate(i))
        return form.diff()
Esempio n. 2
0
    def gen(self, i=0):
        """
        Return the `i^{th}` generator of ``self``.  This is a one-form,
        more precisely the exterior derivative of the i-th coordinate.

        INPUT:

        - ``i`` - integer (optional, default 0)


        EXAMPLES::

            sage: x, y, z = var('x, y, z')
            sage: U = CoordinatePatch((x, y, z)); U
            Open subset of R^3 with coordinates x, y, z
            sage: F = DifferentialForms(U); F
            Algebra of differential forms in the variables x, y, z
            sage: F.gen(0)
            dx
            sage: F.gen(1)
            dy
            sage: F.gen(2)
            dz

        """

        form = DifferentialForm(self, 0, self._patch.coordinate(i))
        return form.diff()
Esempio n. 3
0
    def gen(self, i=0):
        """
        Return the `i^{th}` generator of ``self``.  This is a one-form,
        more precisely the exterior derivative of the i-th coordinate.

        INPUT:

        - ``i`` - integer (optional, default 0)


        EXAMPLES::

            sage: x, y, z = var('x, y, z')
            sage: U = CoordinatePatch((x, y, z)); U
            doctest:...: DeprecationWarning: Use Manifold instead.
            See http://trac.sagemath.org/24444 for details.
            Open subset of R^3 with coordinates x, y, z
            sage: F = DifferentialForms(U); F
            doctest:...:  DeprecationWarning: For the set of differential forms of
             degree p, use U.diff_form_module(p), where U is the base manifold
             (type U.diff_form_module? for details).
            See http://trac.sagemath.org/24444 for details.
            Algebra of differential forms in the variables x, y, z
            sage: F.gen(0)
            doctest:...: DeprecationWarning: Use U.diff_form(degree) instead,
             where U is the base manifold (type U.diff_form? for details).
            See http://trac.sagemath.org/24444 for details.
            dx
            sage: F.gen(1)
            dy
            sage: F.gen(2)
            dz

        """

        form = DifferentialForm(self, 0, self._patch.coordinate(i))
        return form.diff()