def gen(self, i=0): """ Return the `i^{th}` generator of ``self``. This is a one-form, more precisely the exterior derivative of the i-th coordinate. INPUT: - ``i`` - integer (optional, default 0) EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)); U Open subset of R^3 with coordinates x, y, z sage: F = DifferentialForms(U); F Algebra of differential forms in the variables x, y, z sage: F.gen(0) dx sage: F.gen(1) dy sage: F.gen(2) dz """ form = DifferentialForm(self, 0, self._patch.coordinate(i)) return form.diff()
def gen(self, i=0): """ Return the `i^{th}` generator of ``self``. This is a one-form, more precisely the exterior derivative of the i-th coordinate. INPUT: - ``i`` - integer (optional, default 0) EXAMPLES:: sage: x, y, z = var('x, y, z') sage: U = CoordinatePatch((x, y, z)); U doctest:...: DeprecationWarning: Use Manifold instead. See http://trac.sagemath.org/24444 for details. Open subset of R^3 with coordinates x, y, z sage: F = DifferentialForms(U); F doctest:...: DeprecationWarning: For the set of differential forms of degree p, use U.diff_form_module(p), where U is the base manifold (type U.diff_form_module? for details). See http://trac.sagemath.org/24444 for details. Algebra of differential forms in the variables x, y, z sage: F.gen(0) doctest:...: DeprecationWarning: Use U.diff_form(degree) instead, where U is the base manifold (type U.diff_form? for details). See http://trac.sagemath.org/24444 for details. dx sage: F.gen(1) dy sage: F.gen(2) dz """ form = DifferentialForm(self, 0, self._patch.coordinate(i)) return form.diff()